A NEW CLASS OF MEROMORPHIC FUNCTIONS RELATED TO CHO-KWON-SRIVASTAVA OPERATOR

F. Ghanim and M. Darus

Abstract

In the present paper, we introduce a new class of meromorphic functions defined by means of the Hadamard product of Cho-Kwon-Srivastava operator and we define here a similar transformation by means of an operator introduced by Ghanim and Darus. We investigate a number of inclusion relationships of this class. We also derive some interesting properties of this class.

1. Introduction

Let Σ denote the class of meromorphic functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured unit disk $U=\{z: 0<|z|<1\}$. For $0 \leq \beta$, we denote by $S^{*}(\beta)$ and $k(\beta)$, the subclasses of Σ consisting of all meromorphic functions which are, respectively, starlike of order β and convex of order β in U.

For functions $f_{j}(z)(j=1 ; 2)$ defined by

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n, j} z^{n} \tag{1.2}
\end{equation*}
$$

we denote the Hadamard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$ by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n, 1} a_{n, 2} z^{n} \tag{1.3}
\end{equation*}
$$

Let us define the function $\tilde{\phi}(\alpha, \beta ; z)$ by

$$
\begin{equation*}
\tilde{\phi}(\alpha, \beta ; z)=\frac{1}{z}+\sum_{n=0}^{\infty}\left|\frac{(\alpha)_{n+1}}{(\beta)_{n+1}}\right| z^{n} \tag{1.4}
\end{equation*}
$$

[^0]for $\beta \neq 0,-1,-2, \ldots$, and $\alpha \in \mathbb{C} /\{0\}$, where $(\lambda) n=\lambda(\lambda+1)_{n+1}$ is the Pochhammer symbol. We note that
$$
\tilde{\phi}(\alpha, \beta ; z)=\frac{1}{z}{ }_{2} F_{1}(1, \alpha, \beta ; z)
$$
where
$$
{ }_{2} F_{1}(b, \alpha, \beta ; z)=\sum_{n=0}^{\infty} \frac{(b)_{n}(\alpha)_{n}}{(\beta)_{n}} \frac{z^{n}}{n!}
$$
is the well-known Gaussian hypergeometric function.
Let us put
$$
q_{\lambda, \mu}(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{\lambda}{n+1+\lambda}\right)^{\mu} z^{n}, \quad(\lambda>0, \mu \geq 0)
$$

Corresponding to the functions $\tilde{\phi}(\alpha, \beta ; z)$ and $q_{\lambda, \mu}(z)$, and using the Hadamard product for $f(z) \in \Sigma$, we define a new linear operator $L(\alpha, \beta, \lambda, \mu)$ on Σ by

$$
\begin{align*}
L(\alpha, \beta, \lambda, \mu) f(z) & =\left(f(z) * \tilde{\phi}(\alpha, \beta ; z) * q_{\lambda, \mu}(z)\right) \\
& =\frac{1}{z}+\sum_{n=1}^{\infty}\left|\frac{(\alpha)_{n+1}}{(\beta)_{n+1}}\right|\left(\frac{\lambda}{n+1+\lambda}\right)^{\mu} a_{n} z^{n} \tag{1.5}
\end{align*}
$$

The meromorphic functions with the generalized hypergeometric functions were considered recently by Dziok and Srivastava [4,5], Liu [10], Liu and Srivastava [1315], Cho and Kim [1].

For a function $f \in L(\alpha, \beta, \lambda, \mu) f(z)$ we define

$$
I_{\alpha, \beta, \lambda}^{\mu, 0}=L(\alpha, \beta, \lambda, \mu) f(z)
$$

and for $k=1,2,3, \ldots$,

$$
\begin{align*}
I_{\alpha, \beta, \lambda}^{\mu, k} f(z) & =z\left(I^{k-1} L(\alpha, \beta, \lambda, \mu) f(z)\right)^{\prime}+\frac{2}{z} \\
& =\frac{1}{z}+\sum_{n=1}^{\infty} n^{k}\left|\frac{(\alpha)_{n+1}}{(\beta)_{n+1}}\right|\left(\frac{\lambda}{n+1+\lambda}\right)^{\mu} a_{n} z^{n} \tag{1.6}
\end{align*}
$$

Note that if $n=\beta, k=0$ the operator $I_{\alpha, n, \lambda}^{\mu, 0}$ have been introduced by N.E. Cho, O.S. Kwon and H.M. Srivastava [2] for $\mu \in \mathbb{N}_{0}=\mathbb{N} \cup 0$. It was known that the definition of the operator $I_{\alpha, n, \lambda}^{\mu, 0}$ was motivated essentially by the Choi-SaigoSrivastava operator [3] for analytic functions, which includes a simpler integral operator studied earlier by Noor [17] and others (cf. [11,12,18]). Note also the operator $I_{\alpha, \beta}^{0, k}$ have been recently introduced and studied by Ghanim and Darus [68]. To our best knowledge, the recent work regarding operator $I_{\alpha, n, \lambda}^{\mu, 0}$ was charmingly studied by Piejko and Sokól [19]. Moreover, the operator $I_{\alpha, \beta, \lambda}^{\mu, k}$ was defined and studied by Ghanim and Darus [9]. In the same direction, we will study for the operator $I_{\alpha, \beta, \lambda}^{\mu, k}$ given in (1.6).

Now, it follows from (1.5) and (1.6) that

$$
\begin{equation*}
z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime}=\alpha I_{\alpha+1, \beta, \lambda}^{\mu, k} f(z)-(\alpha+1) I_{\alpha, \beta, \lambda}^{\mu, k} f(z) \tag{1.7}
\end{equation*}
$$

Let Ω be the class of analytic functions $h(z)$ with $h(0)=1$, which are convex and univalent in the open unit disk $U=U^{*} \cup\{0\}$. For functions f and g analytic in U, we say that f is subordinate to g and write $f \prec g$, if g is univalent in $U, f(0)=g(0)$ and $f(U) \subset g(U)$.

Definition 1.1. A function $f \in \Sigma$ is said to be in the class $\Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)$, if it satisfies the subordination condition

$$
\begin{equation*}
(1+\rho) z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z^{2}\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime} \prec h(z) \tag{1.8}
\end{equation*}
$$

where ρ is a real or complex number and $h(z) \in \Omega$.
Let A be class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.9}
\end{equation*}
$$

which are analytic in U. A function $h(z) \in A$ is said to be in the class $S^{*}(\mathfrak{a})$, if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\mathfrak{a} \quad(z \in U)
$$

For some $\mathfrak{a}(\mathfrak{a}<1)$. When $0<\mathfrak{a}<1, S^{*}(\mathfrak{a})$ is the class of starlike functions of order \mathfrak{a} in U. A function $h(z) \in A$ is said to be prestarlike of order \mathfrak{a} in U, if

$$
\frac{z}{(1-z)^{2(1-\mathfrak{a})}} * f(z) \in S^{*}(\mathfrak{a}) \quad(\mathfrak{a}<1)
$$

where the $\operatorname{symbol} *$ means the familiar Hadamard product (or convolution) of two analytic functions in U. We denote this class by $R(\mathfrak{a})$ (see [20,24]). A function $f(z) \in A$ is in the class $R(0)$, if and only if $f(z)$ is convex univalent in U and

$$
R\left(\frac{1}{2}\right)=S^{*}\left(\frac{1}{2}\right)
$$

In this paper, we introduce and investigate various inclusion relationships and convolution properties of a certain class of meromorphic functions, which are defined in this paper by means of a linear operator.

2. Preliminary results

In order to prove our main results, we need the following lemmas.
Lemma 2.1. [16] Let $g(z)$ be analytic in U, and $h(z)$ be analytic and convex univalent in U with $h(0)=g(0)$. If,

$$
\begin{equation*}
g(z)+\frac{1}{\mathfrak{m}} z g^{\prime}(z) \prec h(z) \tag{2.1}
\end{equation*}
$$

where $\operatorname{Re} \mathfrak{m} \geq 0$ and $\mathfrak{m} \neq 0$, then

$$
g(z) \prec \widetilde{h}(z)=\mathfrak{m} z^{-\mathfrak{m}} \int_{0}^{z} t^{\mathfrak{m}-1} h(t) d t \prec h(z)
$$

and $\widetilde{h}(z)$ is the best dominant of (2.1).

Lemma 2.2. [20] Let $a<1, f(z) \in S^{*}(a)$ and $g(z) \in R(\mathfrak{a})$. For any analytic function $F(z)$ in U, then

$$
\frac{g *(f F)}{g * f}(U) \subset \overline{c o}(F(U))
$$

where $\overline{c o}(F(U))$ denotes the convex hull of $F(U)$.

3. Main results

Theorem 3.1. For some real ρ, let $0 \leq \rho_{1}<\rho_{2}$. Then

$$
\Sigma_{\alpha, \beta}^{\mu, k, \lambda}\left(\rho_{2} ; h\right) \subset \Sigma_{\alpha, \beta}^{\mu, k, \lambda}\left(\rho_{1} ; h\right)
$$

Proof. Let $0 \leq \rho_{1}<\rho_{2}$ and suppose that

$$
\begin{equation*}
g(z)=z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right) \tag{3.1}
\end{equation*}
$$

for $f(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}\left(\rho_{2} ; h\right)$. Then the function $g(z)$ is analytic in U with $g(0)=1$. Differentiating both sides of (3.1) with respect to z and using (1.7), we have

$$
\begin{equation*}
\left(1+\rho_{2}\right) z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)+\rho_{2} z^{2}\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime}=g(z)+\rho_{2} z g^{\prime}(z) \prec h(z) . \tag{3.2}
\end{equation*}
$$

Hence an application of Lemma 2.1 with $\mathfrak{m}=\frac{1}{\rho_{2}}>0$ yields

$$
\begin{equation*}
g(z) \prec h(z) . \tag{3.3}
\end{equation*}
$$

Noting that $0 \leq \frac{\rho_{1}}{\rho_{2}}<1$ and that $h(z)$ is convex univalent in U, it follows from (3.1)-(3.3) that

$$
\begin{aligned}
& \left(1+\rho_{1}\right) z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)+\rho_{1} z^{2}\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime} \\
& =\frac{\rho_{1}}{\rho_{2}}\left[\left(1+\rho_{2}\right) z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)+\rho_{2} z^{2}\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime}\right]+\left(1-\frac{\rho_{1}}{\rho_{2}}\right) g(z) \prec h(z) .
\end{aligned}
$$

Thus, $f(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}\left(\rho_{1} ; h\right)$ and the proof of Theorem 3.1 is complete.
Theorem 3.2. Let,

$$
\begin{equation*}
\operatorname{Re}\left\{z \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)\right\}>\frac{1}{2} \quad\left(z \in U ; \alpha_{2} \notin\{0,-1,-2, \ldots\}\right) \tag{3.4}
\end{equation*}
$$

where $\widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)$ is defined as in (1.4). Then,

$$
\Sigma_{\alpha_{2}, \beta}^{\mu, k, \lambda}(\rho ; h) \subset \Sigma_{\alpha_{1}, \beta}^{\mu, k, \lambda}(\rho ; h)
$$

Proof. For $f(z) \in \Sigma$ it is easy to verify that

$$
\begin{equation*}
z\left(I_{\alpha_{1}, \beta, \lambda}^{\mu, k} f(z)\right)=\left(z \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right) *\left(z I_{\alpha_{2}, \beta, \lambda}^{\mu, k} f(z)\right)\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{2}\left(I_{\alpha_{1}, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime}=\left(z \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right) * z^{2}\left(I_{\alpha_{2}, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime}\right) \tag{3.6}
\end{equation*}
$$

Let $f(z) \in \Sigma_{\alpha_{2}, \beta}^{\mu, k, \lambda}(\rho ; h)$. Then from (3.5) and (3.6), we deduce that

$$
\begin{equation*}
(1+\rho) z\left(I_{\alpha_{1}, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z^{2}\left(I_{\alpha_{1}, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime}=\left(z \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)\right) * \Psi(z) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi(z)=(1+\rho) z\left(I_{\alpha_{2}, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z^{2}\left(I_{\alpha_{2}, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime} \prec h(z) \tag{3.8}
\end{equation*}
$$

In view of (3.4), the function $z \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)$ has the Herglotz representation

$$
\begin{equation*}
z \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)=\int_{|x|=1} \frac{d \mathfrak{m}(x)}{1-x z}(z \in U) \tag{3.9}
\end{equation*}
$$

where $\mathfrak{m}(x)$ is a probability measure defined on the unit circle $|x|=1$ and

$$
\int_{|x|=1} d \mathfrak{m}(x)=1
$$

Since $h(z)$ is convex univalent in U, it follows from (3.7)-(3.9) that

$$
(1+\rho) z\left(I_{\alpha_{1}, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z^{2}\left(I_{\alpha_{1}, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime}=\int_{|x|=1} \Psi(x z) d \mathfrak{m}(x) \prec h(z)
$$

This shows that $f(z) \in \Sigma_{\alpha_{1}, \beta}^{\mu, k, \lambda}(\rho ; h)$ and the theorem is proved.
Theorem 3.3 Let $0<\alpha_{1}<\alpha_{2}$. Then

$$
\Sigma_{\alpha_{2}, \beta}^{\mu, k, \lambda}(\rho ; h) \subset \Sigma_{\alpha_{1}, \beta}^{\mu, k, \lambda}(\rho ; h)
$$

Proof. Define,

$$
g(z)=z+\sum_{n=1}^{\infty}\left|\frac{\left(\alpha_{1}\right)_{n+1}}{\left(\alpha_{2}\right)_{n+1}}\right| z^{n+1}\left(z \in U ; 0<\alpha_{1}<\alpha_{2}\right) .
$$

Then,

$$
\begin{equation*}
z^{2} \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)=g(z) \in A \tag{3.10}
\end{equation*}
$$

where $\widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)$ is defined as in (1.4), and

$$
\begin{equation*}
\frac{z}{(1-z)^{\alpha_{2}}} * g(z)=\frac{z}{(1-z)^{\alpha_{1}}} . \tag{3.11}
\end{equation*}
$$

By (3.11), we see that

$$
\frac{z}{(1-z)^{\alpha_{2}}} * g(z) \in S^{*}\left(1-\frac{\alpha_{1}}{2}\right) \subset S^{*}\left(1-\frac{\alpha_{2}}{2}\right)
$$

for $0<\alpha_{1}<\alpha_{2}$, which implies that

$$
\begin{equation*}
g(z) \in R\left(1-\frac{\alpha_{2}}{2}\right) \tag{3.12}
\end{equation*}
$$

Let $f(z) \in \Sigma_{\alpha_{2}, \beta}^{\mu, k, \lambda}(\rho ; h)$. Then we deduce from (3.7), (3.8) and (3.10) that

$$
\begin{equation*}
(1+\rho) z\left(I_{\alpha_{1}, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z^{2}\left(I_{\alpha_{1}, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime}=\frac{g(z)}{z} * \Psi(z)=\frac{g(z) *(z \Psi(z))}{g(z) * z} \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(z)=(1+\rho) z\left(I_{\alpha_{2}, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z^{2}\left(I_{\alpha_{2}, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime} \prec h(z) \tag{3.14}
\end{equation*}
$$

Since z belongs to $S^{*}\left(1-\frac{\alpha_{2}}{2}\right)$ and $h(z)$ is convex univalent in U, it follows from (3.12)-(3.14) and Lemma 2.2 that

$$
(1+\rho) z\left(I_{\alpha_{1}, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z^{2}\left(I_{\alpha_{1}, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime} \prec h(z)
$$

Thus, $f(z) \in \Sigma_{\alpha_{1}, \beta}^{\mu, k, \lambda}(\rho ; h)$ and the proof is completed.
As a special case of Theorem 3.3, we have

$$
\Sigma_{\alpha+1, \beta}^{\mu, k, \lambda}(\rho ; h) \subset \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)(\alpha>0)
$$

In Theorem 3.4 below we give a generalization of the above result.
Theorem 3.4 Let $\operatorname{Re} \alpha \geq 0$ and $\alpha \neq 0$. Then,

$$
\Sigma_{\alpha+1, \beta}^{\mu, k, \lambda}(\rho ; h) \subset \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; \widetilde{h})
$$

where

$$
\widetilde{h}(z)=\alpha z^{-\alpha} \int_{0}^{z} t^{\alpha-1} h(t) d t \prec h(z) .
$$

Proof. Let us define

$$
\begin{equation*}
g(z)=(1+\rho) z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z^{2}\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime} \tag{3.15}
\end{equation*}
$$

for $f(z) \in \Sigma$. Then (1.7) and (3.15) lead to

$$
\begin{equation*}
\frac{g(z)}{z}=\alpha \rho\left(I_{\alpha+1, \beta, \lambda}^{\mu, k} f(z)\right)+(1-\alpha \rho)\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right) \tag{3.16}
\end{equation*}
$$

Differentiating both sides of (3.16) and using (1.7), we obtain the following

$$
\begin{align*}
g^{\prime}(z)-\frac{g(z)}{z}= & \alpha \rho z\left(I_{\alpha+1, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime} \\
& +(1-\alpha \rho)\left[\alpha\left(I_{\alpha+1, \beta, \lambda}^{\mu, k} f(z)\right)-(1+\alpha)\left(I_{\alpha+1, \beta, \lambda}^{\mu, k} f(z)\right)\right] \tag{3.17}
\end{align*}
$$

By (3.16) and (3.17), we get

$$
g^{\prime}(z)-\frac{\alpha g(z)}{z}=\alpha \rho z\left(I_{\alpha+1, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime}+\alpha(1+\rho)\left(I_{\alpha+1, \beta, \lambda}^{\mu, k} f(z)\right)
$$

that is,

$$
\begin{equation*}
g(z)+\frac{z g^{\prime}(z)}{\alpha}=(1+\rho) z\left(I_{\alpha+1, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z^{2}\left(I_{\alpha+1, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime} \tag{3.18}
\end{equation*}
$$

If $f \in \Sigma_{\alpha+1, \beta}^{\mu, k, \lambda}(\rho ; h)$, then it follows from (3.18) that

$$
g(z)+\frac{z g^{\prime}(z)}{\alpha} \prec h(z) \quad(\operatorname{Re} \alpha \geq 0, \alpha \neq 0)
$$

Hence an application of Lemma 2.1 yields

$$
g(z) \prec \widetilde{h}(z)=\alpha z^{-\alpha} \int_{0}^{z} t^{\alpha-1} h(t) d t \prec h(z)
$$

which shows that

$$
f(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; \widetilde{h}) \subset \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)
$$

TheOrem 3.5 Let $\rho>0, \delta>0$ and $f(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; \delta h+1-\delta)$. If $\delta \leq \delta_{0}$, where

$$
\begin{equation*}
\delta_{0}=\frac{1}{2}\left(1-\frac{1}{\rho} \int_{0}^{1} \frac{u^{\frac{1}{\rho}-1}}{1+u} d u\right)^{-1} \tag{3.19}
\end{equation*}
$$

then $f(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)$.
Proof. Let us define

$$
\begin{equation*}
g(z)=z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right) \tag{3.20}
\end{equation*}
$$

for $f(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; \delta h+1-\delta)$. with $\rho>0$, and $\delta>0$. Then we have

$$
g(z)+\rho z g^{\prime}(z)=(1+\rho) z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z^{2}\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime} \prec \delta(h(z)-1)+1
$$

Hence an application of Lemma 2.1 yields

$$
\begin{equation*}
g(z) \prec \frac{\delta}{\rho} z^{-\frac{1}{\rho}} \int_{0}^{z} t^{\frac{1}{\rho}-1} h(t) d t+1-\delta=(h * \Psi)(z) \tag{3.21}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(z)=\frac{\delta}{\rho} z^{-\frac{1}{\rho}} \int_{0}^{z} \frac{t^{\frac{1}{\rho}-1}}{1-t} d t+1-\delta \tag{3.22}
\end{equation*}
$$

If $0<\delta \leq \delta_{0}$, where $\delta_{0}>1$ is given by (3.19), then it follows from (3.22) that

$$
\operatorname{Re} \Psi(z)=\frac{\delta}{\rho} \int_{0}^{1} u^{\frac{1}{\rho}-1} \operatorname{Re}\left(\frac{1}{1-u z}\right) d u+1-\delta>\frac{\delta}{\rho} \int_{0}^{1} \frac{u^{\frac{1}{\rho}-1}}{1+u} d u+1-\delta \geq \frac{1}{2}
$$

$(z \in U)$. Now, by using the Herglotz representation for $\Psi(z)$, from (3.20) and (3.21) we get

$$
z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right) \prec(h * \Psi)(z) \prec h(z)
$$

because $h(z)$ is convex univalent in U. This shows that $f(z) \in \Sigma(\alpha, \beta, k, \rho ; h)$. For $h(z)=\frac{1}{1-z}$ and $f(z) \in \Sigma$ defined by

$$
z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)=\frac{\delta}{\rho} z^{-\frac{1}{\rho}} \int_{0}^{z} \frac{t^{\frac{1}{\rho}-1}}{1-t} d t+1-\delta
$$

it is easy to verify that

$$
(1+\rho) z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z^{2}\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime}=\delta(h(z)-1)+1
$$

Thus, $f(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; \delta h+1-\delta)$. Also, for $\delta>\delta_{0}$, we have

$$
\operatorname{Re} z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right) \rightarrow \frac{\delta}{\rho} \int_{0}^{1} \frac{u^{\frac{1}{\rho}-1}}{1+u} d u+1-\delta<\frac{1}{2}(z \rightarrow-1)
$$

which implies that $f(z) \notin \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)$.

4. Convolution properties

Theorem 4.1. Let $f(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h), g(z) \in \Sigma$ and $\operatorname{Re}(z g(z))>\frac{1}{2}(z \in U)$. Then,

$$
(f * g)(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)
$$

Proof. For $f(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)$ and $g \in \Sigma$. we have

$$
\begin{align*}
&(1+\rho) z\left(I_{\alpha, \beta, \lambda}^{\mu, k}(f * g)(z)\right)+\rho z^{2}\left(I_{\alpha, \beta, \lambda}^{\mu, k}(f * g)(z)\right)^{\prime} \\
&=(1+\rho) z g(z) * z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z g(z) * z^{2}\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime}=z g(z) * \Psi(z) \tag{4.1}
\end{align*}
$$

where

$$
\begin{equation*}
\Psi(z)=(1+\rho) z\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)+\rho z^{2}\left(I_{\alpha, \beta, \lambda}^{\mu, k} f(z)\right)^{\prime} \prec h(z) \tag{4.2}
\end{equation*}
$$

The remaining part of the proof of Theorem 4.1 is similar to that of Theorem 3.2 and hence we omit it.

Corollary 4.1. Let $f(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)$ be given by (1.1) and let

$$
\omega_{m}(z)=\frac{1}{z}+\sum_{n=1}^{m-1} a_{n} z^{n-1}(m \in N \backslash\{1\})
$$

Then the function

$$
\sigma_{m}(z)=\int_{0}^{1} t \omega_{m}(t z) d t
$$

is also in the class $\Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)$.
Proof. We have

$$
\begin{equation*}
\sigma_{m}(z)=\frac{1}{z}+\sum_{n=1}^{m-1} \frac{a_{n}}{n+1} z^{n-1}=\left(f * g_{m}\right)(z) \quad(m \in N \backslash\{1\}) \tag{4.3}
\end{equation*}
$$

where

$$
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n-1} \in \Sigma(\alpha, \beta, k, \rho ; h)
$$

and

$$
g_{m}(z)=\frac{1}{z}+\sum_{n=1}^{m-1} \frac{z^{n-1}}{n+1} \in \Sigma
$$

Also, for $m \in N \backslash\{1\}$, it is known from [21] that

$$
\begin{equation*}
\operatorname{Re}\left\{z g_{m}(z)\right\}=\operatorname{Re}\left\{1+\sum_{n=1}^{m-1} \frac{z^{n}}{n+1}\right\}>\frac{1}{2} \quad(z \in U) \tag{4.4}
\end{equation*}
$$

In view of (4.3) and (4.4), an application of Theorem 4.1 leads to $\sigma_{m}(z) \in$ $\Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)$.

TheOrem 4.2. Let $f(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h), g(z) \in \Sigma$ and $z^{2} g(z) \in R(\mathfrak{a})(\mathfrak{a}<1)$. Then,

$$
(f * g)(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)
$$

Proof. For $f(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)$ and $g(z) \in \Sigma$, from (4.1) (used in the proof of Theorem 4.1, we can write

$$
\begin{align*}
&(1+\rho) z\left(I_{\alpha, \beta, \lambda}^{\mu, k}(f * g)(z)\right)+\rho z^{2}\left(I_{\alpha, \beta, \lambda}^{\mu, k}(f * g)(z)\right)^{\prime} \\
&=\frac{z^{2} g(z) * z \Psi(z)}{z^{2} g(z) * z}(z \in U) \tag{4.5}
\end{align*}
$$

where $\Psi(z)$ is defined as in (4.2).
Since $h(z)$ is convex univalent in $U, \Psi(z) \prec h(z), z^{2} g(z) \in R(\mathfrak{a})$ and $z \in$ $S^{*}(\mathfrak{a})(\mathfrak{a}<1)$, the desired result follows from (4.5) and Lemma 2.2

Taking $\mathfrak{a}=0$ and $\mathfrak{a}=\frac{1}{2}$, Theorem 4.2 reduces to the following.
Corollary 4.2. Let $f(z) \in \Sigma(\alpha, \beta, k, \rho ; h)$ and let $g(z) \in \Sigma$ satisfy either of the following conditions
(i) $z^{2} g(z)$ is convex univalent in U or
(ii) $z^{2} g(z) \in S^{*}\left(\frac{1}{2}\right)$.

Then, $(f * g)(z) \in \Sigma_{\alpha, \beta}^{\mu, k, \lambda}(\rho ; h)$.

REFERENCES

[1] N.E. Cho, I.H. Kim, Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 187 (2007), 115-121.
[2] N.E. Cho, O.S. Kwon, H.M. Srivastava, Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations, J. Math. Anal. Appl. 300 (2004), 505-520.
[3] J.H. Choi, M. Saigo, H.M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-435.
[4] J. Dziok, H.M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math. Kyungshang 5 (2002), 115-125.
[5] J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), 7-18.
[6] F. Ghanim, M. Darus, A new class of meromorphically analytic functionswith applications to generalized hypergeometric functions, Abstr. Appl. Anal., ID 159495 (2011).
[7] F. Ghanim, M. Darus, Some results of p-valent meromorphic functions defined by a linear operator, Far East J. Math. Sci. 44 (2010), 155-165.
[8] F. Ghanim, M. Darus, Some properties of certain subclass of meromorphically multivalent functions defined by linear operator, J. Math. Stat. 6 (2010), 34-41.
[9] F. Ghanim, M. Darus, Certain subclasses of meromorphic functions related to Cho-KwonSrivastava operator, Far East J. Math. Sci. (FJMS) 48 (2011), 159-173.
[10] J.L. Liu, A linear operator and its applications on meromorphic p-valent functions, Bull. Inst. Math. Acad. Sin. 31 (2003), 23-32.
[11] J.L. Liu, The Noor integral operator and strongly starlike functions, J. Math. Anal. Appl. 261 (2001), 441-447.
[12] J.L. Liu, K.I. Noor, Some properties of Noor integral operator, J. Natur. Geom. 21 (2002), 81-90.
[13] J.L. Liu, H.M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2001), 566-581.
[14] J.L. Liu, H.M. Srivastava, Certain properties of the Dziok-Srivastava operator, Appl. Math. Comput. 159 (2004), 485-493.
[15] J.L. Liu, H.M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling 39 (2004), 21-34.
[16] S.S. Miller, P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math.J. 28 (1981), 157-171.
[17] K.I. Noor, On new classes of integral operators, J. Natur. Geom. 16 (1999), 71-80.
[18] K.I. Noor, M.A. Noor, On integral operators, J. Natur. Geom. 238 (1999), 341-352.
[19] K. Piejko, J. Sokól, Subclasses of meromorphic functions associated with the Cho-KwonSrivastava operator, J. Math. Anal. Appl. 337 (2008), 1261-1266.
[20] St. Ruscheweyh, Convolutions in Geometric Function Theory, Sem. Math. Sup. 83, Presses Univ. Montreal, 1982.
[21] R. Singh, S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc. 106 (1989), 145-152.
[22] D.G. Yang, Some criteria for multivalent starlikeness, South Asian Bull. Math. 24 (2000), 491-497.
[23] D.G. Yang, J.L. Liu, Multivalent functions associated with a linear operator, Appl. Math. Comput. 204 (2008), 862-871.
(received 19.11.2011; in revised form 24.04.2012; available online 10.09.2012)
Department of Mathematics, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
E-mail: fgahmed@sharjah.ac.ae
School of Mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600 Selangor D. Ehsan, Malaysia
E-mail: maslina@ukm.my

[^0]: 2010 AMS Subject Classification: 30C45, 30C50
 Keywords and phrases: Subordination; meromorphic function; Cho-Kwon-Srivastava operator; Choi-Saigo-Srivastava operator; Hadamard product; integral operator.

 The work presented here was partially supported by MOHE: UKM-ST-06-FRGS0244-2010.

