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FIXED POINTS OF MULTIVALUED SUZUKI-ZAMFIRESCU-(f , g)
CONTRACTION MAPPINGS

Mujahid Abbas, Basit Ali and S.N. Mishra

Abstract. Coincidence point theorems for hybrid pairs of single valued and multivalued
mappings on an arbitrary nonempty set have been proved. As an application of our main result,
the existence of common solutions of functional equations arising in dynamic programming are
discussed.

1. Introduction and preliminaries

Fixed point theory has provided very useful results applicable in other related
disciplines to solve functional equations [3]. In 1968, Banach contraction principle
was generalized by Markin [14] for multivalued mappings on complete bounded
metric spaces. In 1969, Nadler [17] obtained a multivalued analogue of the Banach
contraction principle in complete metric spaces, which was subsequently general-
ized by several authors (see [5–8, 15, 20, 22]). Different contraction conditions have
been introduced and compared in this context (see [10, 11, 21]). Hybrid contrac-
tive conditions involving single valued and multivalued mappings are the further
additions to metric fixed point theory and its applications (see for details [18, 23,
24, 26, 27]).

Suzuki [28, Theorem 2.1] obtained a generalization of the classical Banach con-
traction principle which led to a number of results in metric fixed point theory by
Kikkawa and Suzuki [12, 13], Moţ and Petruşel [16], Dhompongsa and Yingtaweesit-
tikul [9], and Singh and Mishra [26], among others. It is interesting to note that in
all the above results contractivity condition is assumed to hold not for all elements
from a domain of a mapping, but only for elements satisfying an additional condi-
tion. In this paper we obtain some coincidence point theorems for hybrid pairs of
single valued and multivalued mappings on an arbitrary nonempty set with values
in a metric space and derive fixed point theorems. Our results extend, unify and
generalize several known results in the existing literature ([16, 26, 28, 29]). As an
application, we discuss the existence of a common solution for Suzuki-Zamfirescu
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class of functional equations under much weaker contractive conditions than those
given in [1–4] and [19]).

The following definitions and results will be needed in the sequel.
Let (X, d) be a metric space and let CB(X), CL(X) and B(X) denote respec-

tively the collection of all nonempty closed and bounded subsets, nonempty closed
subsets, and nonempty bounded subsets of X. For A,B ∈ CL(X), set

EA,B = {ε > 0 : A ⊆ Nε(B), B ⊆ Nε(A)},
where Nε(A) = {x ∈ X : d(x,A) < ε}.

We define a generalized Hausdorff metric H on CL(X) by

H(A,B) =
{

inf EA,B if EA,B 6= ∅
∞ if EA,B = ∅.

Further, for any A, B ∈ CL(X), let d(a,B) = inf{d(a, b) : b ∈ B}, and ρ(A,B) =
sup{d(a, b) : a ∈ A, b ∈ B}. Throughout this work, the mapping η : [0, 1) → ( 1

2 , 1]
is defined by

η(r) =
1

1 + r
for all r ∈ [0, 1).

Definition 1.1. [26] Let (X, d) be a metric space, f : X → X and T :
X → CL(X). The hybrid pair (f, T ) is said to satisfy Suzuki-Zamfirescu hybrid
contraction condition if there exists r ∈ [0, 1) such that η(r)d(fx, Tx) ≤ d(fx, fy)
implies that

H(Tx, Ty) ≤ r max
{

d(fx, fy),
d(fx, Tx) + d(fy, Ty)

2
,
d(fx, Ty) + d(fy, Tx)

2

}

for all x, y ∈ X.

Definition 1.2. Let f : X → X and T : X → CL(X). A point x ∈ X is said
to be: (i) a fixed point of f if f(x) = x; (ii) a fixed point of T if x ∈ T (x); (iii) a
coincidence point of the pair (f, T ) if fx ∈ Tx; (iv) a common fixed point of the
pair (f, T ) if x = fx ∈ Tx.

We denote the set of all fixed points of f , the set of all coincidence points of
the pair (f, T ) and the set of all common fixed points of the pair (f, T ) by F (f),
C(f, T ) and F (f, T ), respectively. Motivated by the work of [5] and [26], we give
the following definition.

Definition 1.3. Let (X, d) be a metric space, and Y be any nonempty set.
Let f, g : Y → X and T : Y → CL(X). Suppose that x0 ∈ Y . Then the set

O (f, g, T ; x0) =
{

yi : yi = fxi ∈ Txi−1 for i = 2k + 2,

yi = gxi ∈ Txi−1 for i = 2k + 1, where k ≥ 0

}

is called an orbit for the triplet (T, f, g) at x0. A metric space X is called (T, f, g)-
orbitally complete if and only if every Cauchy sequence in the orbit for (T, f, g) at
x0 is convergent in X.
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Definition 1.4. Let (X, d) be a metric space, Y be any nonempty set and
f, g : Y → X. A mapping T : Y → CL(X) is called a multivalued Suzuki-
Zamfirescu-(f, g) contraction if there exists r ∈ [0, 1) such that η(r)d(fx, Tx) ≤
d(fx, gy) or η(r)d(gx, Tx) ≤ d(gx, fy) implies that

H(Tx, Ty) ≤ r min {M(fx, gy; T ), M(fy, gx;T )}
for all x, y ∈ X, where

M(fx, gy; T ) = max
{

d(fx, gy),
d(fx, Tx) + d(gy, Ty)

2
,
d(fx, Ty) + d(gy, Tx)

2

}
,

M(fy, gx; T ) = max
{

d(fy, gx),
d(fy, Ty) + d(gx, Tx)

2
,
d(fy, Tx) + d(gx, Ty)

2

}

Definition 1.5. Let f : X → X and T : X → CL(X). The pair (f, T ) is
called: (i) commuting if Tfx = fTx for all x ∈ X; (ii) weakly compatible if they
commute at their coincidence points, that is, fTx = Tfx whenever x ∈ C(f, T );
(iii) IT -commuting [23] at x ∈ X if fTx ⊆ Tfx.

2. Coincidence and fixed point theorems

The following theorem is our main result on a multivalued Suzuki-Zamfirescu-
(f, g) contraction.

Theorem 2.1. Let (X, d) be a metric space, and Y be any nonempty set.
Let f, g : Y → X and T : Y → CL(X) be a multivalued Suzuki-Zamfirescu-(f, g)
contraction with T (Y ) ⊂ f(Y )∩g(Y ). If there exists u0 ∈ Y such that f(Y )∩g(Y ) is
(T, f, g)-orbitally complete at u0, then the pairs (f, T ) and (g, T ) have a coincidence
point. If Y = X and (f, T ) and (g, T ) are IT -commuting at coincidence points of
(f, T ) and (g, T ) respectively, then (f, T ) has a common fixed point provided that
fw is a fixed point of f for some w ∈ C(f, T ) and (g, T ) has a common fixed
point provided that gz is a fixed point of g for some z ∈ C(g, T ). Moreover, if
C(f, T ) ∩ C(g, T ) 6= φ, then f, g and T have a common fixed point.

Proof. Suppose that q = 1/
√

r > 0, f and g are non-constant mappings and
y0 = fu0. By our assumption, we have Tu0 ⊆ g(Y ). So, there exists a point u1 ∈ Y
such that y1 = gu1 ∈ Tu0. We choose a point y2 ∈ Tu1 such that

d(gu1, y2) ≤ qH(Tu0, Tu1).

Using the fact Tu1 ⊆ f(Y ), we obtain a point u2 ∈ Y such that y2 = fu2 ∈ Tu1.
Therefore

d(gu1, fu2) ≤ qH(Tu0, Tu1).

Since
η(r)d(fu0, Tu0) ≤ η(r)d(fu0, gu1) ≤ d(fu0, gu1),

we have

d(gu1, fu2) ≤ qH(Tu0, Tu1)
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≤ q min{M(fu0, gu1;T ), M(fu1, gu0; T )}
≤ qM(fu0, gu1;T )

≤ qr max{d(fu0, gu1),
d(gu1, Tu1) + d(fu0, Tu0)

2
,
d(gu1, Tu0) + d(fu0, Tu1)

2
}

≤ 1√
r
r max{d(y0, y1),

d(y1, y2) + d(y0, y1)
2

,
d(y0, y2)

2
}

≤ √
r max{d(y0, y1),

d(y0, y1) + d(y1, y2)
2

}.
This yields

d(y1, y2) ≤ qH(Tu0, Tu1) ≤
√

rd(y0, y1).

As fu2 ∈ Tu1, we choose y3 ∈ Tu2 such that d(fu2, y3) ≤ qH(Tu1, Tu2). Using
the fact Tu2 ⊆ g(Y ), we obtain a point u3 ∈ Y such that y3 = gu3 ∈ Tu2, and

d(fu2, gu3) ≤ qH(Tu1, Tu2).

Since
η(r)d(gu1, Tu1) ≤ η(r)d(gu1, fu2) ≤ d(gu1, fu2),

we have

d(fu2, gu3) ≤ qH(Tu1, Tu2)

≤ q min{M(fu1, gu2;T ),M(fu2, gu1; T )}
≤ qM(fu2, gu1;T )

≤ qr max{d(fu2, gu1),
d(gu1, Tu1) + d(fu2, Tu2)

2
,
d(gu1, Tu2) + d(fu2, Tu1)

2
}

≤ 1√
r
r max{d(y2, y1),

d(y1, y2) + d(y2, y3)
2

,
d(y1, y3)

2
}

≤ √
r max{d(y2, y1),

d(y1, y2) + d(y2, y3)
2

}.
This implies

d(y2, y3) ≤ qH(Tu1, Tu2) ≤
√

rd(y1, y2) ≤ (
√

r)2d(y0, y1).

As y3 = gu3 ∈ Tu2, there exists y4 ∈ Tu3 such that

d(gu3, y4) ≤ qH(Tu2, Tu3).

Since, Tu3 ⊆ f(Y ), we obtain a point u4 ∈ Y such that y4 = fu4 ∈ Tu3, and

d(gu3, fu4) ≤ qH(Tu2, Tu3).

Now
η(r)d(fu2, Tu2) ≤ η(r)d(fu2, gu3) ≤ d(fu2, gu3).

This implies

d(gu3, fu4) ≤ qH(Tu2, Tu3)

≤ q min{M(fu2, gu3;T ),M(fu3, gu2; T )}
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≤ qM(fu2, gu3;T )

≤ qr max{d(fu2, gu3),
d(gu3, Tu3) + d(fu2, Tu2)

2
,
d(gu3, Tu2) + d(fu2, Tu3)

2
}

≤ 1√
r
r max{d(y2, y3),

d(y3, y4) + d(y2, y3)
2

,
d(y2, y4)

2
}

≤ √
r max{d(y2, y3),

d(y2, y3) + d(y3, y4)
2

}.
Consequently,

d(y3, y4) ≤ qH(Tu2, Tu3) ≤
√

rd(y2, y3) ≤ (
√

r)3d(y0, y1).

Continuing this process, we obtain a sequence {yn} ⊂ Y such that for any integer
k ≥ 0

y2k+1 = gu2k+1 ∈ Tu2k and y2k+2 = fu2k+2 ∈ Tu2k+1

and
d(yn, yn+1) ≤ (

√
r)nd(y0, y1).

Now for m > n ≥ 1, we have

d(yn, ym) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(ym−1, ym)

≤ {(√r)n + (
√

r)n+1 + · · ·+ (
√

r)m−1}d(y0, y1).

It follows that {yn} is a Cauchy sequence such that {yn} ⊂ O(f, g, T ; u0)∩ f(Y )∩
g(Y ). Since f(Y )∩g(Y ) is (T, f, g)-orbitally complete at u0, there exists an element
u ∈ f(Y )∩g(Y ) such that lim

n→∞
yn = u. Let z ∈ g−1u and w ∈ f−1u. Then z, w ∈ Y

and u = gz = fw. Now we will show that

d(fw, Tx) ≤ rd(fw, gx) for any gx ∈ g(Y ) ∩ f(Y )− {fw}. (2.1)

Since y2k+1 → fw and y2k → fw, therefore there exists a positive integer k0

such that for all k ≥ k0

d(fw, gu2k+1) ≤ 1
3
d(fw, gx) and (fw, fu2k) ≤ 1

3
d(fw, gx).

So, for any k ≥ k0, we have

η(r)d(fu2k, Tu2k) ≤ d(fu2k, Tu2k) ≤ d(fu2k, gu2k+1)

≤ d(fu2k, fw) + d(fw, gu2k+1) ≤ 2
3
d(fw, gx)

≤ d(fw, gx)− 1
3
d(fw, gx) ≤ d(fw, gx)− d(fw, fu2k)

≤ d(fu2k, gx).

This implies

d(gu2k+1, Tx) ≤ H(Tu2k, Tx)

≤ r min{M(fu2k, gx; T ),M(fx, gu2k;T )}
≤ r min M(fu2k, gx; T )
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≤ r max{d(fu2k, gx),
d(gx, Tx) + d(fu2k, Tu2k)

2
,
d(gx, Tu2k) + d(fu2k, Tx)

2
}

≤ r max{d(y2k, gx),
d(gx, Tx) + d(y2k, y2k+1)

2
,
d(gx, y2k+1) + d(y2k, Tx)

2
}.

Letting k →∞ we get

d(fw, Tx) ≤ r max{d(fw, gx),
d(gx, Tx)

2
,
d(gx,fw) + d(fw, Tx)

2
}

≤ r max{d(fw, gx),
d(gx,fw) + d(fw, Tx)

2
}.

If max
{

d(fw, gx), d(gx,fw)+d(fw,Tx)
2

}
= d(fw, gx), we are done.

If max
{

d(fw, gx), d(gx,fw)+d(fw,Tx)
2

}
= d(gx,fw)+d(fw,Tx)

2 , then we obtain

2− r

2
d(fw, Tx) ≤ r

2
d(gx, fw).

So
d(fw, Tx) ≤ r

2− r
d(gx, fw) ≤ rd(gx, fw) = rd(fw, gx),

and hence (2.1) holds.

Next, we show that

H(Tw, Tx) ≤ r max{d(fw, gx),
d(gx, Tx) + d(fw, Tw)

2
,
d(gx, Tw) + d(fw, Tx)

2
}

(2.2)
for any x ∈ Y .

If x = w, then (2.2) holds trivially. Suppose that x 6= w, then gx 6= gz ⇒ gx 6=
fw. Such a choice is permissible as g is not a constant map. We have

d(gx, Tx) ≤ d(gx, fw) + d(fw, Tx)

≤ d(gx, fw) + rd(gx, fw) = (1 + r)d(gx, fw)

and so 1
1+r d(gx, Tx) ≤ d(gx, fw). Therefore

H(Tw, Tx) = H(Tx, Tw) ≤ r min {M(fx, gw;T ),M(fw, gx; T )}
≤ rM(fw, gx;T )

≤ r max{d(fw, gx),
d(gx, Tx) + d(fw, Tw)

2
,
d(gx, Tw) + d(fw, Tx)

2
}.

Hence (2.2) holds for any x ∈ Y . Therefore

d(Tw, fu2k+2) ≤ H(Tw, Tu2k+1)

≤ r min{M(fw, gu2k+1;T ),M(fu2k+1, gw;T )}
≤ rM(fw, gu2k+1; T )

≤ r max{d(fw, gu2k+1),
d(gu2k+1, Tu2k+1) + d(fw, Tw)

2
,
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d(gu2k+1, Tw) + d(fw, Tu2k+1)
2

}

≤ r max{d(fw, y2k+2),
d(y2k+2, y2k+2) + d(fw, Tw)

2
,

d(y2k+2, Tw) + d(fw, y2k+2)
2

}.
On taking limit as k →∞, we obtain

d(fw, Tw) ≤ r

2
d(fw, Tw).

This implies fw ∈ Tw. Further, if Y = X and ffw = fw, then due to IT -
commutativity of the pair (f, T )

fw ∈ Tw ⇒ ffw ∈ fTw ⊆ Tfw ⇒
fw = ffw ∈ fTw ⊆ Tfw ⇒ fw = ffw ∈ Tfw.

This shows that fw is a common fixed point of (f, T ).
Now we will show that

d(gz, Tx) ≤ rd(gz, fx) for any fx ∈ g(Y ) ∩ f(Y )− {gz}.
Since y2k+1 → gz and y2k+2 → gz, there exists a positive integer k0 such that for
all k ≥ k0 we have

d(gz, gu2k+1) ≤ 1
3
d(gz, fx) and d(gz, fu2k+2) ≤ 1

3
d(gz, fx).

So, for any k ≥ k0 , we have,

η(r)d(gu2k+1, Tu2k+1) ≤ d(gu2k+1, Tu2k+1) ≤ d(gu2k+1, fu2k+2)

≤ d(gu2k+1, gz) + d(gz, fu2k+2) ≤ 2
3
d(gz, fx)

≤ d(gz, fx)− 1
3
d(gz, fx) ≤ d(gz, fx)− d(gz, gu2k+1)

≤ d(gu2k+1, fx).

This implies that

d(fu2k+2, Tx) ≤ H(Tu2k+1, Tx)

≤ r min{M(fu2k+1, gx; T ), M(fx, gu2k+1; T )}
≤ rM(fx, gu2k+1; T )

≤ r max{d(fx, gu2k+1),
d(gu2k+1, Tu2k+1) + d(fx, Tx)

2
,

d(gu2k+1, Tx) + d(fx, Tu2k+1)
2

}

≤ r max{d(fx, y2k+1),
d(y2k+1, y2k+2) + d(fx, Tx)

2
,

d(y2k+1, Tx) + d(fx, y2k+2)
2

}.
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Letting k →∞ we get

d(gz, Tx) ≤ r max{d(fx, gz),
d(fx, Tx)

2
,
d(gz,Tx) + d(fx, gz)

2
}

≤ r max{d(gz, fx),
d(fx,gz) + d(gz, Tx)

2
}.

If max{d(gz, fx), d(fx,gz)+d(gz,Tx)
2 } = d(gz, fx), then we are done.

If max{d(gz, fx), d(fx,gz)+d(gz,Tx)
2 } = d(fx,gz)+d(gz,Tx)

2 , then

d(gz, Tx) ≤ r

2
d(gz, fx) +

r

2
d(gz, Tx).

Therefore

d(gz, Tx)− r

2
d(gz, Tx) ≤ r

2
d(gz, fx),

2− r

2
d(gz, Tx) ≤ r

2
d(gz, fx),

and
d(gz, Tx) ≤ r

2− r
d(fx,gz) ≤ rd(gz, fx).

Hence
d(gz, Tx) ≤ rd(gz, fx) for any fx ∈ g(Y ) ∩ f(Y )− {gz}.

Now we shall show that

H(Tx, Tz) ≤ r max
{

d(fx, gz),
d(gz, Tz) + d(fx, Tx)

2
,
d(gz, Tx) + d(fx, Tz)

2

}

(2.3)
for any x ∈ Y .

If x = z then it holds trivially. If x 6= z such that gz 6= fx, then we have

d(fx, Tx) ≤ d(fx, gz) + d(gz, Tx) ≤ d(fx, gz) + rd(gz, fx)

and
1

1 + r
d(fx, Tx) ≤ d(fx, gz).

This implies that (2.3) holds for any x ∈ Y and so

d(gu2k+1, T z) ≤ H(Tu2k, T z) ≤ r min{M(fu2k, gz; T ), M(fz, gu2k;T )}
≤ rM(fu2k, gz; T )

≤ r max{d(fu2k, gz),
d(gz, Tz) + d(fu2k, Tu2k)

2
,
d(gz, Tu2k) + d(fu2k, T z)

2
}

≤ r max{d(y2k, gz),
d(gz, Tz) + d(y2k, y2k+1)

2
,
d(gz, y2k+1) + d(y2k, T z)

2
}.

Letting k →∞ we get d(gz, Tz) ≤ r
2d(gz, Tz) and gz ∈ Tz.

Further, if Y = X, ggz = gz, then by the IT−commutativity of the pair pair
(g, T ) we have

gz ∈ Tz ⇒ ggz ∈ gTz ⊆ Tgz ⇒
gz = ggz ∈ gTz ⊆ Tgz ⇒ gz = ggz ∈ Tgz.
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This shows that gz is a common fixed point of (g, T ). Let a ∈ C(f, T )∩C(g, T ).Then

d(fa, ga) ≤ d(fa, Ta) + d(Ta, ga) = 0.

This implies fa = ga ∈ Ta. This shows that f, g and T have a coincidence point.
Since fa = ffa, we have fa = ga = ffa = fga = ga = gga ∈ Tga. That is, ga is
a common fixed point of f, g and T .

The above theorem extends and improves Theorem 3.1 in [26].
Example 2.2. Let Y = {1, 2, 3, 4} and X = {2, 3, 4, 7}. Let d be the usual

metric on X, f, g and T be defined as

Tx =
{ {2, 3, 4}, if x = 1, 2, 3
{4}, if x = 4,

fx =





4, if x = 1
3, if x = 2
2, if x = 3
7, if x = 4,

gx =





2, if x = 1
4, if x = 2
3, if x = 3
4, if x = 4.

If r = 2
3 , then η(r) = 3

5 , and we have

d(gx, Tx) = 0 for all x ∈ Y and d(fx, Tx) = 0 for x = 1, 2, 3.

Now for x = 4, we have d(f4, T4) = 3 and η(r)d(f4, T4) = 9
5 ≤ d(f4, gy) for all

y ∈ Y . Hence

η(r)d(fx, Tx) ≤ d(fx, gy) and η(r)d(gx, Tx) ≤ d(gx, fy)

hold. For all x, y ∈ {1, 2, 3} and for x = y, we have H(Tx, Ty) = 0. For x = 4
and for any y ∈ {1, 2, 3}, H(T4, Ty) = H({4}, {2, 3, 4}) = 2. On the other hand
d(f4, gy) ≥ 3 for any y ∈ Y . Hence

H(Tx, Ty) ≤ r min{M(fx, gy;T ),M(fy, gx; T )},
is satisfied. Hence T is a multivalued Suzuki-Zamfirescu-(f, g) contraction with
T (Y ) ⊂ f(Y ) ∩ g(Y ). Let u0 = 1, y0 = f(1) = 4, T (1) ⊆ g(Y ). Hence, there exists
a point u1 = 4 in Y such that y1 = g(4) = 4 ∈ T (1). T (4) = {4} ⊆ f(Y ), we
obtain a point u2 = 1 in Y such that y2 = 4 = f(1) ∈ T (4). Continuing in this
way we construct orbit {y0 = y1 = y2 = · · · = 4} for (f, g, T ) at u0 = 1. Also,
f(Y ) ∩ g(Y ) is (T, f, g)-orbitally complete at u0 = 1. Moreover C(f, T ) = {1, 2, 3}
and C(g, T ) = {1, 2, 3, 4}.

Remark 2.3. If we take f = g in Theorem 2.1, we obtain Theorem 3.1 in
[26]. Further, by choosing f = g = I (identity map) in Theorem 2.1 we recover
Corollary 3.2 in [26] as a special case.

Corollary 2.4. Let f, g, T : Y → X such that T (Y ) ⊂ f(Y ) ∩ g(Y ). Let
there exist u0 ∈ Y such that f(Y ) ∩ g(Y ) is (T, f, g)-orbitally complete at u0.
Assume further that there exists an r ∈ [0, 1) such that η(r)d(fx, Tx) ≤ d(fx, gy)
or η(r)d(gx, Tx) ≤ d(gx, fy) implies that

d(Tx, Ty) ≤ r min{M(fx, gy;T ),M(fy, gx; T )}
for all x, y ∈ X. Then (f, T ) and (g, T ) have coincidence point. Further if Y = X
and (f, T ), (g, T ) are commuting pairs at x where x ∈ C(f, T )∩C(g, T ) then (f, T )
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and (g, T ) have unique common fixed points. Moreover f, g and T have common
fixed point.

Proof. It follows from Theorem 2.1 that C(f, T ) 6= φ and C(g, T ) 6= φ. If
u ∈ C(f, T ) ∩C(g, T ) then fu = Tu = gu. Further if Y = X and (f, T ) and (g, T )
are commuting at u then

ffu = fTu = Tfu = fgu and gfu = gTu = Tgu = fgu = ffu.

Now
η(r)d(fu, Tu) = 0 ≤ d(fu, gfu)

implies that

d(fu, ffu) = d(Tu, Tfu) ≤ r min{M(fu, gfu; T ),M(ffu, gu;T )}
≤ rM(fu, gfu;T )

≤ r max{d(fu, gfu),
d(gfu, Tfu) + d(fu, Tu)

2
,
d(gfu, Tu) + d(fu, Tfu)

2
}

≤ r max{d(fu, gfu),
d(gfu, ffu)

2
,
d(gfu, fu) + d(fu, ffu)

2
}

≤ rd(fu, gfu) = rd(fu, ffu)

which further implies that fu is a common fixed point of f and T . Similarly we
can show that gu is a common fixed point of g and T . The uniqueness of common
fixed point is straightforward. Also it can be shown the set of common fixed point
of f, g and T is nonempty.

Remark 2.5. By setting f = g in Corollary 2.4, we obtain Corollary 3.3 in
[26]. And, if f = g = I (identity map) then Corollary 2.4 recovers Corollary 3.4
in [26].

Theorem 2.6. Let T : Y → B(X) and f, g : Y → X be such that T (Y ) ⊂
f(Y )∩g(Y ). Suppose there exists u0 ∈ Y such that f(Y )∩g(Y ) is (T, f, g)-orbitally
complete at u0. Assume there exists r ∈ [0, 1) such that η(r)ρ(fx, Tx) ≤ d(fx, gy)
or η(r)ρ(gx, Tx) ≤ d(gx, fy) implies

ρ(Tx, Ty) ≤ r min{m(fx, gy; T ),m(fy, gx; T )}
for all x, y ∈ X, where

m(fx, gy;T ) = max
{

d(fx, gy),
ρ(fx, Ty) + ρ(gy, Tx)

2
,
ρ(fx, Tx) + ρ(gy, Ty)

2

}
,

m(fy, gx;T ) = max
{

d(fy, gx),
ρ(fy, Tx) + ρ(gx, Ty)

2
,
ρ(fy, Ty) + ρ(gx, Tx)

2

}
.

Then the pairs (f, T ) and (g, T ) have a coincidence point.

Proof. Chose λ ∈ (0, 1). Define h : Y → X such that for all x ∈ Y , hx ∈ Tx
and we have

d(fx, hx) ≥ rλρ(fx, Tx) and d(gx, hx) ≥ rλρ(gx, Tx),

d(gy, hx) ≥ rλρ(gy, Tx) and d(fx, hy) ≥ rλρ(fx, Ty).
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Since hx ∈ Tx, we obtain

d(fx, hx) ≤ ρ(fx, Tx) and d(gx, hx) ≤ ρ(gx, Tx).

This implies

η(r)d(fx, hx) ≤ η(r)ρ(fx, Tx) ≤ d(fx, gy)

η(r)d(gx, hx) ≤ η(r)ρ(gx, Tx) ≤ d(gx, fy).

This further gives

d(hx, hy) ≤ ρ(Tx, Ty) ≤ r min{m(fx, gy; T ),m(fy, gx;T )}

≤ rr−λ max{rλd(fx, gy),
rλρ(gy, Ty) + rλρ(fx, Tx)

2
,
rλρ(gy, Tx) + rλρ(fx, Ty)

2
}

≤ r1−λ max{d(fx, gy),
d(gy, hy) + d(fx, hx)

2
,
d(gy, hx) + d(fx, hy)

2
}.

Thus Corollary 2.4 can be applied as h(Y ) = ∪{hx ∈ Tx} ⊆ T (Y ) ⊂ f(Y ) ∩ g(Y ).
Hence (f, h) and (g, h) have a coincidence point. Clearly

hx ∈ Tx implies fz ∈ Tz and gz ∈ Tz.

Remark 2.6. By taking f = g in Theorem 2.6 we obtain Theorem 3.5 in [26].
Further, if f = g = I (identity map) then Theorem 2.6 gives Theorem 3.6 in [26].

3. Applications

In this section we assume that U and V are Banach spaces, W ⊆ U and D ⊆ V .
Let R denote the set of real numbers and

τ : W ×D → W,

g, g′, g′′ : W ×D → R,

G, F, E : W ×D × R→ R.

Considering W and D as the state and decision spaces respectively, the problem of
dynamic programming reduces to the problem of solving the functional equations:

p(x) := sup
y∈D

{g(x, y) + G(x, y, p(τ(x, y)))}, for x ∈ W, (3.1)

q(x) := sup
y∈D

{g′(x, y) + F (x, y, q(τ(x, y)))}, for x ∈ W, (3.2)

s(x) := sup
y∈D

{g′′(x, y) + E(x, y, s(τ(x, y)))}, for x ∈ W. (3.3)

For more on multistage process involving such functional equations, we refer to
[1–4, 19, 25]. In this section, we study the existence of the common solution of the
functional equations (3.1), (3.2), (3.3) arising in dynamic programming.

Let B(W ) denote the set of all bounded real valued functions on W . For an
arbitrary h ∈ B(W ), define ‖h‖ = supx∈W |h(x)|. Then (B(W ), ‖·‖) is a Banach
space. Suppose that the following conditions hold:
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(C1) G,F,E, g, g′and g′′ are bounded.

(C2) Let η be defined as in section (1). There exists r ∈ [0, 1) such that for
every (x, y) ∈ W ×D,h, k ∈ B(W ) and t ∈ W

η(r) |Kh(t)− Jh(t)| ≤ |Jh(t)− Ik(t)|, η(r) |Kh(t)− Ih(t)| ≤ |Ih(t)−Jk(t)| (3.4)

implies

|G(x, y, h(t))−G(x, y, k(t))| ≤ r min{M(Jh(t), Ik(t); K), M(Jk(t), Ih(t); K},
where

M(Jh(t), Ik(t); K) = max{|Jh(t)− Ik(t)| , |Ik(t)−Kk(t)|+ |Jh(t)−Kh(t)|
2

,

|Jh(t)−Kk(t)|+ |Ik(t)−Kh(t)|
2

},

M(Jk(t), Ik(t); K) = max{|Jk(t)− Ih(t)| , |Ih(t)−Kh(t)|+ |Jk(t)−Kk(t)|
2

,

|Jk(t)−Kh(t)|+ |Ih(t)−Kk(t)|
2

}.

For x ∈ W and h ∈ B(W ), define

Kh(x) = sup
y∈D

{g(x, y) + G(x, y, h(τ(x, y)))},

Jh(x) = sup
y∈D

{g′(x, y) + F (x, y, h(τ(x, y)))},

Ih(x) = sup
y∈D

{g′′(x, y) + E(x, y, h(τ(x, y)))}.

(C3) For any h ∈ B(W ), there exists k ∈ B(W ) such that for x ∈ W

Kh(x) = Jk(x) and Kh(x) = Ik(x).

(C4) There exists h ∈ B(W ) such that

Kh(x) = Jh(x) implies JKh(x) = KJh(x)

Kh(x) = Ih(x) implies IKh(x) = KIh(x).

Theorem 3.1. Assume that the conditions (C1)–(C4) are satisfied. If
J(B(W )) is a closed convex subspace of B(W ), then the functional equations
(3.1), (3.2) and (3.3) have a unique common bounded solution.

Proof. Notice that (B(W ), d) is a complete metric space, where d is the metric
induced by the supremum norm on B(W ). By (C1), J,K and I are self-maps
of B(W ). The condition (C3) implies that K(B(W )) ⊆ J(B(W ))∩ I(B(W )). It
follows from (C4) that (J,K) and (I, K) commute at their coincidence points. Let
λ be an arbitrary positive number and h1, h2 ∈ B(W ). Pick x ∈ W and choose
y1, y2 ∈ D such that

Khj < g(x, yj) + G(x, yj , hj(xj) + λ, (3.5)



70 M. Abbas, B. Ali, S.N. Mishra

where xj = τ(x, yj), j = 1, 2. Further

Kh1 ≥ g(x, y2) + G(x, y2, h1(x2)), (3.6)

Kh2 ≥ g(x, y1) + G(x, y1, h2(x1)). (3.7)

Therefore (3.4) in (C2) becomes

η(r) |Kh1(x)− Jh1(x)| ≤ |Jh1(x)− Ih2(x)| ,
η(r) |Kh1(x)− Ih1(x)| ≤ |Ih1(x)− Jh2(x)| . (3.8)

Then (3.8) together with (3.5) and (3.7) imply

Kh1(x)−Kh2(x) < G(x, y1, h1(x1))−G(x, y1, h2(x2)) + λ

≤ |G(x, y1, h1(x1))−G(x, y1, h2(x2))|+ λ

≤ r min{M(Jh1(x1), Ih2(x2); K),M(Jh2(x2), Ih1(x1); K}

≤ r max{|Jh1(x)− Ih2(x)| , |Ih2(x)−Kh2(x)|+ |Jh1(x)−Kh1(x)|
2

,

|Ih2(x)−Kh1(x)|+ |Jh1(x)−Kh2(x)|
2

}+ λ. (3.9)

So (3.5), (3.6) and (3.8) imply that

Kh2(x)−Kh1(x) ≤ G(x, y1, h2(x2))−G(x, y1, h1(x1))

≤ |G(x, y1, h1(x1))−G(x, y1, h2(x2))|
≤ r min{M(Jh1(x1), Ih2(x2); K),M(Jh2(x2), Ih1(x1); K}

≤ r max{|Jh1(x)− Ih2(x)| , |Ih2(x)−Kh2(x)|+ |Jh1(x)−Kh1(x)|
2

,

|Ih2(x)−Kh1(x)|+ |Jh1(x)−Kh2(x)|
2

}+ λ. (3.10)

From (3.9) and (3.10) we have

|Kh1(x)−Kh2(x)| ≤ r max{|Jh1(x1)− Ih2(x2)| ,
|Ih2(x2)−Kh2(x2)|+ |Jh1(x1)−Kh1(x2)|

2
,

|Ih2(x)−Kh1(x)|+ |Jh1(x)−Kh2(x)|
2

}+ λ.

Since the above inequality is true for any x ∈ W , and λ > 0 is taken arbitrary, we
find from (3.8) that

η(r)d(Kh1, Jh2) ≤ d(Jh1, Ih2) and η(r)d(Kh1, Ih2) ≤ d(Ih1, Jh2).

This implies

d(Kh1,Kh2) ≤ r max{d(Jh1, Ih2),
d(Jh1,Kh1) + d(Ih2,Kh2)

2
,

d(Jh1,Kh2) + d(Ih2,Kh1)
2

}.
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Therefore by Corollary 2.4, wherein K, J and I correspond, respectively to the
maps T , f , and g and the pairs (K, J) and (K, I) have unique a common fixed
point h∗, that is, h∗(x) is a unique bounded common solution.
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