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FUNCTIONS OF CLASS H(α,p) AND TAYLOR MEANS

Prem Chandra, S. S. Thakur and Ratna Singh

Abstract. In this paper, we take up Taylor means to study the degree of approximation of
f ∈ H(α, p) space in the generalized Hölder metric and obtain a general theorem which is used to
obtain a few more results that improve upon some earlier results obtained by Mohapatra, Holland
and Sahney [J. Approx. Theory 45 (1985), 363–374] in Lp-norm, Mohapatra and Chandra [Math.
Chronicle 11 (1982), 89–96] in Hölder metric and Chui and Holland [J. Approx. Theory 39 (1983),
24–38] in sup-norm.

1. Definitions and notations

Let f be 2π-periodic and let f ∈ Lp[0, 2π] for p > 1. Let sn(f ; x) be the partial
sum of the Fourier series of f at x, i.e.,

sn(f ; x) =
1
2
a0 +

n∑
k=1

(ak cos kx + bk sin kx).

The space Lp[0, 2π] with p = ∞ includes the space C2π of all 2π-periodic continuous
functions over [0, 2π]. Throughout, all norms are taken with respect to x and we
write for 1 6 p 6 ∞,

‖f‖p =
{

1
2π

∫ 2π

0

|f(x)|pdx

}1/p

(1 6 p < ∞),

‖f‖∞ = ‖f‖c = sup
06x62π

|f(x)|.

For the convenience in the working, we also write ‖f(x)‖p for ‖f‖p (1 6 p 6 ∞).

Let ω(δ; f), ωp(δ; f) and ω
(2)
p (δ; f) denote, respectively, the modulus of conti-

nuity, integral modulus of continuity and integral modulus of smoothness which are
non-negative and non-decreasing (see [15, pp. 42 and 45] and [7, p. 612]). In the
case 0 < α 6 1 and ω(δ; f) = O(δα), we write f ∈ Lip α and if ωp(δ; f) = O(δα),
we write f ∈ Lip(α, p). Also, if either

ωp(δ; f) = o(δ) or ω(δ; f) = o(δ), as δ → 0, (1.1)
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holds then the function f turns out to be constant ([15, p. 45]). Further, the class
Lip(α, p) with p = ∞ will be taken as Lipα.

In 1996, Das, Ghosh and Ray [4] gave the following generalization of Hölder
metric (see [14]).

For 0 < α 6 1 and a positive constant K, define

H(α, p) = { f ∈ Lp : ‖f(x + y)− f(x)‖p 6 K|h|α }, 1 6 p 6 ∞,

and introduce the following metric for α > 0:

(i) ‖f‖(α,p) = ‖f‖p + sup
h6=0

‖f(x + h)− f(x)‖p

|h|α , α > 0,

(ii) ‖f‖(0,p) = ‖f‖p, α = 0.





(1.2)

It can be easily verified that (1.2) is a norm for p > 1 and that H(α, p) is a Banach
space for p > 1. See also Lasuriya [10].

H(α,∞) is the familiar Hα-space introduced by Prösdorff [14] and it is a
Banach space with the norm ‖ · ‖α defined by

‖f‖α = ‖f‖c + sup
x 6=y

∆af(x, y),

where

∆af(x, y) =




|f(x)− f(y)|
|x− y|α , α > 0,

0, α = 0.

Let (ank) be an infinite matrix defined by
(1− r)n+1θn

(1− rθ)n+1
=

∞∑
k=0

ankθk, |rθ| < 1, n = 0, 1, . . .∞.

Then the Taylor mean of (sn(f ;x)) is given by

T r
n(f ; x) =

∞∑
k=0

anksn(f ;x), (1.3)

whenever the series on the right is convergent for each n = 0, 1, 2, . . . . See Mira-
cle [11].

In this paper, we shall use the following notations for 0 < r < 1, 0 < t 6 π
and for real x and y:

φx(t) =
1
2
{f(x + t) + f(x− t)− 2f(x)},

Lφ(t) = φx(t)− φx+y(t),

B =
r

2(1− r)2
, h = (1− r)

√
1 + 8B sin2 1

2 t, (1.4)

1− r exp(it) = h exp(iθ), θ = tan−1
{ r sin t

1− r cos t

}
, (1.5)

L(n, r, t, θ) = {(1− r)/h}n+1 sin{(n + 1
2 )t + (n + 1)θ}, (1.6)

an = π

/{
(n + 1

2 ) + (n + 1)
r

1− r

}
and bn = aδ

n, 0 < δ < 1
2 ,
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cn = (1− r)π/n and dn =

√
log n

An
, A > 0, (1.7)

Rn =
∫ dn

cn

t−1‖φx(t)− φx(t + cn)‖p exp(−Bnt2) dt. (1.8)

Similarly, define Ĩn by Rn with cn and dn replaced by an and bn, respectively. We
also use the following inequality:

t 6 π sin 1
2 t, 0 6 t 6 π. (1.9)

2. Introduction and formulation of results

Throughout, we assume f ∈ Lp (1 6 p 6 ∞) is non-constant and hence
δ−1ωp(δ; f) 9 0 as δ → 0. Otherwise, by (1.1), f turns out to be a constant
function in which case there is nothing to prove. This enables us to write

n−1 = O(1)ωp(n−1; f) (n →∞).

In 1982, Mohapatra and Chandra [12] used Taylor transform T r
n(f ; x) to ap-

proximate f ∈ Hα-space and obtained the following

Theorem A. Let 0 6 β < α 6 1. Then for f ∈ Hα,

‖T r
n(f)− f‖p = O{n−1/2(α−β) logβ/α(n + 1)}.

The case β = 0 of Theorem A yield the following

Corollary 1. Let f ∈ C2π ∩ Lip α, where 0 < α 6 1. Then ‖T r
n(f)− f‖c =

O(n−α/2).

With a view to obtain the Jackson order for the degree of approximation of f
by Taylor transform T r

n(f ; x), Chui and Holland [3] proved the following

Theorem B. Let f ∈ C2π ∩ Lipα (0 < α < 1) and let
∫ bn

an

‖φx(t)− φx(t + an)‖c

t
exp(−Bnt2) dt = O(n−α), (2.1)

where (1 + α)/(3 + α) 6 δ < 1/2. Then ‖T r
n(f)− f‖c = O(n−α).

They further remarked that since the Lebesgue constants for the Taylor method
diverge as n → ∞; therefore, in order to get the degree of convergence of Jackson
order O(n−α), f ∈ Lipα alone is not adequate. Also, we observe that the restriction
on δ does not allow them to consider α = 1 in (2.1).

By using the Taylor transform of sn(f ;x), a study has been made to obtain the
rate of convergence to f in Lp-norm [8, p. 371]. In 1985, Mohapatra, Holland and
Sahney [13] obtained a number of results by using Taylor transform. We mention
here the following results for the subspaces of Lp space (p > 1).
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Theorem C. Let f ∈ Lip(α, p), where 0 < α 6 1 and p > 1. Then

‖T r
n(f)− f‖p = O(n−αδ) (0 < δ < 1

2 ). (2.2)

Theorem D. Let f ∈ Lip(α, p), 0 < α < 1, p > 1 and let

Ĩn = O(n−α), (2.3)

where (1 + α)/(3 + α) 6 δ < 1/2. Then ‖T r
n(f)− f‖ = O(n−α).

Analogous to a result of Izumi [9], they proved in [6] the following

Theorem E. If f ∈ Lip(α, p), 0 < α 6 1, p > 1 and αp > 1, then

T r
n(f ; x)− f(x) = O(n−(α−1/p)δ) (0 < δ < 1

2 ),

uniformly in x almost everywhere.

Motivated by the results obtained in [1], we have recently studied in [2] the
degree of approximation of functions of Lp-space and obtained a few results in
Lp-norm.

In this paper, we study the degree of approximation of f ∈ H(α, p) (0 < α 6 1,
1 6 p 6 ∞) by Taylor transform T r

n(f ; x) of its Fourier series in the generalized
Hölder metric which is defined by

‖T r
n(f)− f‖(β,p) = ‖Hr

n‖p + sup
y 6=0

‖Hr
n(x + y)−Hr

n(x)‖p

|y|β , (2.4)

where Hr
n(x) = T r

n(f ;x)− f(x) and 0 6 β < α 6 1.
Our Theorem 1, as special cases, yield some interesting and new results for C2π,

Hα and Lip(α, p) (1 6 p < ∞) spaces; some of them provide improved versions of
known results obtained earlier. More precisely, we prove the following

Theorem 1. Let f ∈ H(α, p), 0 < α 6 1, 1 6 p 6 ∞. Then for 0 6 β <
α 6 1,

‖T r
n(f)− f‖(β,p) = O(1)R1−β/α

n logβ/α(n + 1) + O(gα
n(β)), (2.5)

where

gα
n(β) =

{
nβ−α logβ/α(n + 1), 0 < α < 1,

nβ−1 log(n + 1), α = 1.
(2.6)

We now deduce the following from Theorem 1.

Theorem 2. Let f ∈ H(α, p), 0 < α 6 1, 1 6 p 6 ∞. Then for 0 6 β <
α 6 1,

‖T r
n(f)− f‖(β,p) = O(1)n−α+β log(n + 1). (2.7)

We observe that for 0 < α 6 1 and 0 6 β 6 α/2,

n−αδ > n−α+β log(n + 1) (0 < δ < 1/2) (2.8)



50 P. Chandra, S.S. Thakur, R. Singh

and hence the estimate (2.7) of Theorem 2 for 0 6 β 6 α/2 is sharper than the
one obtained in (2.2) of Theorem C. For a subclass of H(α, p) space, we state the
following theorem which, in particular, gives Jackson order.

Theorem 3. Let f ∈ H(α, p) for 0 < α < 1 and 1 6 p 6 ∞ and suppose that

Rn = O(n−α) (0 < α < 1). (2.9)

Then for 0 6 β < α < 1,

‖T r
n(f)− f‖(β,p) = O{nβ−α logβ/α(n + 1)}.

Remark. We observe that an < cn < dn < bn and

Rn =
∫ dn

cn

‖φx(t)− φx(t + cn)‖p

t
exp(−Bnt2) dt + O(n−2 log n). (2.10)

Further, the integral on right of (2.10) is 6 Ĩn. Therefore, the condition (2.9) is
stronger than (2.3). Thus the case β = 0 of Theorem 3, which gives Jackson order,
may be compared with Theorem D.

We now give the following results for the Hölder space Hα = H(α,∞) defined
by Prösdorff [14] in the Hölder metric.

Theorem 4. Let 0 6 β < α 6 1. Then for f ∈ Hα,

‖T r
n(f)− f‖β = O(1)nβ−α log(n + 1).

This theorem provides sharper estimate than the one obtained in Theorem A.
The case β = 0 yields the following result in sup-norm which may be compared
with Corollary 1.

Corollary 2. Let f ∈ C2π ∩ Lipα (0 < α 6 1). Then ‖T r
n(f) − f‖c =

O(1)n−α log(n + 1).

Finally, we give the following result for Hα-space (0 < α < 1).

Theorem 5. Let f ∈ Hα, 0 < α < 1 and let (2.9) hold with p = ∞. Then for
0 6 β < α 6 1,

‖T r
n(f)− f‖β = O(1)nβ−α logβ/α(n + 1).

The case β = 0 of this theorem may be compared with Theorem B which holds
for 0 < α < 1.

Theorem 6. If f ∈ Lip(α, p), 0 < α 6 1, p > 1 and αp > 1, then

T r
n(f ; x)− f(x) = O(n−(α−1/p) log(n + 1)),

uniformly in x almost everywhere.
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Inequality (2.8) for 0 6 2β 6 α−1/p suggests that the above theorem provides
sharper estimates than the one obtained in Theorem E.

3. Lemmas

We require the following lemmas for the proof of the theorems.

Lemma 1. Let f ∈ H(α, p), 0 < α 6 1, 1 6 p 6 ∞. Then,

‖Lφ(t)‖p 6 2ω(2)
p (t; f) = O(|t|α), (3.1)

‖Lφ(t)‖p 6 4‖f(x)− f(x + y)‖p 6 4K|y|α. (3.2)

For its proof, one may proceed as in Lemma 1 of Das, Ghosh and Ray [4].

Lemma 2. [5]

((1− r)/h)n 6 exp(−Ant2), A > 0, 0 6 t 6 π/2, (3.3)

|((1− r)/h)n − exp(−Bnt2)| 6 Knt4 (t > 0). (3.4)

Lemma 3. [11] For 0 6 t 6 π/2, |θ − rt/(1− r)| 6 Kt3.

Lemma 4. For 0 6 t 6 π/2 and 0 < r < 1,
∣∣∣∣sin

{(
n +

1
2

)
t + (n + 1)θ

}∣∣∣∣ 6
(

n +
1
2

)
t + K(n + 1)t3 +

(n + 1)rt
1− r

.

This is an easy consequence of Lemma 3.

Lemma 5. [6, Theorem 5(ii), p. 627] Suppose that f ∈ Lip(α, p), where p > 1,
0 < α 6 1 and αp > 1. Then f is equal to a function g ∈ Lip(α − 1/p) almost
everywhere.

Lemma 6. [Generalized Minkowski inequality, see, e.g., Zygmund [15, p. 19].]
Let h(x, y) be a function defined for a 6 x 6 b, c 6 y 6 d. Then the following
inequality holds

{∫ b

a

∣∣∣∣
∫ d

c

h(x, y) dy

∣∣∣∣
r

dx

}1/r

6
∫ d

c

{∫ b

a

|h(x, y)|r dx

}1/r

dy (r > 1).

4. Proof of the theorems

4.1. Proof of Theorem 1. We have [13]

Hr
n(x) = T r

n(f ; x)− f(x) =
1
π

∫ π

0

φx(t)
sin 1

2 t
L(n, r, t, θ) dt,
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by using (1.3)–(1.6). Now we write

Hr
n(x)−Hr

n(x + y) =
1
π

∫ π

0

Lφ(t)
sin 1

2 t
L(n, r, t, θ) dt

=
1
π

{∫ dn

0

+
∫ π

dn

} (
Lφ(t)
sin 1

2 t
L(n, r, t, θ) dt

)
= I1 + I2, say ,

where constant A involved in dn, defined in (1.7), is the same as in (3.3) of Lemma 2.
Then by the generalized Minkowski inequality,

‖Hr
n(x)−Hr

n(x + y)‖p 6 ‖I1‖p + ‖I2‖p. (4.1.1)

Now, splitting up the integral I2 into I2,1 =
∫ π/2

dn
and I2,2 =

∫ π

π/2
and by

using the generalized Minkowski inequality, (3.1), (1.6), (1.9), (3.3) and proceeding
as in (4.1.5) of [2], we get ‖I2,1‖p = O(n−1). And once again by the generalized
Minkowski inequality, (3.1) and (1.4) and proceeding as in (4.1.2) of [2], we get
‖I2,2‖p = O(n−1). Thus, combining the obtained estimates, we get

‖I2‖p = O(n−1). (4.1.2)

Now, for cn and dn, defined in (1.7), we split up the integral I1 into I1,1 =
∫ cn

0

and I1,2 =
∫ dn

cn
, to get

‖I1‖p 6 ‖I1,1‖p + ‖I1,2‖p. (4.1.3)
By using once again the generalized Minkowski inequality, (1.6), (1.9), (3.1) and
Lemma 4, we get ‖I1,1‖p = O(n−α) and, by (1.6),

I1,2 =
1
π

∫ dn

cn

Lφ(t)
sin 1

2 t

[(1− r

h

)n+1

− exp(−B(n + 1)t2)
]
sin{(n + 1

2 )t + (n + 1)θ} dt

+
1
π

∫ dn

cn

Lφ(t)
sin 1

2 t
exp(−B(n + 1)t2) sin{(n + 1

2 )t + (n + 1)θ} dt

= I1,2,1 + I1,2,2, say.

Then, by the generalized Minkowski inequality, ‖I1,2‖p 6 ‖I1,2,1‖p + ‖I1,2,2‖p.
Now, proceeding as above and using (3.4) of Lemma 2, we get

‖I1,2,1‖p 6 Kn

∫ dn

0

tα · t3 dt = O(n−1)

and

I1,2,2 =
1
π

∫ dn

cn

Lφ(t)
sin 1

2 t
exp(−B(n + 1)t2) sin{(n + 1)(t + θ)} dt

+ O(1)
∫ dn

cn

|Lφ(t)| exp(−B(n + 1)t2) dt = R1 + R2, say.

Arguing as above and using (3.1) of Lemma 1, ‖R2‖p = O(n−α) and

R1 =
1
π

∫ dn

cn

Lφ(t)
sin 1

2 t
exp(−Bnt2) sin{n(t + θ)} dt + O(n−1) = R′1 + O(n−1), say.
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Therefore, by the generalized Minkowski inequality, ‖I1,2,2‖p = ‖R′1‖p + O(n−a)
and for 1/(1− r) = q, we have by Lemma 3,

| sin n(t + θ)− sin nqt| 6 n|θ − rqt| 6 Knt3. (4.1.4)

Thus, arguing as above and using (4.1.4) and (3.1), we have

‖R′1‖p = O(1)d1+α
n + ‖J‖p, say,

where

J =
1
π

∫ dn

cn

Lφ(t)
{

cosec
t

2
− 2

t

}
exp(−Bnt2) sin nqt dt

+
2
π

∫ dn

cn

t−1Lφ(t) exp(−Bnt2) sin nqt dt = J1 + J2, say.

Now, proceeding as above and using (3.1) and cosec t
2 − 2

t = O(t) in J1, we get

‖J‖p = O(1)
∫ dn

cn

t1+α exp(−Bnt2) dt + ‖J2‖p = O(1)n−α + ‖J2‖p.

An by using transformation t 7→ t + cn, we get sin nq(t + cn) = − sin nqt and

πJ2 =
∫ dn

cn

Lφ(t)− Lφ(t + cn)
t

exp(−Bnt2) sin nqt dt

+
∫ dn

cn

Lφ(t + cn)
t

exp(−Bnt2) sin nqt dt

−
∫ dn−cn

0

Lφ(t + cn)
t + cn

exp(−Bn(t + cn)2) sin nqt dt

= π(J2,1 + J2,2 + J2,3), say.

Then by using the generalized Minkowski inequality, (1.8) and 2π-periodicity of f ,
we get

‖J2‖p 6 2Rn + ‖J2,2 + J2,3‖p

and

π(J2,2 + J2,3) =
∫ dn

cn

Lφ(t + cn)
t

{exp(−Bnt2)− exp(−Bn(t + cn)2)} sinnqt dt

+ cn

∫ dn

cn

Lφ(t + cn)
t(t + cn)

exp(−Bn(t + cn)2) sin nqt dt

+
∫ dn

dn−cn

Lφ(t + cn)
t + cn

exp(−Bn(t + cn)2) sin nqt dt

−
∫ cn

0

Lφ(t + cn)
t + cn

exp(−Bn(t + cn)2) sin nqt dt

= π(L1 + L2 + L3 + L4), say.

Therefore, by the generalized Minkowski inequality,

‖J2,2 + J2,3‖p 6 ‖L1‖p + ‖L2‖p + ‖L3‖p + ‖L4‖p.
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Now, proceeding as in [2] and using (3.1), we get for 0 < α 6 1,

‖L1‖p = O(1)
∫ dn

cn

ω(2)
p (t + cn; f) exp(−Bnt2) dt = O(n−α),

‖L2‖p = O(1)gα
n(0), ‖L3‖p = O(1)d1+α

n and ‖L4‖p = O(1)ω(2)
p (n−1; f) = O(n−α).

Collecting the obtained estimates, we get for 0 < α 6 1,

‖I1‖p = O(1)[Rn + n−α + d1+α
n + gα

n(0)],

where gα
n(β) for 0 6 β < α 6 1 is defined by (2.6). However, there exists a positive

integer n0 such that for n > n0,

(i) d1+α
n 6 n−α = K1g

α
n(0) (0 < α < 1),

(ii) n−α 6 d1+α
n = K2g

α
n(0) (α = 1).

Hence,
‖I1‖p = O(1)[Rn + gα

n(0)]. (4.1.5)
We now calculate ‖I1‖p and ‖I2‖p of (4.1.1) by using (3.2) in place of (3.1) of

Lemma 1.
Proceeding as in ‖I1,1‖p of (4.1.3) and using (3.2) for (3.1) of Lemma 1, we get

‖I1,1‖p = O(|y|α). And by the generalized Minkowski inequality, (1.4), (1.6), (1.9)
and (3.2), we get ‖I1,2‖p = O(1)|y|α log(n + 1). Using these estimates in (4.1.3),
we get

‖I1‖p = O(1)|y|α log(n + 1). (4.1.6)
Also proceeding as earlier for ‖I2‖p and using (3.2) for (3.1) of Lemma 1, we get

‖I2‖p = O(1)|y|α log(n + 1)
n

. (4.1.7)

Now, for k = 1, 2 we write for 0 6 β < α 6 1

‖Ik‖p = ‖Ik‖1−β/α
p ‖Ik‖β/α

p (4.1.8)

and for k = 1 use (4.1.5) and (4.1.6), respectively in the first and the second factor
on the right of identity (4.1.8), we get by using (2.6) that

‖I1‖p = O(|y|β)(Rn + gα
n(0))1−β/α logβ/α(n + 1)

= O(|y|β)(R1−β/α
n logβ/α(n + 1) + gα

n(β)), (4.1.9)

and for k = 2, use (4.1.2) and (4.1.7), respectively in the first and the second factor
on the right of identity (4.1.8), we get

‖I2‖p = O(|y|β)n−1 logβ/α(n + 1). (4.1.10)

Hence, by using (4.1.9) and (4.1.10) in (4.1.1), we get

sup
y 6=0

‖Hr
n(x + y)−Hr

n(x)‖p

|y|β
= O(1)(R1−β/α

n + n−1) logβ/α(n + 1) + O(1)gα
n(β)

= O(1)R1−β/α
n logβ/α(n + 1) + O(1)gα

n(β). (4.1.11)
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Now, for estimation of ‖Hr
n‖p, we proceed as in the case of (4.1.1) and replace

Lφ(t) by φx(t) and use the fact that ‖φx(t)‖p 6 ω
(2)
p (t; f) to get

‖Hr
n‖p = O(Rn + gα

n(0)) + O(n−1) = O(Rn) + O(gα
n(0)). (4.1.12)

Using (4.1.11) and (4.1.12) in (2.4) we get the required result (2.5).

This completes the proof of Theorem 1.

4.2. Proof of Theorem 2. The proof of Theorem 2 is to be obtained from
Theorem 1 by estimating Rn involved in the statement of Theorem 1. We first
observe that

|φx(t)− φx(t + cn)| 6 |f(x + t + cn)− f(x + t)|+ |f(x− t− cn)− f(x− t)|.
Hence, by using 2π-periodicity of f , we get

‖φx(t)− φx(t + cn)‖p 6 2
{

1
2π

∫ 2π

0

|f(x + cn)− f(x)|p dx

}1/p

= O(n−α), (4.2.1)

since f ∈ H(α, p) for 0 < α 6 1 and 1 6 p 6 ∞. Now using (4.2.1), we get

Rn =
∫ dn

cn

t−1‖φx(t)− φx(t + cn)‖p exp(−Bnt2) dt = O(n−α) log(n + 1). (4.2.2)

By using (4.2.2) in (2.5), we get

‖T r
n(f)− f‖(β,p) = O(1)n−α+β log(n + 1) + gα

n(β)

= O(n−α+β log(n + 1)).

4.3. Proof of Theorem 3. By using (2.9) in (2.5) we get the required result.

4.4. Proof of Theorem 4. By letting p = ∞ in Theorem 2, we get the required
result.

4.5. Proof of Theorem 5. We get the required result by putting p = ∞ in
Theorem 3.

4.6. Proof of Theorem 6. From Theorem 1 we get

T r
n(f ;x)− f(x) =

1
π

∫ π

0

φx(t)
sin 1

2 t
L(n, r, t, θ) dt

=
1
π

(∫ dn

0

+
∫ π

dn

)( φx(t)
sin 1

2 t
L(n, r, t, θ) dt

)

= J1 + J2, say.

In view of Lemma 5, the hypothesis f ∈ Lip(α, p) implies that there exists
a function g ∈ Lip(α − 1/p) such that f = g almost everywhere. Hence, for
f ∈ H(α, p), we conclude that for 0 < α 6 1, p > 1 and αp > 1,

φx(t) = O(tα−1/p) almost everywhere. (4.6.1)
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By using (4.6.1), (1.4), (1.6), Lemma 2 and | sin θ| 6 1, we get

J2 = O(1)
∫ π

dn

t(α−1/p)−1

(
1− r

h

)n+1

dt

= O(1)
∫ π/2

dn

t(α−1/p)−1 exp(−Ant2) dt

+ O(1)
∫ π

π/2

t(α−1/p)−1(1 + 8 sin2 t
2 )
−n+1

2 dt = O(n−(α−1/p)).

Now splitting up the integral J1 into J1,1 =
∫ cn

0
and J1,2 =

∫ dn

cn
and using

(4.6.1) and Lemma 4, we get J1,1 = O(n−(α−1/p)) and proceeding as in I1,2 of
Theorem 1, we get

J1,2 =
1
π

∫ dn

cn

φx(t)
sin 1

2 t

[(
1− r

h

)n+1

− exp(−B(n + 1)t2)

]
sin{(n + 1)(t + θ)} dt

+
1
π

∫ dn

cn

φx(t)
sin 1

2 t
exp(−B(n + 1)t2) sin{(n + 1)(t + θ)} dt + O(n−(α−1/p))

= J1,2,1 + J1,2,2 + O(n−(α−1/p)).

By using (3.4) and (4.6.1), we get J1,2,1 = O(n−(α−1/p)). Proceeding as in I1,2,2

and using (4.6.1), we get

J1,2,2 = Q + O(n−(α−1/p)), say,

where

πQ =
∫ dn

cn

φx(t)− φx(t + cn)
t

exp(−Bnt2) sin nqt dt

+
∫ dn

cn

φx(t + cn)
t

exp(−Bnt2) sin nqt dt

−
∫ dn−cn

0

φx(t + cn)
t + cn

exp(−Bn(t + cn)2) sin nqt dt

= π(Q1 + Q2 + Q3), say.

However, we observe that |φx(t)− φx(t + cn)| = O(cα−1/p
n ) and hence

Q1 = O(n−(α−1/p)) log(n + 1).

Now, proceeding as for J2,2 + J2,3 of Theorem 1 and using (4.6.1), we get

Q2 + Q3 = O(n−(α−1/p)).

Combining the obtained estimates, we get the required result.

Acknowledgement. We are thankful to the referee who suggested to revise
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