THE EULER THEOREM AND DUPIN INDICATRIX FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E_1^3

Derya Sağlam and Özgür Boyacıoğlu Kalkan

Abstract. In this paper we give the Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface in E_1^3 .

1. Introduction

Let k_1 , k_2 denote principal curvature functions and e_1 , e_2 be principal directions of a surface M, respectively. Then the normal curvature $k_n(v_p)$ of M in the direction $v_p = (\cos \theta)e_1 + (\sin \theta)e_2$ is

$$k_n(v_p) = k_1 \cos^2 \theta + k_2 \sin^2 \theta.$$

This equation is called Euler's formulae (Leonhard Euler, 1707–1783). The generalized Euler theorem for hypersurfaces in Euclidean space E^{n+1} can be found in [8]. In 1984, A. Kılıç and H.H. Hacısalihoğlu gave the Euler theorem and Dupin indicatrix for parallel hypersurfaces in E^n [12]. Also the Euler theorem and Dupin indicatrix are obtained for the parallel hypersurfaces in pseudo-Euclidean spaces E_1^{n+1} and E_{ν}^{n+1} in the papers [4, 6, 7].

In 2005 H.H. Hacısalihoğlu and Ö. Tarakçı introduced surfaces at a constant distance from edge of regression on a surface. These surfaces are a generalization of parallel surfaces in E^3 . Because the authors took any vector instead of normal vector [15]. Euler theorem and Dupin indicatrix for these surfaces are given [2]. In 2010 we obtained the surfaces at a constant distance from edge of regression on a surface in E_1^3 [14].

In this paper we give the Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface in E_1^3 .

Keywords and phrases: Euler theorem; Dupin indicatrix; edge of regression.

²⁰¹⁰ AMS Subject Classification: 51B20, 53B30

DEFINITION 1.1. [3, 9, 10, 11, 13] (i) Hyperbolic angle: Let x and y be timelike vectors in the same timecone of Minkowski space. Then there is a unique real number $\theta \geq 0$, called the hyperbolic angle between x and y, such that

$$\langle x, y \rangle = - \|x\| \|y\| \cosh \theta$$

(ii) Central angle: Let x and y be spacelike vectors in Minkowski space that span a timelike vector subspace. Then there is a unique real number $\theta \ge 0$, called the central angle between x and y, such that

$$|\langle x, y \rangle| = ||x|| ||y|| \cosh \theta.$$

(iii) Spacelike angle: Let x and y be spacelike vectors in Minkowski space that span a spacelike vector subspace. Then there is a unique real number θ between 0 and π called the spacelike angle between x and y, such that

$$\langle x, y \rangle = \|x\| \, \|y\| \cos \theta.$$

(iv) Lorentzian timelike angle: Let x be a spacelike vector and y be a timelike vector in Minkowski space. Then there is a unique real number $\theta \ge 0$, called the Lorentzian timelike angle between x and y, such that

$$|\langle x, y \rangle| = ||x|| ||y|| \sinh \theta.$$

DEFINITION 1.2. Let M and M^f be two surfaces in E_1^3 and N_p be a unit normal vector of M at the point $P \in M$. Let $T_p(M)$ be tanjant space at $P \in M$ and $\{X_p, Y_p\}$ be an orthonormal bases of $T_p(M)$. Let $Z_p = d_1X_p + d_2Y_p + d_3N_p$ be a unit vector, where $d_1, d_2, d_3 \in R$ are constant numbers and $\varepsilon_1 d_1^2 + \varepsilon_2 d_2^2 - \varepsilon_1 \varepsilon_2 d_3^2 = \pm 1$. If a function f exists and satisfies the condition $f: M \to M^f$, $f(P) = P + rZ_p$, r constant, M^f is called as the surface at a constant distance from the edge of regression on M and M^f denoted by the pair (M, M^f) .

If $d_1 = d_2 = 0$, then we have $Z_p = N_p$ and $f(P) = P + rN_p$. In this case M and M^f are parallel surfaces [14].

THEOREM 1.3. [14] Let the pair (M, M^f) be given in E_1^3 . For any $W \in \chi(M)$, we have $f_*(W) = \overline{W} + r\overline{D_W Z}$, where $W = \sum_{i=1}^3 w_i \frac{\partial}{\partial x_i}$, $\overline{W} = \sum_{i=1}^3 \overline{w_i} \frac{\partial}{\partial x_i}$ and $\forall P \in M$, $w_i(P) = \overline{w_i}(f(p))$, $1 \le i \le 3$.

Let (ϕ, U) be a parametrization of M, so we can write that

$$\phi: \bigcup_{(u,v)} \subset E_1^3 \to M_{P=\phi(u,v)}.$$

In this case $\{\phi_u|_p, \phi_v|_p\}$ is a basis of $T_M(P)$. Let N_p is a unit normal vector at $P \in M$ and $d_1, d_2, d_3 \in R$ be a constant numbers then we may write that $Z_p = d_1\phi_u|_p + d_2\phi_v|_p + d_3N_p$. Since $M^f = \{f(P) \mid f(P) = P + rZ_p\}$, a parametric representation of M^f is $\psi(u, v) = \phi(u, v) + rZ(u, v)$. Thus we may write

$$M^{f} = \{ \psi(u,v) \mid \psi(u,v) = \phi(u,v) + r(d_{1}\phi_{u}(u,v) + d_{2}\phi_{v}(u,v) + d_{3}N(u,v)), \\ d_{1}, d_{2}, d_{3}, r \text{ are constant}, \quad \varepsilon_{1}d_{1}^{2} + \varepsilon_{2}d_{2}^{2} - \varepsilon_{1}\varepsilon_{2}d_{3}^{2} = \pm 1, \}$$

If we take $rd_1 = \lambda_1$, $rd_2 = \lambda_2$, $rd_3 = \lambda_3$ then we have

$$M^{f} = \{\psi(u,v) | \psi(u,v) = \phi(u,v) + \lambda_{1}\phi_{u}(u,v) + \lambda_{2}\phi_{v}(u,v) + \lambda_{3}N(u,v), \lambda_{1}, \lambda_{2}, \lambda_{3} \text{ are constant} \}.$$

Let $\{\phi_u, \phi_v\}$ is basis of $\chi(M^f)$. If we take $\langle \phi_u, \phi_u \rangle = \varepsilon_1$, $\langle \phi_v, \phi_v \rangle = \varepsilon_2$ and $\langle N, N \rangle = -\varepsilon_1 \varepsilon_2$, then

$$\psi_u = (1 + \lambda_3 k_1)\phi_u + \varepsilon_2 \lambda_1 k_1 N,$$

$$\psi_v = (1 + \lambda_3 k_2)\phi_v + \varepsilon_1 \lambda_2 k_2 N$$

is a basis of $\chi(M^f)$, where N is unit normal vector field on M and k_1, k_2 are principal of M [14].

THEOREM 1.4. [14] Let the pair (M, M^f) be given. Let $\{\phi_u, \phi_v\}$ (orthonormal and principal vector fields on M) be basis of $\chi(M)$ and k_1, k_2 be principal curvatures of M. The matrix of the shape operator of M^f with respect to the basis $\{\psi_u = (1 + \lambda_3 k_1)\phi_u + \varepsilon_2\lambda_1 k_1 N, \ \psi_v = (1 + \lambda_3 k_2)\phi_v + \varepsilon_1\lambda_2 k_2 N\}$ of $\chi(M^f)$ is

$$S^f = \begin{bmatrix} \mu_1 & \mu_2 \\ \mu_3 & \mu_4 \end{bmatrix}$$

where

$$\begin{split} \mu_{1} &= \frac{(1+\lambda_{3}k_{2})}{A^{3}} \left\{ \varepsilon \lambda_{1} \frac{\partial k_{1}}{\partial u} (\lambda_{2}^{2}k_{2}^{2} - \varepsilon_{1}(1+\lambda_{3}k_{2})^{2}) + k_{1}A^{2} \right\} \\ \mu_{2} &= \frac{\varepsilon \lambda_{1}^{2}\lambda_{2}k_{1}k_{2}(1+\lambda_{3}k_{2})}{A^{3}} \frac{\partial k_{1}}{\partial u} \\ \mu_{3} &= \frac{-\varepsilon \lambda_{1}\lambda_{2}^{2}k_{1}k_{2}(1+\lambda_{3}k_{1})}{A^{3}} \frac{\partial k_{2}}{\partial v} \\ \mu_{4} &= \frac{(1+\lambda_{3}k_{1})}{A^{3}} \left\{ -\varepsilon \lambda_{2} \frac{\partial k_{2}}{\partial v} (\lambda_{1}^{2}k_{1}^{2} - \varepsilon_{2}(1+\lambda_{3}k_{1})^{2}) + k_{2}A^{2} \right\} \\ and A &= \sqrt{\varepsilon \left(\varepsilon_{1}\lambda_{1}^{2}k_{1}^{2}(1+\lambda_{3}k_{2})^{2} + \varepsilon_{2}\lambda_{2}^{2}k_{2}^{2}(1+\lambda_{3}k_{1})^{2} - \varepsilon_{1}\varepsilon_{2}(1+\lambda_{3}k_{1})^{2}(1+\lambda_{3}k_{2})^{2})}. \end{split}$$

DEFINITION 1.5. [6] Let M be a pseudo-Euclidean surface in E_1^3 and p is nonumbilic point in M. A function k_n which is defined in the following form

$$k_n: T_p M \to R, \ k_n(X_p) = \frac{1}{\|X_p\|^2} \langle S(X_p), X_p \rangle$$

is called a normal curvature function of M at p.

DEFINITION 1.6. [7] Let M be a pseudo-Euclidean surface in E_1^3 and S be shape operator of M. Then the Dupin indicatrix of M at the point p is

$$\mathcal{D}_p = \{ X_p \mid \langle S(X_p), X_p \rangle = \pm 1, \ X_p \in T_p M \}.$$

244

2. The Euler theorem for surfaces at a constant distance from edge of regression on a surface in E_1^3

THEOREM 2.1. Let M^f be a surface at a constant distance from edge of regression on a M in E_1^3 . Let k_1 and k_2 denote principal curvature function of Mand let $\{\phi_u, \phi_v\}$ be orthonormal basis such that ϕ_u and ϕ_v are principal directions on M. Let $Y_p \in T_p M$ and we denote the normal curvature by $k_n^f(f_*(Y_p))$ of M^f in the direction $f_*(Y_p)$. Thus

$$k_n^f(f_*(Y_p)) = \frac{\mu_1^* y_1^2 + \varepsilon_1 \varepsilon_2 \mu_2^* y_1 y_2 + \mu_3^* y_2^2}{|\lambda_1^* y_1^2 - 2\varepsilon_1 \varepsilon_2 \lambda_1 \lambda_2 k_1 k_2 y_1 y_2 + \lambda_2^* y_2^2|}$$
(2.1)

where

$$y_{1} = \langle Y_{p}, \phi_{u} \rangle, \quad y_{2} = \langle Y_{p}, \phi_{v} \rangle,$$

$$\lambda_{i}^{*} = \varepsilon_{i}(1 + \lambda_{3}k_{i})^{2} - \varepsilon_{1}\varepsilon_{2}\lambda_{i}^{2}k_{i}^{2}, \quad (i = 1, 2),$$

$$\mu_{1}^{*} = \varepsilon_{1}\mu_{1}(1 + \lambda_{3}k_{1})^{2} - \lambda_{1}k_{1}(\varepsilon_{1}\varepsilon_{2}\mu_{1}\lambda_{1}k_{1} + \mu_{2}\lambda_{2}k_{2}),$$

$$\mu_{2}^{*} = \varepsilon_{2}\mu_{2}(1 + \lambda_{3}k_{2})^{2} - \lambda_{2}k_{2}(\mu_{1}\lambda_{1}k_{1} + \varepsilon_{1}\varepsilon_{2}\mu_{2}\lambda_{2}k_{2})$$

$$+ \varepsilon_{1}\mu_{3}(1 + \lambda_{3}k_{1})^{2} - \lambda_{1}k_{1}(\varepsilon_{1}\varepsilon_{2}\mu_{3}\lambda_{1}k_{1} + \mu_{4}\lambda_{2}k_{2}),$$

$$\mu_{3}^{*} = \varepsilon_{2}\mu_{4}(1 + \lambda_{3}k_{2})^{2} - \lambda_{2}k_{2}(\mu_{3}\lambda_{1}k_{1} + \varepsilon_{1}\varepsilon_{2}\mu_{4}\lambda_{2}k_{2}).$$

$$(2.2)$$

Proof. Let $f_*(Y_p) \in T_{f(p)}M^f$. Then

$$k_n^f(f_*(Y_p)) = \frac{1}{\|f_*(Y_p)\|^2} \left\langle S^f(f_*(Y_p)), f_*(Y_p) \right\rangle$$
(2.3)

Let us calculate $f_*(Y_p)$ and $S^f(f_*(Y_p))$. Since ϕ_u and ϕ_v are orthonormal we have

 $Y_{p}=\varepsilon_{1}\left\langle Y_{p},\phi_{u}\right\rangle \phi_{u}+\varepsilon_{2}\left\langle Y_{p},\phi_{v}\right\rangle \phi_{v}=\varepsilon_{1}y_{1}\phi_{u}+\varepsilon_{2}y_{2}\phi_{v}$

Further without lost of generality, we suppose that Y_p is a unit vector. Then

$$f_*(Y_p) = \varepsilon_1 y_1 f_*(\phi_u) + \varepsilon_2 y_2 f_*(\phi_v) = \varepsilon_1 y_1 \psi_u + \varepsilon_2 y_2 \psi_v.$$
(2.4)

On the other hand we find that

$$S^{J}(f_{*}(Y_{p})) = \varepsilon_{1}y_{1}S^{J}(\psi_{u}) + \varepsilon_{2}y_{2}S^{J}(\psi_{v})$$

$$= \varepsilon_{1}y_{1}(\mu_{1}(1+\lambda_{3}k_{1})\phi_{u} + \mu_{2}(1+\lambda_{3}k_{2})\phi_{v} + (\mu_{1}\varepsilon_{2}\lambda_{1}k_{1} + \mu_{2}\varepsilon_{1}\lambda_{2}k_{2})N)$$

$$+ \varepsilon_{2}y_{2}(\mu_{3}(1+\lambda_{3}k_{1})\phi_{u} + \mu_{4}(1+\lambda_{3}k_{2})\phi_{v} + (\mu_{3}\varepsilon_{2}\lambda_{1}k_{1} + \mu_{4}\varepsilon_{1}\lambda_{2}k_{2})N)$$

(2.5)

Thus using equations (2.4) and (2.5) in equation (2.3) we obtain (2.1).

COROLLARY 2.2. Let M^f be a surface at a constant distance from edge of regression on M in E_1^3 . Let k_1 and k_2 denote principal curvature function of Mand let $\{\phi_u, \phi_v\}$ be orthonormal basis such that ϕ_u and ϕ_v are principal directions on M. Let us denote the angle between $Y_p \in T_pM$ and ϕ_u , ϕ_v by θ_1 and θ_2 respectively. Thus the normal curvature of M^f in the direction $f_*(Y_p)$ (a) Let N_p be a timelike vector then

$$k_n^f(f_*(Y_p)) = \frac{\mu_1^* \cos^2 \theta_1 + \mu_2^* \cos \theta_1 \cos \theta_2 + \mu_3^* \cos^2 \theta_2}{|\lambda_1^* \cos^2 \theta_1 + \lambda_2^* \cos^2 \theta_2 - 2\lambda_1 \lambda_2 k_1 k_2 \cos \theta_1 \cos \theta_2|}$$

- (b) Let N_p be a spacelike vector.
- (b.1) If Y_p and ϕ_u are timelike vectors in the same timecone then

$$k_n^f(f_*(Y_p)) = \frac{\mu_1^* \cosh^2 \theta_1 + \delta_2 \mu_2^* \cosh \theta_1 \sinh \theta_2 + \mu_3^* \sinh^2 \theta_2}{\left|\lambda_1^* \cosh^2 \theta_1 + \lambda_2^* \sinh^2 \theta_2 - 2\delta_2 \lambda_1 \lambda_2 k_1 k_2 \cosh \theta_1 \sinh \theta_2\right|}$$

(b.2) If Y_p and ϕ_v are timelike vectors in the same timecone then

$$k_n^f(f_*(Y_p)) = \frac{\mu_1^* \sinh^2 \theta_1 + \delta_1 \mu_2^* \sinh \theta_1 \cosh \theta_2 + \mu_3^* \cosh^2 \theta_2}{\left|\lambda_1^* \sinh^2 \theta_1 + \lambda_2^* \cosh^2 \theta_2 - 2\delta_1 \lambda_1 \lambda_2 k_1 k_2 \sinh \theta_1 \cosh \theta_2\right|}$$

(b.3) If $Y_p \in T_pM$ is a spacelike vector and ϕ_u is timelike vector then

$$k_n^f(f_*(Y_p)) = \frac{\mu_1^* \sinh^2 \theta_1 - \delta_1 \delta_2 \mu_2^* \sinh \theta_1 \cosh \theta_2 + \mu_3^* \cosh^2 \theta_2}{\left|\lambda_1^* \sinh^2 \theta_1 + \lambda_2^* \cosh^2 \theta_2 + 2\delta_1 \delta_2 \lambda_1 \lambda_2 k_1 k_2 \sinh \theta_1 \cosh \theta_2\right|}$$

(b.4) If $Y_p \in T_pM$ is a spacelike vector and ϕ_v is timelike vector then

$$k_n^f(f_*(Y_p)) = \frac{\mu_1^* \cosh^2 \theta_1 - \delta_1 \delta_2 \mu_2^* \cosh \theta_1 \sinh \theta_2 + \mu_3^* \sinh^2 \theta_2}{\left|\lambda_1^* \cosh^2 \theta_1 + \lambda_2^* \sinh^2 \theta_2 + 2\delta_1 \delta_2 \lambda_1 \lambda_2 k_1 k_2 \cosh \theta_1 \sinh \theta_2\right|}$$

where $\lambda_1^*, \lambda_2^*, \mu_1^*, \mu_2^*$ and μ_3^* are given in (2.2) and δ_i , (i = 1, 2) is 1 or -1 depending on y_i is positive or negative, respectively.

Proof. (a) Let N_p be a timelike vector. In this case θ_1 and θ_2 are spacelike angle then

$$y_1 = \langle Y_p, \phi_u \rangle = \cos \theta_1$$

$$y_2 = \langle Y_p, \phi_v \rangle = \cos \theta_2.$$

Substituting these equations in (2.1), we get $k_n^f(f_*(Y_p))$.

(b) Let N_p be a spacelike vector.

(b.1) If Y_p and ϕ_u are timelike vectors in the same timecone then there is a hyperbolic angle θ_1 and a Lorentzian timelike angle θ_2 . Since

$$y_1 = -\cosh \theta_1$$
 and $y_2 = \delta_2 \sinh \theta_2$

the proof is obvious.

(b.2) If Y_p and ϕ_v are timelike vectors in the same timecone then there is a Lorentzian timelike angle θ_1 and a hyperbolic angle θ_2 . Thus

$$y_1 = \delta_1 \sinh \theta_1$$
 and $y_2 = -\cosh \theta_2$.

246

(b.3) If $Y_p \in T_p M$ is a spacelike vector and ϕ_u is timelike vector then there is a Lorentzian timelike angle θ_1 and a central angle θ_2 . Thus

$$y_1 = \delta_1 \sinh \theta_1$$
 and $y_2 = \delta_2 \cosh \theta_2$.

(b.4) If $Y_p \in T_p M$ is a spacelike vector and ϕ_v is timelike vector then there is a central angle θ_1 and a Lorentzian timelike angle θ_2 . Thus

$$y_1 = \delta_1 \cosh \theta_1$$
 and $y_2 = \delta_2 \sinh \theta_2$.

As a special case if we take $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = r = \text{constant}$, then we obtain that M and M^f are parallel surfaces. The following corollary is known the Euler theorem for parallel surfaces in E_1^3 .

COROLLARY 2.3. Let M and M_r be parallel surfaces in E_1^3 . Let k_1 and k_2 denote principal curvature function of M and let $\{\phi_u, \phi_v\}$ be orthonormal basis such that ϕ_u and ϕ_v are principal directions on M. Let $Y_p \in T_pM$ and we denote the normal curvature by $k_n^r(f_*(Y_p))$ of M_r , in the direction $f_*(Y_p)$. Thus

$$k_n^r(f_*(Y_p)) = \frac{\varepsilon_1 k_1 (1 + rk_1) y_1^2 + \varepsilon_2 k_2 (1 + rk_2) y_2^2}{|\varepsilon_1 (1 + rk_1)^2 y_1^2 + \varepsilon_2 (1 + rk_2)^2 y_2^2|}$$

Proof. Since

$$\begin{split} \lambda_i^* &= \varepsilon_i (1 + rk_i)^2, \ (i = 1, 2) \\ \mu_1^* &= \varepsilon_1 k_1 (1 + rk_1), \\ \mu_2^* &= 0, \\ \mu_3^* &= \varepsilon_2 k_2 (1 + rk_2), \end{split}$$

from (2.1) we find $k_n^r(f_*(Y_p))$.

COROLLARY 2.4. Let M and M_r be parallel surfaces in E_1^3 . Let k_1 and k_2 denote principal curvature function of M and let $\{\phi_u, \phi_v\}$ be orthonormal basis such that ϕ_u and ϕ_v are principal directions on M. Let us denote the angle between $Y_p \in T_p M$ and ϕ_u , ϕ_v by θ_1 and θ_2 respectively. Thus the normal curvature of M^f in the direction $f_*(Y_p)$

(a) Let N_p be a timelike vector then

$$k_n^r(f_*(Y_p)) = \frac{k_1(1+rk_1)\cos^2\theta_1 + k_2(1+rk_2)\cos^2\theta_2}{(1+rk_1)^2\cos^2\theta_1 + (1+rk_2)^2\cos^2\theta_2}$$

(b) Let N_p be a spacelike vector.

(b.1) If Y_p and ϕ_u are timelike vectors in the same timecone then

$$k_n^r(f_*(Y_p)) = \frac{-k_1(1+rk_1)\cosh^2\theta_1 + k_2(1+rk_2)\sinh^2\theta_2}{(1+rk_1)^2\cosh^2\theta_1 - (1+rk_2)^2\sinh^2\theta_2}$$

(b.2) If Y_p and ϕ_v are timelike vectors in the same timecone then

$$k_n^r(f_*(Y_p)) = \frac{k_1(1+rk_1)\sinh^2\theta_1 - k_2(1+rk_2)\cosh^2\theta_2}{-(1+rk_1)^2\sinh^2\theta_1 + (1+rk_2)^2\cosh^2\theta_2}$$

(b.3) If $Y_p \in T_pM$ is a spacelike vector and ϕ_u is timelike vector then

$$k_n^r(f_*(Y_p)) = \frac{-k_1(1+rk_1)\sinh^2\theta_1 + k_2(1+rk_2)\cosh^2\theta_2}{-(1+rk_1)^2\sinh^2\theta_1 + (1+rk_2)^2\cosh^2\theta_2}.$$

(b.4) If $Y_p \in T_pM$ is a spacelike vector and ϕ_v is timelike vector then

$$k_n^r(f_*(Y_p)) = \frac{k_1(1+rk_1)\cosh^2\theta_1 - k_2(1+rk_2)\sinh^2\theta_2}{(1+rk_1)^2\cosh^2\theta_1 - (1+rk_2)^2\sinh^2\theta_2}$$

3. The Dupin indicatrix for surfaces at a constant distance from edge of regression on surfaces in E_1^3

THEOREM 3.1. Let M^f be a surface at a constant distance from edge of regression on M in E_1^3 . Let k_1 and k_2 denote principal curvature functions of M and $\{\phi_u, \phi_v\}$ be orthonormal bases such that ϕ_u and ϕ_v are principal directions on M. Thus

$$D_{f(p)}^{f} = \left\{ f_{*}(Y_{p}) \in T_{f(p)}M^{f} \mid c_{1}y_{1}^{2} + \varepsilon_{1}\varepsilon_{2}c_{2}y_{1}y_{2} + c_{3}y_{2}^{2} = \pm 1 \right\},\$$

where

$$\begin{aligned} f_*(Y_p) &= \varepsilon_1 y_1 (1 + \lambda_3 k_1) \phi_u + \varepsilon_2 y_2 (1 + \lambda_3 k_2) \phi_v + \varepsilon_1 \varepsilon_2 (y_1 \lambda_1 k_1 + y_2 \lambda_2 k_2) N \\ c_1 &= \varepsilon_1 \mu_1 (1 + \lambda_3 k_1)^2 - \lambda_1 k_1 (\varepsilon_1 \varepsilon_2 \mu_1 \lambda_1 k_1 + \mu_2 \lambda_2 k_2), \\ c_2 &= \varepsilon_2 \mu_2 (1 + \lambda_3 k_2)^2 - \lambda_2 k_2 (\mu_1 \lambda_1 k_1 + \varepsilon_1 \varepsilon_2 \mu_2 \lambda_2 k_2) \\ &+ \varepsilon_1 \mu_3 (1 + \lambda_3 k_1)^2 - \lambda_1 k_1 (\varepsilon_1 \varepsilon_2 \mu_3 \lambda_1 k_1 + \mu_4 \lambda_2 k_2), \\ c_3 &= \varepsilon_2 \mu_4 (1 + \lambda_3 k_2)^2 - \lambda_2 k_2 (\mu_3 \lambda_1 k_1 + \varepsilon_1 \varepsilon_2 \mu_4 \lambda_2 k_2). \end{aligned}$$

Proof. Let $f_*(Y_p) \in T_{f(p)}M^f$. Since

$$D_{f(p)}^{f} = \left\{ f_{*}(Y_{p}) \mid \left\langle S^{f}(f_{*}(Y_{p})), f_{*}(Y_{p}) \right\rangle = \pm 1 \right\}$$

the proof is clear. \blacksquare

According to this theorem the Dupin indicatrix of M^f at the point f(p) in general will be a conic section of the following type:

COROLLARY 3.2. Let M^f be a surface at a constant distance from edge of regression on M in E_1^3 . The Dupin indicatrix of M^f at the point f(p) is:

(a) an ellipse, if $c_2^2 - 4c_1c_3 < 0$,

- (b) two conjugate hyperbolas, if $c_2^2 4c_1c_3 > 0$,
- (c) parallel two lines, if $c_2^2 4c_1c_3 = 0$.

248

COROLLARY 3.3. Let M and M_r be parallel surfaces in E_1^3 . Let k_1 and k_2 denote principal curvature functions of M and $\{\phi_u, \phi_v\}$ be orthonormal bases such that ϕ_u and ϕ_v are principal directions on M. In this case

 $D_{f(p)}^{r} = \left\{ f_{*}(Y_{p}) \in T_{f(p)}M_{r} \mid \varepsilon_{1}k_{1}(1+rk_{1})y_{1}^{2} + \varepsilon_{2}k_{2}(1+rk_{2})y_{2}^{2} = \pm 1 \right\}.$ Hence the point f(p) of M_{r} is:

(a) an elliptic point, if $\varepsilon_1 \varepsilon_2 k_1 k_2 (1 + rk_1)(1 + rk_2) > 0$,

- (b) a hyperbolic point, if $\varepsilon_1 \varepsilon_2 k_1 k_2 (1 + rk_1)(1 + rk_2) < 0$,
- (c) a parabolic point, if $k_1k_2(1+rk_1)(1+rk_2) = 0$.

REFERENCES

- N. Aktan, A. Görgülü, E. Özüsağlam, C. Ekici, Conjugate tangent vectors and asymptotic directions for surfaces at a constant distance from edge of regression on a surface, IJPAM 33 (2006), 127–133.
- [2] N. Aktan, E. Özüsaglam, A. Görgülü, The Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface, Int. J. Appl. Math. Stat. 14 (2009), 37–43.
- [3] M. Bilici, M. Çalışkan, On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space, Int. Math. Forum 4 (2009), 1497–1509.
- [4] A. C. Çöken, The Euler theorem and Dupin indicatrix for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space in semi-Euclidean space Eⁿ⁺¹_ν, Hadronic J. Suppl. 16 (2001), 151–162.
- [5] A. C. Çöken, Dupin indicatrix for pseudo-Euclidean hypersurfaces in pseudo-Euclidean space R_vⁿ⁺¹, Bull. Cal. Math. Soc. 89 (1997), 343–348.
- [6] A. Görgülü, A. C. Çöken, The Euler theorem for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space E₁ⁿ⁺¹, J. Inst. Math. Comp. Sci. (Math. Ser.) 6 (1993), 161–165.
- [7] A. Görgülü, A. C. Çöken, The Dupin indicatrix for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space in semi-Euclidean space E₁ⁿ⁺¹, Journ. Inst. Math. Comp. Sci. (Math. Ser.) 7 (1994), 221–225.
- [8] H. H. Hacısalihoğlu, Diferensiyel Geometri, .Inönü Üniversitesi Fen Edeb. Fak. Yayınları, 1983.
- [9] M. Kazaz, M. Onder, Mannheim offsets of timelike ruled surfaces in Minkowski 3-space, arXiv:0906.2077v3 [math.DG].
- [10] M. Kazaz, H. H. Ugurlu, M. Onder, M. Kahraman, Mannheim partner D-curves in Minkowski 3-space E³₁, arXiv: 1003.2043v3 [math.DG].
- [11] M. Kazaz, H. H. Ugurlu, M. Onder, Mannheim offsets of spacelike ruled surfaces in Minkowski 3-space, arXiv:0906.4660v2 [math.DG].
- [12] A. Kılıç, H. H. Hacısalihoğlu, Euler's Theorem and the Dupin representation for parallel hypersurfaces, J. Sci. Arts Gazi Univ. 1 (1984), 21–26.
- [13] O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, London, 1983.
- [14] D. Sağlam, Ö. Boyacıoğlu Kalkan, Surfaces at a constant distance from edge of regression on a surface in E³₁, Diff. Geom. Dyn. Systems 12 (2010), 187–200.
- [15] Ö. Tarakcı, H. H. Hacısalihoğlu, Surfaces at a constant distance from edge of regression on a surface, Appl. Math. Comput. 155 (2004), 81–93.

(received 06.07.2011; available online 10.06.2012)

Afyonkarahisar Kocatepe University, Faculty of Art and Sciences, Department of Mathematics, Afyonkarahisar, TURKEY

E-mail: dryilmaz@aku.edu.tr, bozgur@aku.edu.tr