
MATEMATIQKI VESNIK

65, 2 (2013), 187–196
June 2013

originalni nauqni rad
research paper

ON CONVERGENCE OF q-CHLODOVSKY-TYPE
MKZD OPERATORS

Harun Karsli and Vijay Gupta

Abstract. In the present paper, we define a new kind of MKZD operators for functions
defined on [0, bn], named q-Chlodovsky-type MKZD operators, and give some approximation
properties.

1. Introduction

For a function defined on the interval [0, 1], the Meyer-König and Zeller oper-
ators Mn(f, x) [10] are defined as

Mn(f ; x) =
∞∑

k=0

mn,k (x) f

(
k

n + k

)
(1.1)

where mn,k =
(
n+k−1

k

)
xk(1 − x)n. In 1989 Guo [2] introduced the integrated

Meyer-König and Zeller operators M̃n by the means of the operators (1.1), to
approximate Lebesgue integrable functions on the interval [0, 1]. Such operators
have been defined as

M̃n(f ; x) =
∞∑

k=0

m̃n,k (x)
∫

Ik

f(t) dt (1.2)

where Ik = [ k
n+k , k+1

n+k+1 ] and m̃n,k (x) = (n + 1)
(
n+k+1

k

)
xk(1− x)n. Similar results

may be also found in the papers [3, 4].
Recently, Karsli [8] defined the following MKZD operators for functions defined

on [0, bn], named Chlodovsky-type MKZD operators as

Ln(f ; x) =
∞∑

k=0

n + k

bn
mn,k

(
x

bn

) ∫ bn

0

f(t)bn,k

(
t

bn

)
dt, 0 ≤ x, t ≤ bn, (1.3)
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where (bn) is a positive increasing sequence with the properties

lim
n→∞

bn = ∞ and lim
n→∞

bn

n
= 0

and bn,k(t) = n
(
n+k

k

)
tk(1− t)n−1. We now deal with the q-analogue of Chlodovsky-

type MKZD operators Ln,q, defined as

Ln,q(f ; x) =
∞∑

k=0

[n + k]q
bn

mn,k,q

(
x

bn

) ∫ bn

0

q−kf(t)bn,k,q

(
qt

bn

)
dqt, 0 ≤ x ≤ bn,

(1.4)
where

mk,n,q(x) =
[

n + k − 1
k

]

q

xk
n−1∏
s=0

(1− qsx)

and

bn,k,q(t) = [n]q

[
n + k

k

]

q

tk
n−2∏
s=0

(1− qst) (0 ≤ t, x ≤ 1),

provided the q-integral and the infinite series on the r.h.s. of (1.4) are well-defined.
It can be easily verified that in the case q = 1 the operators defined by (1.4) reduce
to the Chlodovsky-type MKZD operators defined by (1.3).

Actually the q-analogue of the linear positive operators was started in the last
decade when Phillips [11] first introduced q-Bernstein polynomials, and later their
Durrmeyer variants were studied and discussed in [5, 6]. Very recently Govil and
Gupta [1] studied the approximation properties of q-MKZD operators. Here our
aim is to study the q-analogue of summation-integral-type CMKZD operators. We
shall prove that the operators Ln,qf being defined in (1.4) converge to the limit f .

Before getting onto the main subject, we first give definitions of q-integer,
q-binomial coefficient and q-integral, which are required in this paper. For any
fixed real number q > 0 and non-negative integer r the q-integer of the number r
is defined by

[r]q =
{

(1− qr)/(1− q), q 6= 1
r, q = 1.

The q-factorial is defined by

[r]q! =
{

[r]q[r − 1]q · · · [1]q, r = 1, 2, 3, . . .

1, r = 0.

and q-binomial coefficient is defined as
[

n
r

]

q

=
[n]q!

[r]q![n− r]q!
,

for integers n ≥ r ≥ 0. The q-integral is defined as (see [9])
∫ a

0

f (x) dqx = (1− q) a

∞∑
n=0

f (aqn) qn



q-Chlodovsky-type MKZD operators 189

provided the sum converges absolutely. Note that the series on the right-hand side
is guaranteed to be absolutely convergent as the function f is such that, for some
M > 0, α > −1, |f(x)| < Mxα in a right neighbourhood of x = 0.

Definition 1.1. A function f is q-integrable on [0,∞) if the series
∫ ∞

0

f (x) dqx = (1− q)
∑

n∈Z
f (qn) qn

converges absolutely. We use the notation

(a− b)n
q =

n−1∏

j=0

(a− qjb).

The q-analogue of Beta function (see [7]) is defined as

Bq(m,n) =
∫ 1

0

tm−1(1− qt)n−1
q dqt, m, n > 0.

Also

Bq(m,n) =
[m− 1]![n− 1]!

[m + n− 1]!
.

2. Auxiliary results

In this section we give certain results, which are necessary to prove our main
theorem.

Lemma 2.1. For s ∈ N,

(Ln,qt
s) (x) = bs

n

∞∑

k=0

mn,k,q

(
x

bn

) [n + k]q!
[k]q!

[k + s]q!
[k + s + n]q!

. (2.1)

Proof. We have

(Ln,qt
s) (x) =

∞∑

k=0

[n + k]q
bn

mn,k,q

(
x

bn

) ∫ bn

0

q−ktsbn,k,q

(
qt

bn

)
dqt

=
∞∑

k=0

[n + k]q
bn

mn,k,q

(
x

bn

) ∫ bn

0

ts
[

n + k − 1
k

]

q

(
t

bn

)k(
1− qt

bn

)n−1

q

dqt.

Setting u = t/bn, we get

(Ln,qt
s) (x) =

∞∑

k=0

[n + k]q
bn

mn,k,q

(
x

bn

)
bs+1
n

[
n + k − 1

k

]

q

∫ 1

0

uk+s(1− qu)n−1
q dqu

=
∞∑

k=0

[n + k]q
bn

mn,k,q

(
x

bn

)
bs+1
n

[
n + k − 1

k

]

q

Bq(k + s + 1, n)
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= bs
n

∞∑

k=0

[n + k]q mn,k,q

(
x

bn

) [n + k − 1]q!
[n− 1]q! [k]q!

Γq(k + s + 1) Γq(n)
Γq(k + s + n + 1)

= bs
n

∞∑

k=0

mn,k,q

(
x

bn

) [n + k]q!
[k]q!

[k + s]q!
[k + s + n]q!

.

For s = 0, 1 and 2 in (2.1), we get respectively

(Ln,q1) (x) =
∞∑

k=0

mn,k,q

(
x

bn

)
=

∞∑

k=0

[
n + k − 1

k

]

q

(
x

bn

)k n−1∏
s=0

(
1− qs x

bn

)
= 1,

(2.2)
since

1
∏n−1

s=0

(
1− qs x

bn

) =
∞∑

k=0

[
n + k − 1

k

]

q

(
x

bn

)k

.

(Ln,qt)(x) = bn

∞∑

k=0

mn,k,q

(
x

bn

) [n + k]q!
[k]q!

[k + 1]q!
[n + k + 1]q!

= bn

n−1∏
s=0

(
1− qs x

bn

) ∞∑

k=0

[n + k − 1]q!
[n− 1]q! [k]q!

[k + 1]q
[n + k + 1]q

(
x

bn

)k

= bn

n−1∏
s=0

(
1− qs x

bn

) ∞∑

k=1

[n + k − 2]q!
[n− 1]q! [k − 1]q!

(
x

bn

)k [k + 1]q
[n + k + 1]q

[n + k − 1]q
[k]q

= bn

n−1∏
s=0

(
1− qs x

bn

) ∞∑

k=1

[n + k − 2]q!
[n− 1]q! [k − 1]q!

(
x

bn

)k [k + 1]q
[k]q

[n + k − 1]q
[n + k + 1]q

≥ bn

n−1∏
s=0

(
1− qs x

bn

) ∞∑

k=1

[n + k − 2]q!
[n− 1]q! [k − 1]q!

(
x

bn

)k [k + 1]q
[k]q

[n− 1]q
[n + 1]q

=
[n− 1]q
[n + 1]q

bn

n−1∏
s=0

(
1− qs x

bn

) ∞∑

k=1

[n + k − 2]q!
[n− 1]q! [k − 1]q!

(
x

bn

)k

=
[n− 1]q
[n + 1]q

bn

n−1∏
s=0

(
1− qs x

bn

) ∞∑

k=0

[n + k − 1]q!
[n− 1]q! [k]q!

(
x

bn

)k+1

=
[n− 1]q
[n + 1]q

x

bn
bn

∞∑

k=0

[n + k − 1]q!
[n− 1]q! [k]q!

(
x

bn

)k n−1∏
s=0

(
1− qs x

bn

)

=
[n− 1]q
[n + 1]q

x

∞∑

k=0

[
n + k − 1

k

]

q

(
x

bn

)k n−1∏
s=0

(
1− qs x

bn

)

=
[n− 1]q
[n + 1]q

x, (2.3)
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and

(Ln,qt
2)(x) = b2

n

∞∑

k=0

mn,k,q

(
x

bn

) [n + k]q!
k!

[k + 2]q!
[k + 2 + n]q!

= b2
n

n−1∏
s=0

(
1− qs x

bn

) ∞∑

k=0

[n + k − 1]q!
[n− 1]q! [k]q!

(
x

bn

)k [k + 2]q [k + 1]q
[k + 2 + n]q [k + 1 + n]q

= b2
n

n−1∏
s=0

(
1− qs x

bn

) ∞∑

k=0

[n + k − 1]q!
[n− 1]q! [k]q!

(
x

bn

)k 1 + q + q [k]q + 2q2 [k]q + q3 [k]2q
[k + 2 + n]q [k + 1 + n]q

≤ b2
n

n−1∏
s=0

(
1− qs x

bn

)
1

[n− 1]q!
×

×
∞∑

k=0

[n + k − 3]q!
[k]q!

(
x

bn

)k (
1 + q + q [k]q + 2q2 [k]q + q3 [k]2q

)

= (1 + q) b2
n

n−1∏
s=0

(
1− qs x

bn

)
1

[n− 1]q [n− 2]q

∞∑

k=0

[n + k − 3]q!
[n− 3]q! [k]q!

(
x

bn

)k

+
(
q + 2q2

)
b2
n

n−1∏
s=0

(
1− qs x

bn

)
1

[n− 1]q

∞∑

k=0

[n + k − 2]q!
[n− 2]q! [k]q!

(
x

bn

)k+1

+ q3b2
n

n−1∏
s=0

(
1− qs x

bn

)
1

[n− 1]q!

∞∑

k=1

[n + k − 3]q!
[k − 1]q!

(
x

bn

)k

[k]q

= (1 + q) b2
n

1
[n− 1]q [n− 2]q

+
(
q + 2q2

)
b2
n

x

[n− 1]q

+ q3b2
n

n−1∏
s=0

(
1− qs x

bn

)
1

[n− 1]q!

∞∑

k=1

[n + k − 3]q!
[k − 1]q!

(
x

bn

)k (
1 + q [k − 1]q

)

= (1 + q) b2
n

1
[n− 1]q [n− 2]q

+
(
q + 2q2

)
b2
n

1
[n− 1]q

x

bn

+ q3b2
n

n−1∏
s=0

(
1− qs x

bn

)
1

[n− 1]q!

∞∑

k=0

[n + k − 2]q!
[k]q!

(
x

bn

)k+1

+ q4b2
n

n−1∏
s=0

(
1− qs x

bn

)
1

[n− 1]q!

∞∑

k=0

[n + k − 1]q!
[k]q!

(
x

bn

)k+2

=
(1 + q) b2

n

[n− 1]q [n− 2]q
+

(
q + 2q2 + q3

) bn

[n− 1]q
x + q4x2. (2.4)

From (2.2), (2.3) and (2.4), an easy computation gives

(
Ln,q(t− x)2

)
(x) ≤ (1 + q) b2

n

[n− 1]q [n− 2]q
+

(
q + 2q2 + q3

)
bn

[n− 1]q
x
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+

[
q4 − 2

[n− 1]q
[n + 1]q

+ 1

]
x2 := An,q(x). (2.5)

It is observed here that for 0 < q < 1, one has [n]q → 1
1−q as n →∞. This implies

that (Ln,qt
2)(x) and

(
Ln,q(t− x)2

)
(x) does not converge to x2 and 0 respectively,

as n → ∞. To obtain some convergence results for q-CMKZD operators defined
in (1.4), we will consider a sequence (qn) of real numbers such that 0 < qn < 1,
limn→∞ qn = 1, and

lim
n→∞

bn

[n]qn

= 0. (2.6)

3. Main results

Now we are ready to obtain some convergence results on q-CMKZD operators.

Theorem 3.1. Let (qn) be a sequence of real numbers such that 0 < qn < 1
and limn→∞ qn = 1. If f ∈ C[0,∞), we have

|(Ln,qn
f)(x)− f(x)| ≤ 2ω(f,

√
An,qn

(x)), (3.1)

where ω(f, ·) is the usual modulus of continuity of f in the space of continuous
functions.

Proof. Using (1.4) for q = qn, we have
|(Ln,qnf)(x)− f(x)|

=
∣∣∣∣
∞∑

k=0

[n + k]qn

bn
mn,k,qn

(
x

bn

) ∫ bn

0

q−k
n f(t)bn,k,qn

(
qnt

bn

)
dqnt− f(x)

∣∣∣∣

≤
∞∑

k=0

[n + k]qn

bn
mn,k,qn

(
x

bn

) ∫ bn

0

q−k
n |f(t)− f(x)| bn,k,qn

(
qnt

bn

)
dqnt

≤
∞∑

k=0

[n + k]qn

bn
mn,k,qn

(
x

bn

) ∫ bn

0

q−k
n

( |t− x|
δ

+ 1
)

ω(f, δ)bn,k,qn

(
qnt

bn

)
dqnt

= ω(f, δ)
∞∑

k=0

[n + k]qn

bn
mn,k,qn

(
x

bn

) ∫ bn

0

q−k
n bn,k,qn

(
qnt

bn

)
dqnt

+
ω(f, δ)

δ

∞∑

k=0

[n + k]qn

bn
mn,k,qn

(
x

bn

) ∫ bn

0

q−k
n |t− x| bn,k,qn

(
qnt

bn

)
dqnt

≤ ω(f, δ) +
ω(f, δ)

δ

{(
Ln,qn(t− x)2

)
(x)

}1/2

≤ ω(f, δ) +
ω(f, δ)

δ
{An,qn(x)}1/2

Now, if we choose δ2 = An,qn(x), we get

|(Ln,qnf)(x)− f(x)| ≤ 2ω(f,
√

An,qn(x)),

and the proof of Theorem 3.1 is thus complete.
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It is easy to see that, the right-hand side of formula (3.1) can diverge. Indeed,
for x = bn

2 we cannot guarantee δ → 0 as n →∞ .
From Lemma 2.1 and Theorem 3.1, we can immediately give the following

Bohman-Korovkin-type theorem.

Theorem 3.2. Let (qn) be a sequence of real numbers such that 0 < qn < 1
and limn→∞ qn = 1. Then, for f ∈ C[0,∞), the sequence Ln,qn(f, x) converges
uniformly to f(x) on any closed finite subinterval [0, A], where A > 0 being a
constant.

Definition 3.3. For f ∈ C[a, b] and t > 0, the Peetre-K Functional are
defined by

K(f, δ) := inf
g∈C2[a,b]

{
‖f − g‖C[a,b] + t ‖g‖C2[a,b]

}
.

Theorem 3.4. If g ∈ C2[0, A], then

|(Ln,qg)(x)− g(x)| ≤ An,q(x) ‖g‖C2[0,A] ,

where A > 0 is a constant.

Proof. By Taylor formula with integral reminder term, we write

g(t) = g(x) + (t− x)g′(x) +
∫ t−x

0

(t− x− u)2g′′(x + u) du. (3.2)

If we apply the operator (1.4) to (3.2), we get

|(Ln,qg)(x)− g(x)|

=
∣∣∣∣g′(x)(Ln,q(t− x))(x) +

(
Ln,q

(∫ t−x

0

(t− x− u)2g′′(x + u) du

))
(x)

∣∣∣∣
≤ ‖g′‖C[0,A]|(Ln,q(t− x))(x)|

+ ‖g′′‖C[0,A]

∣∣∣∣
(

Ln,q

(∫ t−x

0

(t− x− u)2 du

))
(x)

∣∣∣∣.

Since ∫ t−x

0

(t− x− u)2 du =
(t− x)2

2
,

one gets from (2.5)

|(Ln,qg)(x)− g(x)| ≤ ‖g′‖C[0,A] {An,q(x)}1/2 + ‖g′′‖C[0,A] An,q(x).

Now noting that

‖g‖C2[a,b] = ‖g‖C[a,b] + ‖g′‖C[a,b] + ‖g′′‖C[a,b] ,

we get
|(Ln,qg)(x)− g(x)| ≤ An,q(x) ‖g‖C2[0,A] ,
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and this completes the proof of Theorem 3.4.
Now, we are ready to prove the following theorem.

Theorem 3.5. Let (qn) be a sequence of real numbers such that 0 < qn < 1
and limn→∞ qn = 1. If f ∈ C[0,∞), then

‖(Ln,qn
f)− f‖C[0,A] ≤ 2K(f, Bn,qn

),

where Bn,qn
is the maximum value of An,qn

(x) on [0, A], A > 0 is a constant;
namely,

Bn,q =
(1 + q) b2

n

[n− 1]q [n− 2]q
+

(
q + 2q2 + q3

)
bn

[n− 1]q
A +

[
q4 − 2

[n− 1]q
[n + 1]q

+ 1

]
A2.

Proof. By the linearity property of (Ln,qn
), we get

|(Ln,qn
f)(x)− f(x)|
≤ |(Ln,qnf)(x)− (Ln,qng)(x)|+ |(Ln,qng)(x)− g(x)|+ |g(x)− f(x)|
≤ ‖f − g‖C[0,A] |(Ln,qn1)(x)|+ ‖f − g‖C[0,A] + |(Ln,qng)(x)− g(x)| .

From Theorem 3.4, one has

|(Ln,qnf)(x)− f(x)| ≤ 2 ‖f − g‖C[0,A] + An,qn(x) ‖g‖C2[0,A] ,

and hence

‖(Ln,qnf)− f‖C[0,A] ≤ 2 ‖f − g‖C[0,A] + Bn,qn ‖g‖C2[0,A] . (3.3)

If we take the infimum on the right-hand side of (3.3) over all g ∈ C2[0, A], we get

‖(Ln,qnf)− f‖C[0,A] ≤ 2K(f, Bn,qn).

This completes the proof.

Theorem 3.6. Let (qn) be a sequence of real numbers such that 0 < qn < 1
and limn→∞ qn = 1. If f ∈ Lipα

M [0,∞), then for any A > 0 and x ∈ [0, A] the
inequality

|(Ln,qnf)(x)− f(x)| ≤ M {Bn,qn}
α
2

holds with the constant M , which is independent of n and Bn,qn is as defined in
Theorem 3.5.

Proof. For convenience we write Ln,qn(f ;x) instead of (Ln,qnf)(x). Note that

|Ln,qn(f ; x)− f(x)| ≤ Ln,qn(|f(t)− f(x)| ;x)

=
∞∑

k=0

[n + k]qn

bn
mn,k,qn

(
x

bn

) ∫ bn

0

q−k
n |f(t)− f(x)| bn,k,qn

(
qnt

bn

)
dqnt
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≤ M

∫ bn

0

q−k
n |t− x|α

∞∑

k=0

[n + k]qn

bn
mn,k,qn

(
x

bn

)
bn,k,qn

(
qnt

bn

)
dqn

t.

If we choose p1 = 2
α and p2 = 2

2−α , then 1
p1

+ 1
p2

= 1. Therefore

|Ln,qn
(f ; x)− f(x)|

≤ M

∫ bn

0

{
|t− x|2 q−k

n

∞∑

k=0

[n + k]qn

bn
mn,k,qn

(
x

bn

)
bn,k,qn

(
qnt

bn

)} 1
p1×

×
{

q−k
n

∞∑

k=0

[n + k]qn

bn
mn,k,qn

(
x

bn

)
bn,k,qn

(
qnt

bn

)} 1
p2

dqn
t.

By Hölder inequality, we have

|Ln,qn
(f ; x)− f(x)|

≤ M

{∫ bn

0

q−k
n |t− x|2

∞∑

k=0

[n + k]qn

bn
mn,k,qn

(
x

bn

)
bn,k,qn

(
qnt

bn

)
dqnt

} 1
p1×

×
{∫ bn

0

q−k
n

∞∑

k=0

[n + k]qn

bn
mn,k,qn

(
x

bn

)
bn,k,qn

(
qnt

bn

)
dqn

t

} 1
p2

= M

{∫ bn

0

q−k
n |t− x|2

∞∑

k=0

[n + k]qn

bn
mn,k,qn

(
x

bn

)
bn,k,qn

(
qnt

bn

)
dqnt

}α
2

.

From (2.5) we obtain

|Ln,qn(f ; x)− f(x)| ≤ M {An,qn(x)}α
2 .

This implies that for x ∈ [0, A]

|(Ln,qnf)(x)− f(x)| ≤ M {Bn,qn}
α
2

which in view of (2.5) and (2.6) tends to zero as n →∞.
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