THE EULER THEOREM AND DUPIN INDICATRIX FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E_{1}^{3}

Derya Sağlam and Özgür Boyacıoğlu Kalkan

Abstract

In this paper we give the Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface in E_{1}^{3}.

1. Introduction

Let k_{1}, k_{2} denote principal curvature functions and e_{1}, e_{2} be principal directions of a surface M, respectively. Then the normal curvature $k_{n}\left(v_{p}\right)$ of M in the direction $v_{p}=(\cos \theta) e_{1}+(\sin \theta) e_{2}$ is

$$
k_{n}\left(v_{p}\right)=k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta .
$$

This equation is called Euler's formulae (Leonhard Euler, 1707-1783). The generalized Euler theorem for hypersurfaces in Euclidean space E^{n+1} can be found in [8]. In 1984, A. Kılıç and H.H. Hacısalihoğlu gave the Euler theorem and Dupin indicatrix for parallel hypersurfaces in E^{n} [12]. Also the Euler theorem and Dupin indicatrix are obtained for the parallel hypersurfaces in pseudo-Euclidean spaces E_{1}^{n+1} and E_{ν}^{n+1} in the papers $[4,6,7]$.

In 2005 H.H. Hacısalihoğlu and Ö. Tarakçı introduced surfaces at a constant distance from edge of regression on a surface. These surfaces are a generalization of parallel surfaces in E^{3}. Because the authors took any vector instead of normal vector [15]. Euler theorem and Dupin indicatrix for these surfaces are given [2]. In 2010 we obtained the surfaces at a constant distance from edge of regression on a surface in E_{1}^{3} [14].

In this paper we give the Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface in E_{1}^{3}.

[^0]Definition 1.1. [3, 9, 10, 11, 13] (i) Hyperbolic angle: Let x and y be timelike vectors in the same timecone of Minkowski space. Then there is a unique real number $\theta \geq 0$, called the hyperbolic angle between x and y, such that

$$
\langle x, y\rangle=-\|x\|\|y\| \cosh \theta
$$

(ii) Central angle: Let x and y be spacelike vectors in Minkowski space that span a timelike vector subspace. Then there is a unique real number $\theta \geq 0$, called the central angle between x and y, such that

$$
|\langle x, y\rangle|=\|x\|\|y\| \cosh \theta
$$

(iii) Spacelike angle: Let x and y be spacelike vectors in Minkowski space that span a spacelike vector subspace. Then there is a unique real number θ between 0 and π called the spacelike angle between x and y, such that

$$
\langle x, y\rangle=\|x\|\|y\| \cos \theta
$$

(iv) Lorentzian timelike angle: Let x be a spacelike vector and y be a timelike vector in Minkowski space. Then there is a unique real number $\theta \geq 0$, called the Lorentzian timelike angle between x and y, such that

$$
|\langle x, y\rangle|=\|x\|\|y\| \sinh \theta
$$

Definition 1.2. Let M and M^{f} be two surfaces in E_{1}^{3} and N_{p} be a unit normal vector of M at the point $P \in M$. Let $T_{p}(M)$ be tanjant space at $P \in M$ and $\left\{X_{p}, Y_{p}\right\}$ be an orthonormal bases of $T_{p}(M)$. Let $Z_{p}=d_{1} X_{p}+d_{2} Y_{p}+d_{3} N_{p}$ be a unit vector, where $d_{1}, d_{2}, d_{3} \in R$ are constant numbers and $\varepsilon_{1} d_{1}^{2}+\varepsilon_{2} d_{2}^{2}-\varepsilon_{1} \varepsilon_{2} d_{3}^{2}= \pm 1$. If a function f exists and satisfies the condition $f: M \rightarrow M^{f}, f(P)=P+r Z_{p}$, r constant, M^{f} is called as the surface at a constant distance from the edge of regression on M and M^{f} denoted by the pair (M, M^{f}).

If $d_{1}=d_{2}=0$, then we have $Z_{p}=N_{p}$ and $f(P)=P+r N_{p}$. In this case M and M^{f} are parallel surfaces [14].

Theorem 1.3. [14] Let the pair $\left(M, M^{f}\right)$ be given in E_{1}^{3}. For any $W \in \chi(M)$, we have $f_{*}(W)=\bar{W}+r \overline{D_{W} Z}$, where $W=\sum_{i=1}^{3} w_{i} \frac{\partial}{\partial x_{i}}, \bar{W}=\sum_{i=1}^{3} \overline{w_{i}} \frac{\partial}{\partial x_{i}}$ and $\forall P \in M, w_{i}(P)=\overline{w_{i}}(f(p)), 1 \leq i \leq 3$.

Let (ϕ, U) be a parametrization of M, so we can write that

$$
\phi: \underset{(u, v)}{U} \subset E_{1}^{3} \rightarrow \underset{P=\phi(u, v)}{M}
$$

In this case $\left\{\left.\phi_{u}\right|_{p},\left.\phi_{v}\right|_{p}\right\}$ is a basis of $T_{M}(P)$. Let N_{p} is a unit normal vector at $P \in M$ and $d_{1}, d_{2}, d_{3} \in R$ be a constant numbers then we may write that $Z_{p}=\left.d_{1} \phi_{u}\right|_{p}+\left.d_{2} \phi_{v}\right|_{p}+d_{3} N_{p}$. Since $M^{f}=\left\{f(P) \mid f(P)=P+r Z_{p}\right\}$, a parametric representation of M^{f} is $\psi(u, v)=\phi(u, v)+r Z(u, v)$. Thus we may write

$$
\begin{gathered}
M^{f}=\left\{\psi(u, v) \mid \psi(u, v)=\phi(u, v)+r\left(d_{1} \phi_{u}(u, v)+d_{2} \phi_{v}(u, v)+d_{3} N(u, v)\right),\right. \\
\left.d_{1}, d_{2}, d_{3}, r \text { are constant, } \quad \varepsilon_{1} d_{1}^{2}+\varepsilon_{2} d_{2}^{2}-\varepsilon_{1} \varepsilon_{2} d_{3}^{2}= \pm 1,\right\}
\end{gathered}
$$

If we take $r d_{1}=\lambda_{1}, r d_{2}=\lambda_{2}, r d_{3}=\lambda_{3}$ then we have

$$
\begin{aligned}
M^{f}= & \left\{\psi(u, v) \mid \psi(u, v)=\phi(u, v)+\lambda_{1} \phi_{u}(u, v)+\lambda_{2} \phi_{v}(u, v)+\lambda_{3} N(u, v)\right. \\
& \left.\lambda_{1}, \lambda_{2}, \lambda_{3} \text { are constant }\right\}
\end{aligned}
$$

Let $\left\{\phi_{u}, \phi_{v}\right\}$ is basis of $\chi\left(M^{f}\right)$. If we take $\left\langle\phi_{u}, \phi_{u}\right\rangle=\varepsilon_{1},\left\langle\phi_{v}, \phi_{v}\right\rangle=\varepsilon_{2}$ and $\langle N, N\rangle=$ $-\varepsilon_{1} \varepsilon_{2}$, then

$$
\begin{aligned}
\psi_{u} & =\left(1+\lambda_{3} k_{1}\right) \phi_{u}+\varepsilon_{2} \lambda_{1} k_{1} N \\
\psi_{v} & =\left(1+\lambda_{3} k_{2}\right) \phi_{v}+\varepsilon_{1} \lambda_{2} k_{2} N
\end{aligned}
$$

is a basis of $\chi\left(M^{f}\right)$, where N is unit normal vector field on M and k_{1}, k_{2} are principal of M [14].

THEOREM 1.4. [14] Let the pair $\left(M, M^{f}\right)$ be given. Let $\left\{\phi_{u}, \phi_{v}\right\}$ (orthonormal and principal vector fields on $M)$ be basis of $\chi(M)$ and k_{1}, k_{2} be principal curvatures of M. The matrix of the shape operator of M^{f} with respect to the basis $\left\{\psi_{u}=\left(1+\lambda_{3} k_{1}\right) \phi_{u}+\varepsilon_{2} \lambda_{1} k_{1} N, \psi_{v}=\left(1+\lambda_{3} k_{2}\right) \phi_{v}+\varepsilon_{1} \lambda_{2} k_{2} N\right\}$ of $\chi\left(M^{f}\right)$ is

$$
S^{f}=\left[\begin{array}{ll}
\mu_{1} & \mu_{2} \\
\mu_{3} & \mu_{4}
\end{array}\right]
$$

where

$$
\begin{aligned}
& \mu_{1}=\frac{\left(1+\lambda_{3} k_{2}\right)}{A^{3}}\left\{\varepsilon \lambda_{1} \frac{\partial k_{1}}{\partial u}\left(\lambda_{2}^{2} k_{2}^{2}-\varepsilon_{1}\left(1+\lambda_{3} k_{2}\right)^{2}\right)+k_{1} A^{2}\right\} \\
& \mu_{2}=\frac{\varepsilon \lambda_{1}^{2} \lambda_{2} k_{1} k_{2}\left(1+\lambda_{3} k_{2}\right)}{A^{3}} \frac{\partial k_{1}}{\partial u} \\
& \mu_{3}=\frac{-\varepsilon \lambda_{1} \lambda_{2}^{2} k_{1} k_{2}\left(1+\lambda_{3} k_{1}\right)}{A^{3}} \frac{\partial k_{2}}{\partial v} \\
& \mu_{4}=\frac{\left(1+\lambda_{3} k_{1}\right)}{A^{3}}\left\{-\varepsilon \lambda_{2} \frac{\partial k_{2}}{\partial v}\left(\lambda_{1}^{2} k_{1}^{2}-\varepsilon_{2}\left(1+\lambda_{3} k_{1}\right)^{2}\right)+k_{2} A^{2}\right\}
\end{aligned}
$$

and $A=\sqrt{\varepsilon\left(\varepsilon_{1} \lambda_{1}^{2} k_{1}^{2}\left(1+\lambda_{3} k_{2}\right)^{2}+\varepsilon_{2} \lambda_{2}^{2} k_{2}^{2}\left(1+\lambda_{3} k_{1}\right)^{2}-\varepsilon_{1} \varepsilon_{2}\left(1+\lambda_{3} k_{1}\right)^{2}\left(1+\lambda_{3} k_{2}\right)^{2}\right)}$.
Definition 1.5. [6] Let M be a pseudo-Euclidean surface in E_{1}^{3} and p is nonumbilic point in M. A function k_{n} which is defined in the following form

$$
k_{n}: T_{p} M \rightarrow R, \quad k_{n}\left(X_{p}\right)=\frac{1}{\left\|X_{p}\right\|^{2}}\left\langle S\left(X_{p}\right), X_{p}\right\rangle
$$

is called a normal curvature function of M at p.
Definition 1.6. [7] Let M be a pseudo-Euclidean surface in E_{1}^{3} and S be shape operator of M. Then the Dupin indicatrix of M at the point p is

$$
\mathcal{D}_{p}=\left\{X_{p} \mid\left\langle S\left(X_{p}\right), X_{p}\right\rangle= \pm 1, X_{p} \in T_{p} M\right\} .
$$

2. The Euler theorem for surfaces at a constant distance from edge of regression on a surface in E_{1}^{3}

ThEOREM 2.1. Let M^{f} be a surface at a constant distance from edge of regression on a M in E_{1}^{3}. Let k_{1} and k_{2} denote principal curvature function of M and let $\left\{\phi_{u}, \phi_{v}\right\}$ be orthonormal basis such that ϕ_{u} and ϕ_{v} are principal directions on M. Let $Y_{p} \in T_{p} M$ and we denote the normal curvature by $k_{n}^{f}\left(f_{*}\left(Y_{p}\right)\right)$ of M^{f} in the direction $f_{*}\left(Y_{p}\right)$. Thus

$$
\begin{equation*}
k_{n}^{f}\left(f_{*}\left(Y_{p}\right)\right)=\frac{\mu_{1}^{*} y_{1}^{2}+\varepsilon_{1} \varepsilon_{2} \mu_{2}^{*} y_{1} y_{2}+\mu_{3}^{*} y_{2}^{2}}{\left|\lambda_{1}^{*} y_{1}^{2}-2 \varepsilon_{1} \varepsilon_{2} \lambda_{1} \lambda_{2} k_{1} k_{2} y_{1} y_{2}+\lambda_{2}^{*} y_{2}^{2}\right|} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
y_{1}= & \left\langle Y_{p}, \phi_{u}\right\rangle, \quad y_{2}=\left\langle Y_{p}, \phi_{v}\right\rangle \\
\lambda_{i}^{*}= & \varepsilon_{i}\left(1+\lambda_{3} k_{i}\right)^{2}-\varepsilon_{1} \varepsilon_{2} \lambda_{i}^{2} k_{i}^{2}, \quad(i=1,2) \\
\mu_{1}^{*}= & \varepsilon_{1} \mu_{1}\left(1+\lambda_{3} k_{1}\right)^{2}-\lambda_{1} k_{1}\left(\varepsilon_{1} \varepsilon_{2} \mu_{1} \lambda_{1} k_{1}+\mu_{2} \lambda_{2} k_{2}\right) \\
\mu_{2}^{*}= & \varepsilon_{2} \mu_{2}\left(1+\lambda_{3} k_{2}\right)^{2}-\lambda_{2} k_{2}\left(\mu_{1} \lambda_{1} k_{1}+\varepsilon_{1} \varepsilon_{2} \mu_{2} \lambda_{2} k_{2}\right) \tag{2.2}\\
& +\varepsilon_{1} \mu_{3}\left(1+\lambda_{3} k_{1}\right)^{2}-\lambda_{1} k_{1}\left(\varepsilon_{1} \varepsilon_{2} \mu_{3} \lambda_{1} k_{1}+\mu_{4} \lambda_{2} k_{2}\right) \\
\mu_{3}^{*}= & \varepsilon_{2} \mu_{4}\left(1+\lambda_{3} k_{2}\right)^{2}-\lambda_{2} k_{2}\left(\mu_{3} \lambda_{1} k_{1}+\varepsilon_{1} \varepsilon_{2} \mu_{4} \lambda_{2} k_{2}\right)
\end{align*}
$$

Proof. Let $f_{*}\left(Y_{p}\right) \in T_{f(p)} M^{f}$. Then

$$
\begin{equation*}
k_{n}^{f}\left(f_{*}\left(Y_{p}\right)\right)=\frac{1}{\left\|f_{*}\left(Y_{p}\right)\right\|^{2}}\left\langle S^{f}\left(f_{*}\left(Y_{p}\right)\right), f_{*}\left(Y_{p}\right)\right\rangle \tag{2.3}
\end{equation*}
$$

Let us calculate $f_{*}\left(Y_{p}\right)$ and $S^{f}\left(f_{*}\left(Y_{p}\right)\right)$. Since ϕ_{u} and ϕ_{v} are orthonormal we have

$$
Y_{p}=\varepsilon_{1}\left\langle Y_{p}, \phi_{u}\right\rangle \phi_{u}+\varepsilon_{2}\left\langle Y_{p}, \phi_{v}\right\rangle \phi_{v}=\varepsilon_{1} y_{1} \phi_{u}+\varepsilon_{2} y_{2} \phi_{v}
$$

Further without lost of generality, we suppose that Y_{p} is a unit vector. Then

$$
\begin{equation*}
f_{*}\left(Y_{p}\right)=\varepsilon_{1} y_{1} f_{*}\left(\phi_{u}\right)+\varepsilon_{2} y_{2} f_{*}\left(\phi_{v}\right)=\varepsilon_{1} y_{1} \psi_{u}+\varepsilon_{2} y_{2} \psi_{v} \tag{2.4}
\end{equation*}
$$

On the other hand we find that

$$
\begin{align*}
& S^{f}\left(f_{*}\left(Y_{p}\right)\right)=\varepsilon_{1} y_{1} S^{f}\left(\psi_{u}\right)+\varepsilon_{2} y_{2} S^{f}\left(\psi_{v}\right) \\
& \quad=\varepsilon_{1} y_{1}\left(\mu_{1}\left(1+\lambda_{3} k_{1}\right) \phi_{u}+\mu_{2}\left(1+\lambda_{3} k_{2}\right) \phi_{v}+\left(\mu_{1} \varepsilon_{2} \lambda_{1} k_{1}+\mu_{2} \varepsilon_{1} \lambda_{2} k_{2}\right) N\right) \\
& \quad+\varepsilon_{2} y_{2}\left(\mu_{3}\left(1+\lambda_{3} k_{1}\right) \phi_{u}+\mu_{4}\left(1+\lambda_{3} k_{2}\right) \phi_{v}+\left(\mu_{3} \varepsilon_{2} \lambda_{1} k_{1}+\mu_{4} \varepsilon_{1} \lambda_{2} k_{2}\right) N\right) \tag{2.5}
\end{align*}
$$

Thus using equations (2.4) and (2.5) in equation (2.3) we obtain (2.1).
Corollary 2.2. Let M^{f} be a surface at a constant distance from edge of regression on M in E_{1}^{3}. Let k_{1} and k_{2} denote principal curvature function of M and let $\left\{\phi_{u}, \phi_{v}\right\}$ be orthonormal basis such that ϕ_{u} and ϕ_{v} are principal directions on M. Let us denote the angle between $Y_{p} \in T_{p} M$ and ϕ_{u}, ϕ_{v} by θ_{1} and θ_{2} respectively. Thus the normal curvature of M^{f} in the direction $f_{*}\left(Y_{p}\right)$
(a) Let N_{p} be a timelike vector then

$$
k_{n}^{f}\left(f_{*}\left(Y_{p}\right)\right)=\frac{\mu_{1}^{*} \cos ^{2} \theta_{1}+\mu_{2}^{*} \cos \theta_{1} \cos \theta_{2}+\mu_{3}^{*} \cos ^{2} \theta_{2}}{\left|\lambda_{1}^{*} \cos ^{2} \theta_{1}+\lambda_{2}^{*} \cos ^{2} \theta_{2}-2 \lambda_{1} \lambda_{2} k_{1} k_{2} \cos \theta_{1} \cos \theta_{2}\right|}
$$

(b) Let N_{p} be a spacelike vector.
(b.1) If Y_{p} and ϕ_{u} are timelike vectors in the same timecone then

$$
k_{n}^{f}\left(f_{*}\left(Y_{p}\right)\right)=\frac{\mu_{1}^{*} \cosh ^{2} \theta_{1}+\delta_{2} \mu_{2}^{*} \cosh \theta_{1} \sinh \theta_{2}+\mu_{3}^{*} \sinh ^{2} \theta_{2}}{\left|\lambda_{1}^{*} \cosh ^{2} \theta_{1}+\lambda_{2}^{*} \sinh ^{2} \theta_{2}-2 \delta_{2} \lambda_{1} \lambda_{2} k_{1} k_{2} \cosh \theta_{1} \sinh \theta_{2}\right|}
$$

(b.2) If Y_{p} and ϕ_{v} are timelike vectors in the same timecone then

$$
k_{n}^{f}\left(f_{*}\left(Y_{p}\right)\right)=\frac{\mu_{1}^{*} \sinh ^{2} \theta_{1}+\delta_{1} \mu_{2}^{*} \sinh \theta_{1} \cosh \theta_{2}+\mu_{3}^{*} \cosh ^{2} \theta_{2}}{\left|\lambda_{1}^{*} \sinh ^{2} \theta_{1}+\lambda_{2}^{*} \cosh ^{2} \theta_{2}-2 \delta_{1} \lambda_{1} \lambda_{2} k_{1} k_{2} \sinh \theta_{1} \cosh \theta_{2}\right|}
$$

(b.3) If $Y_{p} \in T_{p} M$ is a spacelike vector and ϕ_{u} is timelike vector then

$$
k_{n}^{f}\left(f_{*}\left(Y_{p}\right)\right)=\frac{\mu_{1}^{*} \sinh ^{2} \theta_{1}-\delta_{1} \delta_{2} \mu_{2}^{*} \sinh \theta_{1} \cosh \theta_{2}+\mu_{3}^{*} \cosh ^{2} \theta_{2}}{\left|\lambda_{1}^{*} \sinh ^{2} \theta_{1}+\lambda_{2}^{*} \cosh ^{2} \theta_{2}+2 \delta_{1} \delta_{2} \lambda_{1} \lambda_{2} k_{1} k_{2} \sinh \theta_{1} \cosh \theta_{2}\right|}
$$

(b.4) If $Y_{p} \in T_{p} M$ is a spacelike vector and ϕ_{v} is timelike vector then

$$
k_{n}^{f}\left(f_{*}\left(Y_{p}\right)\right)=\frac{\mu_{1}^{*} \cosh ^{2} \theta_{1}-\delta_{1} \delta_{2} \mu_{2}^{*} \cosh \theta_{1} \sinh \theta_{2}+\mu_{3}^{*} \sinh ^{2} \theta_{2}}{\left|\lambda_{1}^{*} \cosh ^{2} \theta_{1}+\lambda_{2}^{*} \sinh ^{2} \theta_{2}+2 \delta_{1} \delta_{2} \lambda_{1} \lambda_{2} k_{1} k_{2} \cosh \theta_{1} \sinh \theta_{2}\right|}
$$

where $\lambda_{1}^{*}, \lambda_{2}^{*}, \mu_{1}^{*}, \mu_{2}^{*}$ and μ_{3}^{*} are given in (2.2) and $\delta_{i},(i=1,2)$ is 1 or -1 depending on y_{i} is positive or negative, respectively.

Proof. (a) Let N_{p} be a timelike vector. In this case θ_{1} and θ_{2} are spacelike angle then

$$
\begin{aligned}
& y_{1}=\left\langle Y_{p}, \phi_{u}\right\rangle=\cos \theta_{1} \\
& y_{2}=\left\langle Y_{p}, \phi_{v}\right\rangle=\cos \theta_{2} .
\end{aligned}
$$

Substituting these equations in (2.1), we get $k_{n}^{f}\left(f_{*}\left(Y_{p}\right)\right)$.
(b) Let N_{p} be a spacelike vector.
(b.1) If Y_{p} and ϕ_{u} are timelike vectors in the same timecone then there is a hyperbolic angle θ_{1} and a Lorentzian timelike angle θ_{2}. Since

$$
y_{1}=-\cosh \theta_{1} \text { and } y_{2}=\delta_{2} \sinh \theta_{2}
$$

the proof is obvious.
(b.2) If Y_{p} and ϕ_{v} are timelike vectors in the same timecone then there is a Lorentzian timelike angle θ_{1} and a hyperbolic angle θ_{2}. Thus

$$
y_{1}=\delta_{1} \sinh \theta_{1} \text { and } y_{2}=-\cosh \theta_{2} .
$$

(b.3) If $Y_{p} \in T_{p} M$ is a spacelike vector and ϕ_{u} is timelike vector then there is a Lorentzian timelike angle θ_{1} and a central angle θ_{2}. Thus

$$
y_{1}=\delta_{1} \sinh \theta_{1} \text { and } y_{2}=\delta_{2} \cosh \theta_{2}
$$

(b.4) If $Y_{p} \in T_{p} M$ is a spacelike vector and ϕ_{v} is timelike vector then there is a central angle θ_{1} and a Lorentzian timelike angle θ_{2}. Thus

$$
y_{1}=\delta_{1} \cosh \theta_{1} \text { and } y_{2}=\delta_{2} \sinh \theta_{2}
$$

As a special case if we take $\lambda_{1}=\lambda_{2}=0, \lambda_{3}=r=$ constant, then we obtain that M and M^{f} are parallel surfaces. The following corollary is known the Euler theorem for parallel surfaces in E_{1}^{3}.

Corollary 2.3. Let M and M_{r} be parallel surfaces in E_{1}^{3}. Let k_{1} and k_{2} denote principal curvature function of M and let $\left\{\phi_{u}, \phi_{v}\right\}$ be orthonormal basis such that ϕ_{u} and ϕ_{v} are principal directions on M. Let $Y_{p} \in T_{p} M$ and we denote the normal curvature by $k_{n}^{r}\left(f_{*}\left(Y_{p}\right)\right)$ of M_{r}, in the direction $f_{*}\left(Y_{p}\right)$. Thus

$$
k_{n}^{r}\left(f_{*}\left(Y_{p}\right)\right)=\frac{\varepsilon_{1} k_{1}\left(1+r k_{1}\right) y_{1}^{2}+\varepsilon_{2} k_{2}\left(1+r k_{2}\right) y_{2}^{2}}{\left|\varepsilon_{1}\left(1+r k_{1}\right)^{2} y_{1}^{2}+\varepsilon_{2}\left(1+r k_{2}\right)^{2} y_{2}^{2}\right|} .
$$

Proof. Since

$$
\begin{aligned}
& \lambda_{i}^{*}=\varepsilon_{i}\left(1+r k_{i}\right)^{2},(i=1,2), \\
& \mu_{1}^{*}=\varepsilon_{1} k_{1}\left(1+r k_{1}\right), \\
& \mu_{2}^{*}=0, \\
& \mu_{3}^{*}=\varepsilon_{2} k_{2}\left(1+r k_{2}\right),
\end{aligned}
$$

from (2.1) we find $k_{n}^{r}\left(f_{*}\left(Y_{p}\right)\right)$.
Corollary 2.4. Let M and M_{r} be parallel surfaces in E_{1}^{3}. Let k_{1} and k_{2} denote principal curvature function of M and let $\left\{\phi_{u}, \phi_{v}\right\}$ be orthonormal basis such that ϕ_{u} and ϕ_{v} are principal directions on M. Let us denote the angle between $Y_{p} \in T_{p} M$ and ϕ_{u}, ϕ_{v} by θ_{1} and θ_{2} respectively. Thus the normal curvature of M^{f} in the direction $f_{*}\left(Y_{p}\right)$
(a) Let N_{p} be a timelike vector then

$$
k_{n}^{r}\left(f_{*}\left(Y_{p}\right)\right)=\frac{k_{1}\left(1+r k_{1}\right) \cos ^{2} \theta_{1}+k_{2}\left(1+r k_{2}\right) \cos ^{2} \theta_{2}}{\left(1+r k_{1}\right)^{2} \cos ^{2} \theta_{1}+\left(1+r k_{2}\right)^{2} \cos ^{2} \theta_{2}}
$$

(b) Let N_{p} be a spacelike vector.
(b.1) If Y_{p} and ϕ_{u} are timelike vectors in the same timecone then

$$
k_{n}^{r}\left(f_{*}\left(Y_{p}\right)\right)=\frac{-k_{1}\left(1+r k_{1}\right) \cosh ^{2} \theta_{1}+k_{2}\left(1+r k_{2}\right) \sinh ^{2} \theta_{2}}{\left(1+r k_{1}\right)^{2} \cosh ^{2} \theta_{1}-\left(1+r k_{2}\right)^{2} \sinh ^{2} \theta_{2}}
$$

(b.2) If Y_{p} and ϕ_{v} are timelike vectors in the same timecone then

$$
k_{n}^{r}\left(f_{*}\left(Y_{p}\right)\right)=\frac{k_{1}\left(1+r k_{1}\right) \sinh ^{2} \theta_{1}-k_{2}\left(1+r k_{2}\right) \cosh ^{2} \theta_{2}}{-\left(1+r k_{1}\right)^{2} \sinh ^{2} \theta_{1}+\left(1+r k_{2}\right)^{2} \cosh ^{2} \theta_{2}} .
$$

(b.3) If $Y_{p} \in T_{p} M$ is a spacelike vector and ϕ_{u} is timelike vector then

$$
k_{n}^{r}\left(f_{*}\left(Y_{p}\right)\right)=\frac{-k_{1}\left(1+r k_{1}\right) \sinh ^{2} \theta_{1}+k_{2}\left(1+r k_{2}\right) \cosh ^{2} \theta_{2}}{-\left(1+r k_{1}\right)^{2} \sinh ^{2} \theta_{1}+\left(1+r k_{2}\right)^{2} \cosh ^{2} \theta_{2}} .
$$

(b.4) If $Y_{p} \in T_{p} M$ is a spacelike vector and ϕ_{v} is timelike vector then

$$
k_{n}^{r}\left(f_{*}\left(Y_{p}\right)\right)=\frac{k_{1}\left(1+r k_{1}\right) \cosh ^{2} \theta_{1}-k_{2}\left(1+r k_{2}\right) \sinh ^{2} \theta_{2}}{\left(1+r k_{1}\right)^{2} \cosh ^{2} \theta_{1}-\left(1+r k_{2}\right)^{2} \sinh ^{2} \theta_{2}} .
$$

3. The Dupin indicatrix for surfaces at a constant distance from edge of regression on surfaces in \boldsymbol{E}_{1}^{3}

Theorem 3.1. Let M^{f} be a surface at a constant distance from edge of regression on M in E_{1}^{3}. Let k_{1} and k_{2} denote principal curvature functions of M and $\left\{\phi_{u}, \phi_{v}\right\}$ be orthonormal bases such that ϕ_{u} and ϕ_{v} are principal directions on M. Thus

$$
D_{f(p)}^{f}=\left\{f_{*}\left(Y_{p}\right) \in T_{f(p)} M^{f} \mid c_{1} y_{1}^{2}+\varepsilon_{1} \varepsilon_{2} c_{2} y_{1} y_{2}+c_{3} y_{2}^{2}= \pm 1\right\}
$$

where

$$
\begin{aligned}
f_{*}\left(Y_{p}\right)= & \varepsilon_{1} y_{1}\left(1+\lambda_{3} k_{1}\right) \phi_{u}+\varepsilon_{2} y_{2}\left(1+\lambda_{3} k_{2}\right) \phi_{v}+\varepsilon_{1} \varepsilon_{2}\left(y_{1} \lambda_{1} k_{1}+y_{2} \lambda_{2} k_{2}\right) N \\
c_{1}= & \varepsilon_{1} \mu_{1}\left(1+\lambda_{3} k_{1}\right)^{2}-\lambda_{1} k_{1}\left(\varepsilon_{1} \varepsilon_{2} \mu_{1} \lambda_{1} k_{1}+\mu_{2} \lambda_{2} k_{2}\right) \\
c_{2}= & \varepsilon_{2} \mu_{2}\left(1+\lambda_{3} k_{2}\right)^{2}-\lambda_{2} k_{2}\left(\mu_{1} \lambda_{1} k_{1}+\varepsilon_{1} \varepsilon_{2} \mu_{2} \lambda_{2} k_{2}\right) \\
& +\varepsilon_{1} \mu_{3}\left(1+\lambda_{3} k_{1}\right)^{2}-\lambda_{1} k_{1}\left(\varepsilon_{1} \varepsilon_{2} \mu_{3} \lambda_{1} k_{1}+\mu_{4} \lambda_{2} k_{2}\right) \\
c_{3}= & \varepsilon_{2} \mu_{4}\left(1+\lambda_{3} k_{2}\right)^{2}-\lambda_{2} k_{2}\left(\mu_{3} \lambda_{1} k_{1}+\varepsilon_{1} \varepsilon_{2} \mu_{4} \lambda_{2} k_{2}\right) .
\end{aligned}
$$

Proof. Let $f_{*}\left(Y_{p}\right) \in T_{f(p)} M^{f}$. Since

$$
D_{f(p)}^{f}=\left\{f_{*}\left(Y_{p}\right) \mid\left\langle S^{f}\left(f_{*}\left(Y_{p}\right)\right), f_{*}\left(Y_{p}\right)\right\rangle= \pm 1\right\}
$$

the proof is clear.
According to this theorem the Dupin indicatrix of M^{f} at the point $f(p)$ in general will be a conic section of the following type:

Corollary 3.2. Let M^{f} be a surface at a constant distance from edge of regression on M in E_{1}^{3}. The Dupin indicatrix of M^{f} at the point $f(p)$ is:
(a) an ellipse, if $c_{2}^{2}-4 c_{1} c_{3}<0$,
(b) two conjugate hyperbolas, if $c_{2}^{2}-4 c_{1} c_{3}>0$,
(c) parallel two lines, if $c_{2}^{2}-4 c_{1} c_{3}=0$.

Corollary 3.3. Let M and M_{r} be parallel surfaces in E_{1}^{3}. Let k_{1} and k_{2} denote principal curvature functions of M and $\left\{\phi_{u}, \phi_{v}\right\}$ be orthonormal bases such that ϕ_{u} and ϕ_{v} are principal directions on M. In this case

$$
D_{f(p)}^{r}=\left\{f_{*}\left(Y_{p}\right) \in T_{f(p)} M_{r} \mid \quad \varepsilon_{1} k_{1}\left(1+r k_{1}\right) y_{1}^{2}+\varepsilon_{2} k_{2}\left(1+r k_{2}\right) y_{2}^{2}= \pm 1\right\} .
$$

Hence the point $f(p)$ of M_{r} is:
(a) an elliptic point, if $\varepsilon_{1} \varepsilon_{2} k_{1} k_{2}\left(1+r k_{1}\right)\left(1+r k_{2}\right)>0$,
(b) a hyperbolic point, if $\varepsilon_{1} \varepsilon_{2} k_{1} k_{2}\left(1+r k_{1}\right)\left(1+r k_{2}\right)<0$,
(c) a parabolic point, if $k_{1} k_{2}\left(1+r k_{1}\right)\left(1+r k_{2}\right)=0$.

REFERENCES

[1] N. Aktan, A. Görgülü, E. Özüsağlam, C. Ekici, Conjugate tangent vectors and asymptotic directions for surfaces at a constant distance from edge of regression on a surface, IJPAM 33 (2006), 127-133.
[2] N. Aktan, E. Özüsaglam, A. Görgülü, The Euler theorem and Dupin indicatrix for surfaces at a constant distance from edge of regression on a surface, Int. J. Appl. Math. Stat. 14 (2009), 37-43.
[3] M. Bilici, M. Çalışkan, On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space, Int. Math. Forum 4 (2009), 1497-1509.
[4] A. C. Çöken, The Euler theorem and Dupin indicatrix for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space in semi-Euclidean space E_{ν}^{n+1}, Hadronic J. Suppl. 16 (2001), 151-162.
[5] A. C. Çöken, Dupin indicatrix for pseudo-Euclidean hypersurfaces in pseudo-Euclidean space R_{v}^{n+1}, Bull. Cal. Math. Soc. 89 (1997), 343-348.
[6] A. Görgülü, A. C. Çöken, The Euler theorem for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space E_{1}^{n+1}, J. Inst. Math. Comp. Sci. (Math. Ser.) 6 (1993), 161-165.
[7] A. Görgülü, A. C. Çöken, The Dupin indicatrix for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space in semi-Euclidean space E_{1}^{n+1}, Journ. Inst. Math. Comp. Sci. (Math. Ser.) 7 (1994), 221-225.
[8] H. H. Hacısalihoğlu, Diferensiyel Geometri, .Inönü Üniversitesi Fen Edeb. Fak. Yayınları, 1983.
[9] M. Kazaz, M. Onder, Mannheim offsets of timelike ruled surfaces in Minkowski 3-space, arXiv:0906.2077v3 [math.DG].
[10] M. Kazaz, H. H. Ugurlu, M. Onder, M. Kahraman, Mannheim partner D-curves in Minkowski 3-space E_{1}^{3}, arXiv: 1003.2043 v 3 [math.DG].
[11] M. Kazaz, H. H. Ugurlu, M. Onder, Mannheim offsets of spacelike ruled surfaces in Minkowski 3-space, arXiv:0906.4660v2 [math.DG].
[12] A. Kılıç, H. H. Hacısalihoğlu, Euler's Theorem and the Dupin representation for parallel hypersurfaces, J. Sci. Arts Gazi Univ. 1 (1984), 21-26.
[13] O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, London, 1983.
[14] D. Sağlam, Ö. Boyacıŏlu Kalkan, Surfaces at a constant distance from edge of regression on a surface in E_{1}^{3}, Diff. Geom. Dyn. Systems 12 (2010), 187-200.
[15] Ö. Tarakcı, H. H. Hacısalihoğlu, Surfaces at a constant distance from edge of regression on a surface, Appl. Math. Comput. 155 (2004), 81-93.
(received 06.07.2011; available online 10.06.2012)
Afyonkarahisar Kocatepe University, Faculty of Art and Sciences, Department of Mathematics, Afyonkarahisar, TURKEY
E-mail: dryilmaz@aku.edu.tr, bozgur@aku.edu.tr

[^0]: 2010 AMS Subject Classification: 51B20, 53B30
 Keywords and phrases: Euler theorem; Dupin indicatrix; edge of regression.

