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SOME CHARACTERIZATIONS OF SPACES
WITH LOCALLY COUNTABLE NETWORKS

Luong Quoc Tuyen

Abstract. In this paper, we give some characterizations of spaces with locally countable
network and some characterizations of sn-symmetric (or Cauchy sn-symmetric) spaces with locally
countable sn-networks by compact images (or π-images) of locally separable metric spaces.

1. Introduction

One of the central problems in general topology is to establish relationships
between various topological spaces and metric spaces by means of various maps.
Many kinds of characterizations have been obtained by means of certain networks
(see [2, 3, 9, 16], for example). In [3], T.V. An and L.Q. Tuyen proved some
characterizations of spaces with countable networks and some characterizations
of sn-symmetric (or Cauchy sn-symmetric) spaces with countable sn-networks by
compact images (or π-images) of separable metric spaces. Furthermore, in [18],
L.Q. Tuyen proved that a regular space with a locally countable sn-network (resp.,
weak base) if and only if it is a compact-covering (resp., compact-covering quotient)
compact and ss-image of a metric space, if and only if it is a sequentially-quotient
(resp., quotient) π and ss-image of a metric space.

In this paper, we give some characterizations of spaces with locally countable
networks and some characterizations of sn-symmetric (or Cauchy sn-symmetric)
spaces with locally countable sn-networks by compact images (or π-images) of
locally separable metric spaces. As an application of this result, we give some
characterizations of symmetric (or Cauchy symmetric) spaces with locally countable
weak bases by compact images (or π-images) of locally separable metric spaces.

Throughout this paper, all spaces are assumed to be Hausdorff, all maps are
continuous and onto, N denotes the set of all natural numbers. Let P be a family
of subsets of X, and f : X −→ Y be a map, we denote

⋃P =
⋃{P : P ∈ P}, and

f(P) = {f(P ) : P ∈ P}. For a sequence {xn} converging to x and P ⊂ X, we say

2010 AMS Subject Classification: 54C10, 54D65, 54E40, 54E99
Keywords and phrases: Network; cs∗-network; sn-network; weak base; locally countable;

sequence-covering; 1-sequence-covering; weak-open; compact map; π-map.

84



Spaces with locally countable networks 85

that {xn} is eventually in P if {x}⋃{xn : n ≥ m} ⊂ P for some m ∈ N, and {xn}
is frequently in P if some subsequence of {xn} is eventually in P .

Definition 1.1. Let X be a space and P be a subset of X.
(1) P is a sequential neighborhood of x in X, if each sequence S converging to x

is eventually in P .
(2) P is a sequentially open subset of X, if P is a sequential neighborhood of x in

X for all x ∈ P .

Definition 1.2. Let P be a collection of subsets of a space X and x ∈ X.
Then,
(1) P is a network at x in X [16], if x ∈ P for every P ∈ P, and if x ∈ U with U

open in X, there exists P ∈ P such that x ∈ P ⊂ U .
(2) P is a network for X [16], if {P ∈ P : x ∈ P} is a network at x in X for all

x ∈ X.
(3) P is a cs∗-network for X [17], if for each sequence S converging to a point

x ∈ U with U open in X, S is frequently in P ⊂ U for some P ∈ P.
(4) P is a cs-network for X [17], if each sequence S converging to a point x ∈ U

with U open in X, S is eventually in P ⊂ U for some P ∈ P.
(5) P is point-countable, if each point x ∈ X belongs to only countably many

members of P.
(6) P is locally countable, if for each x ∈ X, there exists a neighborhood V of x

such that V meets only countably many members of P.
(7) P is star-countable [14], if each P ∈ P meets only countably many members

of P.

Definition 1.3. Let P =
⋃{Px : x ∈ X} be a family of subsets of a space X

satisfying that, for every x ∈ X, Px is a network at x in X, and if U , V ∈ Px, then
W ⊂ U ∩ V for some W ∈ Px.
(1) P is a weak base for X [4], if whenever G ⊂ X satisfying for every x ∈ G, there

exists P ∈ Px with P ⊂ G, then G open in X. Here, Px is a weak neighborhood
base at x in X.

(2) P is an sn-network for X [11], if each member of Px is a sequential neighbor-
hood of x for all x ∈ X. Here, Px is an sn-network at x in X.

Remark 1.5.
(1) weak bases =⇒ sn-networks.
(2) In a sequential space, weak bases ⇐⇒ sn-networks.

Definition 1.5. Let f : X −→ Y be a map.
(1) f is a weak-open map [19], if there exists a weak base B =

⋃{By : y ∈ Y }
for Y , and for every y ∈ Y , there exists xy ∈ f−1(y) such that for each open
neighborhood U of xy, B ⊂ f(U) for some B ∈ By.

(2) f is a 1-sequence-covering map [11], if for each y ∈ Y , there exists xy ∈ f−1(y)
such that each sequence converging to y in Y is an image of some sequence
converging to xy in X.

(3) f is a sequence-covering map [15], if for every convergent sequence S in Y ,
there exists a convergent sequence L in X such that f(L) = S.
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(4) f is a compact-covering map [13], if for each compact subset K of Y , there
exists a compact subset L of X such that f(L) = K.

(5) f is a pseudo-sequence-covering map [9], if for each convergent sequence S in
Y , there exists a compact subset K of X such that f(K) = S. Note that a
pseudo-sequence-covering map is a sequence-covering map in the sense of [8].

(6) f is a sequentially-quotient map [5], if for each convergent sequence S in Y ,
there exists a convergent sequence L in X such that f(L) is a subsequence
of S.

(7) f is a quotient map [18], if whenever U ⊂ Y , U open in Y if and only if f−1(U)
open in X.

(8) f is an ss-map [10], if for each y ∈ Y , there exists a neighborhood U of y such
that f−1(U) is separable in X.

(9) f is a compact map [17], if f−1(y) is compact in X for all y ∈ Y .
(10) f is a π-map [4], if for every y ∈ Y and for every neighborhood U of y in Y ,

d
(
f−1(y), X − f−1(U)

)
> 0, where X is a metric space with a metric d.

Remark 1.6. Let f : X −→ Y be a map. Then
(1) 1-sequence-covering maps =⇒ sequence-covering maps =⇒ pseudo-sequence-

covering maps =⇒ sequentially-quotient maps.
(2) compact-covering maps =⇒ pseudo-sequence-covering maps.
(3) weak-open maps =⇒ quotient maps.
(4) compact maps =⇒ π-maps, if X is metric.

Definition 1.7. Let d be a d-function on a space X.
(1) For each x ∈ X and n ∈ N, let Sn(x) = {y ∈ X : d(x, y) < 1/n}.
(2) X is sn-symmetric (resp., symmetric) [7], if {Sn(x) : n ∈ N} is an sn-network

(resp., weak base) at x in X for all x ∈ X.
(3) X is Cauchy sn-symmetric [3] (resp., Cauchy symmetric [7], if it is sn-

symmetric (resp., symmetric) and every convergent sequence in X is d-Cauchy.

Remark 1.8.
(1) symmetric spaces ⇐⇒ sequential and sn-symmetric spaces.
(2) Cauchy symmetric spaces ⇐⇒ sequential and Cauchy sn-symmetric spaces.

For some undefined or related concepts, we refer the reader to [9] and [17].

2. Main results

Theorem 2.1. The following are equivalent for a space X.
(1) X has a locally countable network;
(2) X is a compact and ss-image of a locally separable metric space;
(3) X is a π and ss-image of a locally separable metric space;
(4) X is an ss-image of a locally separable metric space.

Proof. (1) =⇒ (2). Let P be a locally countable network for X. Then for
each x ∈ X, there exists an open neighborhood Vx of x such that Vx meets only
countably many members of P. Let

Q = {P ∈ P : P ⊂ Vx for some x ∈ X}.
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Then Q is a locally countable and star-countable network for X. By Lemma 2.1
in [14], Q =

⋃
α∈ΛQα, where each Qα is a countable subfamily of Q and (

⋃Qα)∩
(
⋃Qβ) = ∅ for all α 6= β. For each α ∈ Λ, let Xα =

⋃Qα. Then X =
⋃

α∈Λ Xα

and each Xα has a countable network. It follows from Theorem 2.10 in [3] that for
each α ∈ Λ, there exists a compact map fα : Mα −→ Xα, where Mα is a separable
metric space. Now, we put

M =
⊕

α∈Λ

Mα, Z =
⊕

α∈Λ

Pα, f =
⊕

α∈Λ

fα : M −→ Z.

Then M is a locally separable metric space. Define h : Z −→ X is a natural map,
and g = h ◦ f . Then

Claim 1. g is a compact map. Let x ∈ X. Then there exists unique a α ∈ Λ
such that x ∈ Xα. Since g−1(x) = f−1

(
h−1(x)

)
= f−1

α (x), it implies that g−1(x)
is a compact subset in Mα. Thus, g−1(x) is a compact subset in M . Therefore, g
is a compact map.

Claim 2. g is an ss-map. Let x ∈ X. Since Vx meets only countably many
members of P, the family ∆ = {α ∈ Λ : Vx ∩Xα 6= ∅} is countable. On the other
hand, since

g−1(Vx) = f−1
(
h−1 (Vx)

)
⊂ f−1

( ⊕

α∈∆

Pα

)
=

⊕

α∈∆

Mα,

it follows that g is an ss-map.

(2) =⇒ (3) =⇒ (4). It is obvious.

(4) =⇒ (1). Let f : M −→ X be an ss-map, where M is a locally separable
metric space, and B be a point-countable base for M . If we put P = f(B), then P
is a locally countable network for X. Therefore, (1) holds.

Theorem 2.2. The following are equivalent for a space X.
(1) X is an sn-symmetric space with a locally countable cs∗-network;
(2) X is an sn-symmetric space with a locally countable sn-network;
(3) X is a pseudo-sequence-covering compact and ss-image of a locally separable

metric space;
(4) X is a sequentially-quotient π and ss-image of a locally separable metric space.

Proof. (1) =⇒ (2). By Theorem 2.1 in [18].

(2) =⇒ (3). Let P be a locally countable sn-network for an sn-symmetric
space X. By using again notations and arguments as in the proof (1) =⇒ (2) of
Theorem 2.1, it implies that X =

⋃
α∈Λ Xα, where each Xα is sequentially open

and it has a countable sn-network. Since X is an sn-symmetric space, each Xα is
an sn-symmetric subspace has a countable sn-network. It follows from Theorem
2.4 in [3] that for each α ∈ Λ, there exists a pseudo-sequence-covering and compact
map fα : Mα −→ Xα, where Mα is a separable metric space. By using again
notations and arguments as in the proof (1) =⇒ (2) of Theorem 2.1, it suffices to
prove that g is a pseudo-sequence-covering map.
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Let {xn} be a sequence converging to x in X. Then x ∈ Xα for some α ∈ Λ.
On the other hand, since Xα is sequentially open, there exists m ∈ N such that
{x}⋃{xn : n ≥ m} ⊂ Xα. Furthermore, since fα is a pseudo-sequence-covering
map and {xn : n ≥ m} is a sequence converging to x in Xα, there exists a compact
subset Lα in Mα such that fα(Lα) = {x}⋃{xn : n ≥ m}. For each i < m, we take
zi ∈ M such that g(zi) = xi and put L = {zi : i < m}⋃

Lα. Then L is a compact
subset in M and g(L) = {x}⋃{xn : n ∈ N}. Therefore, g is a pseudo-sequence-
covering map.

(3) =⇒ (4). It is obvious.

(4) =⇒ (1). Let X be a sequentially-quotient π and ss-image of a locally
separable metric space. Then X has a locally countable cs∗-network by Theorem
2.1 in [18]. Furthermore, it follows from Corollary 2.6 in [6] and Lemma 2.1(1) in
[3] that X is an sn-symmetric space. Therefore, (1) holds.

Corollary 2.3. The following are equivalent for a space X.
(1) X is a symmetric space with a locally countable cs∗-network;
(2) X is a symmetric space with a locally countable weak base;
(3) X is a pseudo-sequence-covering quotient compact and ss-image of a locally

separable metric space;
(4) X is a quotient π and ss-image of a locally separable metric space.

Remark 2.4. By Remark 2.9 in [3], it follows that
(1) “sn-symmetric” (resp., “symmetric”) cannot be omitted in Theorem 2.2 (resp.,

Corollary 2.3).
(2) Spaces with locally countable sn-networks (resp., weak bases) 6=⇒ sn-symmetric

(resp., symmetric) spaces.

Theorem 2.5. The following are equivalent for a space X.
(1) X is a Cauchy sn-symmetric space with a locally countable cs∗-network;
(2) X is a Cauchy sn-symmetric space with a locally countable sn-network;
(3) X is a 1-sequence-covering compact-covering compact and ss-image of a locally

separable metric space;
(4) X is a sequence-covering π and ss-image of a locally separable metric space.

Proof. (1) =⇒ (2). By Theorem 2.1 in [18].

(2) =⇒ (3). Let P be a locally countable sn-network for a Cauchy sn-
symmetric space X. By using again notations and arguments as in the proof
(1) =⇒ (2) of Theorem 2.1, it implies that X =

⋃
α∈Λ Xα, where each Xα is

sequentially open and it has a countable sn-network. Since X is a Cauchy sn-
symmetric space, each Xα is a Cauchy sn-symmetric subspace has a countable
sn-network. It follows from Theorem 2.7 in [3] that for each α ∈ Λ, there exists a
1-sequence-covering compact-covering and compact map fα : Mα −→ Xα, where
Mα is a separable metric space. By using again notations and arguments as in the
proof (1) =⇒ (2) of Theorem 2.1, it suffices to prove that g is a 1-sequence-covering
and compact-covering map.
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Claim 1. g is a 1-sequence-covering map. Let x ∈ X. Then x ∈ Xα for some
α ∈ Λ. Since fα is a 1-sequence-covering map, there exists zx ∈ f−1

α (x) such that
each sequence converging to zx in Xα is an image of some sequence converging to
zx in Mα.

Now, let {xn} be a sequence converging to x in X. Then x ∈ Xα for some
α ∈ Λ. On the other hand, since Xα is sequentially open, there exists m ∈ N such
that {x}⋃{xn : n ≥ m} ⊂ Xα. This implies that {xn : n ≥ m} is a sequence
converging to x in Xα. Furthermore, since fα is a 1-sequence-covering map, there
exists a sequence {zn : n ≥ m} ⊂ Mα such that {zn} converges to zx in Mα and
fα(zn) = xn for all n ≥ m. For each i < m, we take zi ∈ g−1(xi). Then {zn} is a
sequence converging to zx in M and zn ∈ g−1(xn) for all n ∈ N. Therefore, g is a
1-sequence-covering map.

Claim 2. g is a compact-covering map. Let K be a compact subset of X. Since
X has a locally countable sn-network, K is metrizable. On the other hand, since
each Xα is sequentially open in X and Xα∩Xβ = ∅ for all α 6= β, it implies that the
family Γ = {α ∈ Λ : K ∩Xα 6= ∅} is finite. For each α ∈ Γ, we put Kα = K ∩Xα.
Since K is metrizable and each Xα is sequentially open, Kα is a compact subset in
Xα for all α ∈ Γ. Furthermore, since each fα is a compact-covering map, it implies
that for each α ∈ Γ, there a compact subset Lα in Mα such that fα(Lα) = Kα for
all α ∈ Γ. If we put L =

⊕
α∈Γ Lα, then L is a compact subset in M and g(L) = K.

Therefore, g is a compact-covering map.

(3) =⇒ (4). It is obvious.

(4) =⇒ (1). Let X be a sequence-covering π and ss-image of a locally separable
metric space. Then X has a locally countable cs∗-network by Theorem 2.1 in [18].
Furthermore, it follows from Proposition 16(3b) in [9] and Lemma 2.1(2) in [3] that
X is a Cauchy sn-symmetric space. Therefore, (1) holds.

By Theorem 2.5 and Corollary 2.8 in [1], the following corollary holds.

Corollary 2.6. The following are equivalent for a space X.
(1) X is a Cauchy symmetric space with a locally countable cs∗-network;
(2) X is a Cauchy symmetric space with a locally countable weak base;
(3) X is a weak-open compact-covering compact and ss-image of a locally separable

metric space;
(4) X is a weak-open π and ss-image of a locally separable metric space.

Remark 2.7. By Remark 2.9 in [3], it implies that “Cauchy sn-symmetric”
(resp., “Cauchy symmetric”) cannot be omitted in Theorem 2.5 (resp., Corollary
2.6).

Finally, we pose the following question.

Question 2.8. Let X be an sn-symmetric space with a countable (resp.,
locally countable) sn-network. Is X a compact-covering and compact image of a
separable metric space (resp., compact-covering compact and ss-image of a metric
space)?
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Remark 2.9. Recently, L.Q. Tuyen has showed that a regular space with
a locally countable sn-network is a compact-covering compact and ss-image of a
locally separable metric space (see, [18, Theorem 2.1]), and Y. Ge showed that
a regular space with a countable sn-network is a compact-covering and compact
image of a separable metric space (see, [6, Proposition 3.9(2)]). This follows that
if X is a regular space, then the above question is affirmative.
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referee for his/her helpful comments and valuable suggestions.
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