ON CONVERGENCE OF q-CHLODOVSKY-TYPE MKZD OPERATORS

Harun Karsli and Vijay Gupta

Abstract

In the present paper, we define a new kind of MKZD operators for functions defined on $\left[0, b_{n}\right]$, named q-Chlodovsky-type MKZD operators, and give some approximation properties.

1. Introduction

For a function defined on the interval $[0,1]$, the Meyer-König and Zeller operators $M_{n}(f, x)$ [10] are defined as

$$
\begin{equation*}
M_{n}(f ; x)=\sum_{k=0}^{\infty} m_{n, k}(x) f\left(\frac{k}{n+k}\right) \tag{1.1}
\end{equation*}
$$

where $m_{n, k}=\binom{n+k-1}{k} x^{k}(1-x)^{n}$. In 1989 Guo [2] introduced the integrated Meyer-König and Zeller operators \widetilde{M}_{n} by the means of the operators (1.1), to approximate Lebesgue integrable functions on the interval $[0,1]$. Such operators have been defined as

$$
\begin{equation*}
\widetilde{M}_{n}(f ; x)=\sum_{k=0}^{\infty} \widetilde{m}_{n, k}(x) \int_{I_{k}} f(t) d t \tag{1.2}
\end{equation*}
$$

where $I_{k}=\left[\frac{k}{n+k}, \frac{k+1}{n+k+1}\right]$ and $\widetilde{m}_{n, k}(x)=(n+1)\binom{n+k+1}{k} x^{k}(1-x)^{n}$. Similar results may be also found in the papers $[3,4]$.

Recently, Karsli [8] defined the following MKZD operators for functions defined on $\left[0, b_{n}\right]$, named Chlodovsky-type MKZD operators as

$$
\begin{equation*}
L_{n}(f ; x)=\sum_{k=0}^{\infty} \frac{n+k}{b_{n}} m_{n, k}\left(\frac{x}{b_{n}}\right) \int_{0}^{b_{n}} f(t) b_{n, k}\left(\frac{t}{b_{n}}\right) d t, 0 \leq x, t \leq b_{n} \tag{1.3}
\end{equation*}
$$

2010 AMS Subject Classification: 41A25, 41A36
Keywords and phrases: q-Chlodovsky-type MKZD operators; modulus of continuity; PeetreK functional; Lipschitz space.
where $\left(b_{n}\right)$ is a positive increasing sequence with the properties

$$
\lim _{n \rightarrow \infty} b_{n}=\infty \text { and } \lim _{n \rightarrow \infty} \frac{b_{n}}{n}=0
$$

and $b_{n, k}(t)=n\binom{n+k}{k} t^{k}(1-t)^{n-1}$. We now deal with the q-analogue of Chlodovskytype MKZD operators $L_{n, q}$, defined as

$$
\begin{equation*}
L_{n, q}(f ; x)=\sum_{k=0}^{\infty} \frac{[n+k]_{q}}{b_{n}} m_{n, k, q}\left(\frac{x}{b_{n}}\right) \int_{0}^{b_{n}} q^{-k} f(t) b_{n, k, q}\left(\frac{q t}{b_{n}}\right) d_{q} t, \quad 0 \leq x \leq b_{n} \tag{1.4}
\end{equation*}
$$

where

$$
m_{k, n, q}(x)=\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q} x^{k} \prod_{s=0}^{n-1}\left(1-q^{s} x\right)
$$

and

$$
b_{n, k, q}(t)=[n]_{q}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q} t^{k} \prod_{s=0}^{n-2}\left(1-q^{s} t\right)(0 \leq t, x \leq 1)
$$

provided the q-integral and the infinite series on the r.h.s. of (1.4) are well-defined. It can be easily verified that in the case $q=1$ the operators defined by (1.4) reduce to the Chlodovsky-type MKZD operators defined by (1.3).

Actually the q-analogue of the linear positive operators was started in the last decade when Phillips [11] first introduced q-Bernstein polynomials, and later their Durrmeyer variants were studied and discussed in $[5,6]$. Very recently Govil and Gupta [1] studied the approximation properties of q-MKZD operators. Here our aim is to study the q-analogue of summation-integral-type CMKZD operators. We shall prove that the operators $L_{n, q} f$ being defined in (1.4) converge to the limit f.

Before getting onto the main subject, we first give definitions of q-integer, q-binomial coefficient and q-integral, which are required in this paper. For any fixed real number $q>0$ and non-negative integer r the q-integer of the number r is defined by

$$
[r]_{q}= \begin{cases}\left(1-q^{r}\right) /(1-q), & q \neq 1 \\ r, & q=1\end{cases}
$$

The q-factorial is defined by

$$
[r]_{q}!= \begin{cases}{[r]_{q}[r-1]_{q} \cdots[1]_{q},} & r=1,2,3, \ldots \\ 1, & r=0\end{cases}
$$

and q-binomial coefficient is defined as

$$
\left[\begin{array}{c}
n \\
r
\end{array}\right]_{q}=\frac{[n]_{q}!}{[r]_{q}![n-r]_{q}!}
$$

for integers $n \geq r \geq 0$. The q-integral is defined as (see [9])

$$
\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n}
$$

provided the sum converges absolutely. Note that the series on the right-hand side is guaranteed to be absolutely convergent as the function f is such that, for some $M>0, \alpha>-1,|f(x)|<M x^{\alpha}$ in a right neighbourhood of $x=0$.

Definition 1.1. A function f is q-integrable on $[0, \infty)$ if the series

$$
\int_{0}^{\infty} f(x) d_{q} x=(1-q) \sum_{n \in \mathbb{Z}} f\left(q^{n}\right) q^{n}
$$

converges absolutely. We use the notation

$$
(a-b)_{q}^{n}=\prod_{j=0}^{n-1}\left(a-q^{j} b\right)
$$

The q-analogue of Beta function (see [7]) is defined as

$$
B_{q}(m, n)=\int_{0}^{1} t^{m-1}(1-q t)_{q}^{n-1} d_{q} t, \quad m, n>0
$$

Also

$$
B_{q}(m, n)=\frac{[m-1]![n-1]!}{[m+n-1]!} .
$$

2. Auxiliary results

In this section we give certain results, which are necessary to prove our main theorem.

Lemma 2.1. For $s \in \mathbb{N}$,

$$
\begin{equation*}
\left(L_{n, q} t^{s}\right)(x)=b_{n}^{s} \sum_{k=0}^{\infty} m_{n, k, q}\left(\frac{x}{b_{n}}\right) \frac{[n+k]_{q}!}{[k]_{q}!} \frac{[k+s]_{q}!}{[k+s+n]_{q}!} . \tag{2.1}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\left(L_{n, q} t^{s}\right)(x) & =\sum_{k=0}^{\infty} \frac{[n+k]_{q}}{b_{n}} m_{n, k, q}\left(\frac{x}{b_{n}}\right) \int_{0}^{b_{n}} q^{-k} t^{s} b_{n, k, q}\left(\frac{q t}{b_{n}}\right) d_{q} t \\
& =\sum_{k=0}^{\infty} \frac{[n+k]_{q}}{b_{n}} m_{n, k, q}\left(\frac{x}{b_{n}}\right) \int_{0}^{b_{n}} t^{s}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q}\left(\frac{t}{b_{n}}\right)^{k}\left(1-\frac{q t}{b_{n}}\right)_{q}^{n-1} d_{q} t .
\end{aligned}
$$

Setting $u=t / b_{n}$, we get

$$
\begin{aligned}
\left(L_{n, q} t^{s}\right)(x) & =\sum_{k=0}^{\infty} \frac{[n+k]_{q}}{b_{n}} m_{n, k, q}\left(\frac{x}{b_{n}}\right) b_{n}^{s+1}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q} \int_{0}^{1} u^{k+s}(1-q u)_{q}^{n-1} d_{q} u \\
& =\sum_{k=0}^{\infty} \frac{[n+k]_{q}}{b_{n}} m_{n, k, q}\left(\frac{x}{b_{n}}\right) b_{n}^{s+1}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q} B_{q}(k+s+1, n)
\end{aligned}
$$

$$
\begin{aligned}
& =b_{n}^{s} \sum_{k=0}^{\infty}[n+k]_{q} m_{n, k, q}\left(\frac{x}{b_{n}}\right) \frac{[n+k-1]_{q}!}{[n-1]_{q}![k]_{q}!} \frac{\Gamma_{q}(k+s+1) \Gamma_{q}(n)}{\Gamma_{q}(k+s+n+1)} \\
& =b_{n}^{s} \sum_{k=0}^{\infty} m_{n, k, q}\left(\frac{x}{b_{n}}\right) \frac{[n+k]_{q}!}{[k]_{q}!} \frac{[k+s]_{q}!}{[k+s+n]_{q}!} .
\end{aligned}
$$

For $s=0,1$ and 2 in (2.1), we get respectively

$$
\left(L_{n, q} 1\right)(x)=\sum_{k=0}^{\infty} m_{n, k, q}\left(\frac{x}{b_{n}}\right)=\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \tag{2.2}\\
k
\end{array}\right]_{q}\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right)=1
$$

since

$$
\begin{align*}
& \frac{1}{\prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right)}=\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1]_{q}\left(\frac{x}{b_{n}}\right)^{k} \\
\left(L_{n, q} t\right)(x)=b_{n} \sum_{k=0}^{\infty} m_{n, k, q}\left(\frac{x}{b_{n}}\right) \frac{[n+k]_{q}!}{[k]_{q}!} \frac{[k+1]_{q}!}{[n+k+1]_{q}!} \\
=b_{n} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \sum_{k=0}^{\infty} \frac{[n+k-1]_{q}!}{[n-1]_{q}![k]_{q}!} \frac{[k+1]_{q}}{[n+k+1]_{q}}\left(\frac{x}{b_{n}}\right)^{k} \\
=b_{n} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \sum_{k=1}^{\infty} \frac{[n+k-2]_{q}!}{[n-1]_{q}![k-1]_{q}!}\left(\frac{x}{b_{n}}\right)^{k} \frac{[k+1]_{q}}{[n+k+1]_{q}} \frac{[n+k-1]_{q}}{[k]_{q}} \\
=b_{n} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \sum_{k=1}^{\infty} \frac{[n+k-2]_{q}!}{[n-1]_{q}![k-1]_{q}!}\left(\frac{x}{b_{n}}\right)^{k} \frac{[k+1]_{q}}{[k]_{q}} \frac{[n+k-1]_{q}}{[n+k+1]_{q}} \\
\geq b_{n} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \sum_{k=1}^{\infty} \frac{[n+k-2]_{q}!}{[n-1]_{q}![k-1]_{q}!}\left(\frac{x}{b_{n}}\right)^{k} \frac{[k+1]_{q}}{[k]_{q}} \frac{[n-1]_{q}}{[n+1]_{q}} \\
=\frac{[n-1]_{q}}{[n+1]_{q}} b_{n} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \sum_{k=1}^{\infty} \frac{[n+k-2]_{q}!}{[n-1]_{q}![k-1]_{q}!}\left(\frac{x}{b_{n}}\right)^{k} \\
=\frac{[n-1]_{q}}{[n+1]_{q}} b_{n} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \sum_{k=0}^{\infty} \frac{[n+k-1]_{q}!}{[n-1]_{q}![k]_{q}!}\left(\frac{x}{b_{n}}\right)^{k+1} \\
=\frac{[n-1]_{q}}{[n+1]_{q}} \frac{x}{b_{n}} b_{n} \sum_{k=0}^{\infty} \frac{[n+k-1]_{q}!}{[n-1]_{q}![k]_{q}!}\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \\
=\frac{[n-1]_{q}}{[n+1]_{q}} x \sum_{k=0}^{\infty}[n+k-1 \\
= \\
=\frac{[n-1]_{q}}{[n+1]_{q}} x
\end{array} \sum_{q}\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right)\right.
\end{align*}
$$

and

$$
\begin{align*}
& \left(L_{n, q} t^{2}\right)(x)=b_{n}^{2} \sum_{k=0}^{\infty} m_{n, k, q}\left(\frac{x}{b_{n}}\right) \frac{[n+k]_{q}!}{k!} \frac{[k+2]_{q}!}{[k+2+n]_{q}!} \\
& =b_{n}^{2} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \sum_{k=0}^{\infty} \frac{[n+k-1]_{q}!}{[n-1]_{q}![k]_{q}!}\left(\frac{x}{b_{n}}\right)^{k} \frac{[k+2]_{q}[k+1]_{q}}{[k+2+n]_{q}[k+1+n]_{q}} \\
& =b_{n}^{2} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \sum_{k=0}^{\infty} \frac{[n+k-1]_{q}!}{[n-1]_{q}![k]_{q}!}\left(\frac{x}{b_{n}}\right)^{k} \frac{1+q+q[k]_{q}+2 q^{2}[k]_{q}+q^{3}[k]_{q}^{2}}{[k+2+n]_{q}[k+1+n]_{q}} \\
& \leq b_{n}^{2} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \frac{1}{[n-1]_{q}!} \times \\
& \times \sum_{k=0}^{\infty} \frac{[n+k-3]_{q}!}{[k]_{q}!}\left(\frac{x}{b_{n}}\right)^{k}\left(1+q+q[k]_{q}+2 q^{2}[k]_{q}+q^{3}[k]_{q}^{2}\right) \\
& =(1+q) b_{n}^{2} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \frac{1}{[n-1]_{q}[n-2]_{q}} \sum_{k=0}^{\infty} \frac{[n+k-3]_{q}!}{[n-3]_{q}![k]_{q}!}\left(\frac{x}{b_{n}}\right)^{k} \\
& +\left(q+2 q^{2}\right) b_{n}^{2} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \frac{1}{[n-1]_{q}} \sum_{k=0}^{\infty} \frac{[n+k-2]_{q}!}{[n-2]_{q}![k]_{q}!}\left(\frac{x}{b_{n}}\right)^{k+1} \\
& +q^{3} b_{n}^{2} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \frac{1}{[n-1]_{q}!} \sum_{k=1}^{\infty} \frac{[n+k-3]_{q}!}{[k-1]_{q}!}\left(\frac{x}{b_{n}}\right)^{k}[k]_{q} \\
& =(1+q) b_{n}^{2} \frac{1}{[n-1]_{q}[n-2]_{q}}+\left(q+2 q^{2}\right) b_{n}^{2} \frac{x}{[n-1]_{q}} \\
& +q^{3} b_{n}^{2} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \frac{1}{[n-1]_{q}!} \sum_{k=1}^{\infty} \frac{[n+k-3]_{q}!}{[k-1]_{q}!}\left(\frac{x}{b_{n}}\right)^{k}\left(1+q[k-1]_{q}\right) \\
& =(1+q) b_{n}^{2} \frac{1}{[n-1]_{q}[n-2]_{q}}+\left(q+2 q^{2}\right) b_{n}^{2} \frac{1}{[n-1]_{q}} \frac{x}{b_{n}} \\
& +q^{3} b_{n}^{2} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \frac{1}{[n-1]_{q}!} \sum_{k=0}^{\infty} \frac{[n+k-2]_{q}!}{[k]_{q}!}\left(\frac{x}{b_{n}}\right)^{k+1} \\
& +q^{4} b_{n}^{2} \prod_{s=0}^{n-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \frac{1}{[n-1]_{q}!} \sum_{k=0}^{\infty} \frac{[n+k-1]_{q}!}{[k]_{q}!}\left(\frac{x}{b_{n}}\right)^{k+2} \\
& =\frac{(1+q) b_{n}^{2}}{[n-1]_{q}[n-2]_{q}}+\left(q+2 q^{2}+q^{3}\right) \frac{b_{n}}{[n-1]_{q}} x+q^{4} x^{2} \text {. } \tag{2.4}
\end{align*}
$$

From (2.2), (2.3) and (2.4), an easy computation gives

$$
\left(L_{n, q}(t-x)^{2}\right)(x) \leq \frac{(1+q) b_{n}^{2}}{[n-1]_{q}[n-2]_{q}}+\frac{\left(q+2 q^{2}+q^{3}\right) b_{n}}{[n-1]_{q}} x
$$

$$
\begin{equation*}
+\left[q^{4}-2 \frac{[n-1]_{q}}{[n+1]_{q}}+1\right] x^{2}:=A_{n, q}(x) \tag{2.5}
\end{equation*}
$$

It is observed here that for $0<q<1$, one has $[n]_{q} \rightarrow \frac{1}{1-q}$ as $n \rightarrow \infty$. This implies that $\left(L_{n, q} t^{2}\right)(x)$ and $\left(L_{n, q}(t-x)^{2}\right)(x)$ does not converge to x^{2} and 0 respectively, as $n \rightarrow \infty$. To obtain some convergence results for q-CMKZD operators defined in (1.4), we will consider a sequence $\left(q_{n}\right)$ of real numbers such that $0<q_{n}<1$, $\lim _{n \rightarrow \infty} q_{n}=1$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{b_{n}}{[n]_{q_{n}}}=0 \tag{2.6}
\end{equation*}
$$

3. Main results

Now we are ready to obtain some convergence results on q-CMKZD operators.
Theorem 3.1. Let $\left(q_{n}\right)$ be a sequence of real numbers such that $0<q_{n}<1$ and $\lim _{n \rightarrow \infty} q_{n}=1$. If $f \in C[0, \infty)$, we have

$$
\begin{equation*}
\left|\left(L_{n, q_{n}} f\right)(x)-f(x)\right| \leq 2 \omega\left(f, \sqrt{A_{n, q_{n}}(x)}\right) \tag{3.1}
\end{equation*}
$$

where $\omega(f, \cdot)$ is the usual modulus of continuity of f in the space of continuous functions.

$$
\begin{aligned}
& \text { Proof. Using }(1.4) \text { for } q=q_{n} \text {, we have } \\
&\left|\left(L_{n, q_{n}} f\right)(x)-f(x)\right| \\
&=\left|\sum_{k=0}^{\infty} \frac{[n+k]_{q_{n}}}{b_{n}} m_{n, k, q_{n}}\left(\frac{x}{b_{n}}\right) \int_{0}^{b_{n}} q_{n}^{-k} f(t) b_{n, k, q_{n}}\left(\frac{q_{n} t}{b_{n}}\right) d_{q_{n}} t-f(x)\right| \\
& \leq \sum_{k=0}^{\infty} \frac{[n+k]_{q_{n}}}{b_{n}} m_{n, k, q_{n}}\left(\frac{x}{b_{n}}\right) \int_{0}^{b_{n}} q_{n}^{-k}|f(t)-f(x)| b_{n, k, q_{n}}\left(\frac{q_{n} t}{b_{n}}\right) d_{q_{n}} t \\
& \leq \sum_{k=0}^{\infty} \frac{[n+k]_{q_{n}}}{b_{n}} m_{n, k, q_{n}}\left(\frac{x}{b_{n}}\right) \int_{0}^{b_{n}} q_{n}^{-k}\left(\frac{|t-x|}{\delta}+1\right) \omega(f, \delta) b_{n, k, q_{n}}\left(\frac{q_{n} t}{b_{n}}\right) d_{q_{n}} t \\
&= \omega(f, \delta) \sum_{k=0}^{\infty} \frac{[n+k]_{q_{n}}}{b_{n}} m_{n, k, q_{n}}\left(\frac{x}{b_{n}}\right) \int_{0}^{b_{n}} q_{n}^{-k} b_{n, k, q_{n}}\left(\frac{q_{n} t}{b_{n}}\right) d_{q_{n}} t \\
&+\frac{\omega(f, \delta)}{\delta} \sum_{k=0}^{\infty} \frac{[n+k]_{q_{n}}}{b_{n}} m_{n, k, q_{n}}\left(\frac{x}{b_{n}}\right) \int_{0}^{b_{n}} q_{n}^{-k}|t-x| b_{n, k, q_{n}}\left(\frac{q_{n} t}{b_{n}}\right) d_{q_{n}} t \\
& \leq \omega(f, \delta)+\frac{\omega(f, \delta)}{\delta}\left\{\left(L_{n, q_{n}}(t-x)^{2}\right)(x)\right\}^{1 / 2} \\
& \leq \omega(f, \delta)+\frac{\omega(f, \delta)}{\delta}\left\{A_{n, q_{n}}(x)\right\}^{1 / 2}
\end{aligned}
$$

Now, if we choose $\delta^{2}=A_{n, q_{n}}(x)$, we get

$$
\left|\left(L_{n, q_{n}} f\right)(x)-f(x)\right| \leq 2 \omega\left(f, \sqrt{A_{n, q_{n}}(x)}\right)
$$

and the proof of Theorem 3.1 is thus complete.

It is easy to see that, the right-hand side of formula (3.1) can diverge. Indeed, for $x=\frac{b_{n}}{2}$ we cannot guarantee $\delta \rightarrow 0$ as $n \rightarrow \infty$.

From Lemma 2.1 and Theorem 3.1, we can immediately give the following Bohman-Korovkin-type theorem.

THEOREM 3.2. Let $\left(q_{n}\right)$ be a sequence of real numbers such that $0<q_{n}<1$ and $\lim _{n \rightarrow \infty} q_{n}=1$. Then, for $f \in C[0, \infty)$, the sequence $L_{n, q_{n}}(f, x)$ converges uniformly to $f(x)$ on any closed finite subinterval $[0, A]$, where $A>0$ being a constant.

Definition 3.3. For $f \in C[a, b]$ and $t>0$, the Peetre-K Functional are defined by

$$
K(f, \delta):=\inf _{g \in C^{2}[a, b]}\left\{\|f-g\|_{C[a, b]}+t\|g\|_{C^{2}[a, b]}\right\} .
$$

Theorem 3.4. If $g \in C^{2}[0, A]$, then

$$
\left|\left(L_{n, q} g\right)(x)-g(x)\right| \leq A_{n, q}(x)\|g\|_{C^{2}[0, A]},
$$

where $A>0$ is a constant.
Proof. By Taylor formula with integral reminder term, we write

$$
\begin{equation*}
g(t)=g(x)+(t-x) g^{\prime}(x)+\int_{0}^{t-x}(t-x-u)^{2} g^{\prime \prime}(x+u) d u \tag{3.2}
\end{equation*}
$$

If we apply the operator (1.4) to (3.2), we get

$$
\begin{aligned}
& \left|\left(L_{n, q} g\right)(x)-g(x)\right| \\
& \quad=\left|g^{\prime}(x)\left(L_{n, q}(t-x)\right)(x)+\left(L_{n, q}\left(\int_{0}^{t-x}(t-x-u)^{2} g^{\prime \prime}(x+u) d u\right)\right)(x)\right| \\
& \quad \leq\left\|g^{\prime}\right\|_{C[0, A]}\left|\left(L_{n, q}(t-x)\right)(x)\right| \\
& \quad+\left\|g^{\prime \prime}\right\|_{C[0, A]}\left|\left(L_{n, q}\left(\int_{0}^{t-x}(t-x-u)^{2} d u\right)\right)(x)\right| .
\end{aligned}
$$

Since

$$
\int_{0}^{t-x}(t-x-u)^{2} d u=\frac{(t-x)^{2}}{2}
$$

one gets from (2.5)

$$
\left|\left(L_{n, q} g\right)(x)-g(x)\right| \leq\left\|g^{\prime}\right\|_{C[0, A]}\left\{A_{n, q}(x)\right\}^{1 / 2}+\left\|g^{\prime \prime}\right\|_{C[0, A]} A_{n, q}(x)
$$

Now noting that

$$
\|g\|_{C^{2}[a, b]}=\|g\|_{C[a, b]}+\left\|g^{\prime}\right\|_{C[a, b]}+\left\|g^{\prime \prime}\right\|_{C[a, b]}
$$

we get

$$
\left|\left(L_{n, q} g\right)(x)-g(x)\right| \leq A_{n, q}(x)\|g\|_{C^{2}[0, A]}
$$

and this completes the proof of Theorem 3.4.
Now, we are ready to prove the following theorem.
TheOrem 3.5. Let $\left(q_{n}\right)$ be a sequence of real numbers such that $0<q_{n}<1$ and $\lim _{n \rightarrow \infty} q_{n}=1$. If $f \in C[0, \infty)$, then

$$
\left\|\left(L_{n, q_{n}} f\right)-f\right\|_{C[0, A]} \leq 2 K\left(f, B_{n, q_{n}}\right)
$$

where $B_{n, q_{n}}$ is the maximum value of $A_{n, q_{n}}(x)$ on $[0, A], A>0$ is a constant; namely,

$$
B_{n, q}=\frac{(1+q) b_{n}^{2}}{[n-1]_{q}[n-2]_{q}}+\frac{\left(q+2 q^{2}+q^{3}\right) b_{n}}{[n-1]_{q}} A+\left[q^{4}-2 \frac{[n-1]_{q}}{[n+1]_{q}}+1\right] A^{2}
$$

Proof. By the linearity property of $\left(L_{n, q_{n}}\right)$, we get

$$
\begin{aligned}
\mid\left(L_{n, q_{n}} f\right) & (x)-f(x) \mid \\
& \leq\left|\left(L_{n, q_{n}} f\right)(x)-\left(L_{n, q_{n}} g\right)(x)\right|+\left|\left(L_{n, q_{n}} g\right)(x)-g(x)\right|+|g(x)-f(x)| \\
& \leq\|f-g\|_{C[0, A]}\left|\left(L_{n, q_{n}} 1\right)(x)\right|+\|f-g\|_{C[0, A]}+\left|\left(L_{n, q_{n}} g\right)(x)-g(x)\right| .
\end{aligned}
$$

From Theorem 3.4, one has

$$
\left|\left(L_{n, q_{n}} f\right)(x)-f(x)\right| \leq 2\|f-g\|_{C[0, A]}+A_{n, q_{n}}(x)\|g\|_{C^{2}[0, A]},
$$

and hence

$$
\begin{equation*}
\left\|\left(L_{n, q_{n}} f\right)-f\right\|_{C[0, A]} \leq 2\|f-g\|_{C[0, A]}+B_{n, q_{n}}\|g\|_{C^{2}[0, A]} \tag{3.3}
\end{equation*}
$$

If we take the infimum on the right-hand side of (3.3) over all $g \in C^{2}[0, A]$, we get

$$
\left\|\left(L_{n, q_{n}} f\right)-f\right\|_{C[0, A]} \leq 2 K\left(f, B_{n, q_{n}}\right) .
$$

This completes the proof.
ThEOREM 3.6. Let $\left(q_{n}\right)$ be a sequence of real numbers such that $0<q_{n}<1$ and $\lim _{n \rightarrow \infty} q_{n}=1$. If $f \in \operatorname{Lip}_{M}^{\alpha}[0, \infty)$, then for any $A>0$ and $x \in[0, A]$ the inequality

$$
\left|\left(L_{n, q_{n}} f\right)(x)-f(x)\right| \leq M\left\{B_{n, q_{n}}\right\}^{\frac{\alpha}{2}}
$$

holds with the constant M, which is independent of n and $B_{n, q_{n}}$ is as defined in Theorem 3.5.

Proof. For convenience we write $L_{n, q_{n}}(f ; x)$ instead of $\left(L_{n, q_{n}} f\right)(x)$. Note that

$$
\begin{aligned}
\mid L_{n, q_{n}} & (f ; x)-f(x) \mid \leq L_{n, q_{n}}(|f(t)-f(x)| ; x) \\
& =\sum_{k=0}^{\infty} \frac{[n+k]_{q_{n}}}{b_{n}} m_{n, k, q_{n}}\left(\frac{x}{b_{n}}\right) \int_{0}^{b_{n}} q_{n}^{-k}|f(t)-f(x)| b_{n, k, q_{n}}\left(\frac{q_{n} t}{b_{n}}\right) d_{q_{n}} t
\end{aligned}
$$

$$
\leq M \int_{0}^{b_{n}} q_{n}^{-k}|t-x|^{\alpha} \sum_{k=0}^{\infty} \frac{[n+k]_{q_{n}}}{b_{n}} m_{n, k, q_{n}}\left(\frac{x}{b_{n}}\right) b_{n, k, q_{n}}\left(\frac{q_{n} t}{b_{n}}\right) d_{q_{n}} t
$$

If we choose $p_{1}=\frac{2}{\alpha}$ and $p_{2}=\frac{2}{2-\alpha}$, then $\frac{1}{p_{1}}+\frac{1}{p_{2}}=1$. Therefore

$$
\begin{aligned}
& \left|L_{n, q_{n}}(f ; x)-f(x)\right| \\
& \leq \\
& \quad M \int_{0}^{b_{n}}\left\{|t-x|^{2} q_{n}^{-k} \sum_{k=0}^{\infty} \frac{[n+k]_{q_{n}}}{b_{n}} m_{n, k, q_{n}}\left(\frac{x}{b_{n}}\right) b_{n, k, q_{n}}\left(\frac{q_{n} t}{b_{n}}\right)\right\}^{\frac{1}{p_{1}}} \times \\
& \\
& \times\left\{q_{n}^{-k} \sum_{k=0}^{\infty} \frac{[n+k]_{q_{n}}}{b_{n}} m_{n, k, q_{n}}\left(\frac{x}{b_{n}}\right) b_{n, k, q_{n}}\left(\frac{q_{n} t}{b_{n}}\right)\right\}^{\frac{1}{p_{2}}} d_{q_{n}} t .
\end{aligned}
$$

By Hölder inequality, we have

$$
\begin{aligned}
&\left|L_{n, q_{n}}(f ; x)-f(x)\right| \\
& \leq M\left\{\int_{0}^{b_{n}} q_{n}^{-k}|t-x|^{2} \sum_{k=0}^{\infty} \frac{[n+k]_{q_{n}}}{b_{n}} m_{n, k, q_{n}}\left(\frac{x}{b_{n}}\right) b_{n, k, q_{n}}\left(\frac{q_{n} t}{b_{n}}\right) d_{q_{n}} t\right\}^{\frac{1}{p_{1}}} \times \\
& \times\left\{\int_{0}^{b_{n}} q_{n}^{-k} \sum_{k=0}^{\infty} \frac{[n+k]_{q_{n}}}{b_{n}} m_{n, k, q_{n}}\left(\frac{x}{b_{n}}\right) b_{n, k, q_{n}}\left(\frac{q_{n} t}{b_{n}}\right) d_{q_{n}} t\right\}^{\frac{1}{p_{2}}} \\
&= M\left\{\int_{0}^{b_{n}} q_{n}^{-k}|t-x|^{2} \sum_{k=0}^{\infty} \frac{[n+k]_{q_{n}}}{b_{n}} m_{n, k, q_{n}}\left(\frac{x}{b_{n}}\right) b_{n, k, q_{n}}\left(\frac{q_{n} t}{b_{n}}\right) d_{q_{n}} t\right\}^{\frac{\alpha}{2}} .
\end{aligned}
$$

From (2.5) we obtain

$$
\left|L_{n, q_{n}}(f ; x)-f(x)\right| \leq M\left\{A_{n, q_{n}}(x)\right\}^{\frac{\alpha}{2}}
$$

This implies that for $x \in[0, A]$

$$
\left|\left(L_{n, q_{n}} f\right)(x)-f(x)\right| \leq M\left\{B_{n, q_{n}}\right\}^{\frac{\alpha}{2}}
$$

which in view of (2.5) and (2.6) tends to zero as $n \rightarrow \infty$.
Acknowledgement. The authors are thankful to the referees for their valuable remarks and suggestions.

REFERENCES

[1] N.K. Govil, V. Gupta, Convergence of q-Meyer-Konig-Zeller-Durrmeyer operators, Adv. Studies Contemp. Math. 19 (2009), 97-108.
[2] S. Guo, On the rate of convergence of the integrated Meyer-König and Zeller operators for functions of bounded variation, J. Approx. Theory 56 (1989), 245-255.
[3] V. Gupta, On a new type Meyer-König and Zeller type operators, J. Inequal. Pure Appl. Math. 3 (4) (2002), Paper 57, 10 pp.
[4] V. Gupta, On bounded variation functions by general MKZD operators, Acta Math. Sinica, Eng. Series. 23 (2007), 1457-1462.
[5] V. Gupta, Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput. 197 (2008), 172-178.
[6] V. Gupta, W. Heping, The rate of convergence of q-Durrmeyer operators for $0<q<1$, Math. Meth. Appl. Sci. 31 (2008), 1946-1955.
[7] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002.
[8] H. Karsli, On convergence of Chlodowsky type MKZD operators, Commun. Fasc. Sci. Univ. Ank. Ser A1 57 (2008), 1-12.
[9] T.H. Koornwinder, q-Special Functions, a Tutorial, in: M. Gerstenhaber, J. Stasheff (Eds.), Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Contemp. Math. 134 (1992), Amer. Math. Soc., 1992.
[10] W. Meyer-König, K. Zeller, Bernsteinsche Potenzreihen, Studia Math. 19 (1960), 89-94.
[11] G.M. Phillips, Bernstein polynomials based on q-integers, in: The heritage of P.L. Chebyshev: a Festschrift in honour of the 70th birthday of T.J. Rivlin, Ann. Numer. Math. 4 (1997), 511-518.
(received 16.06.2011; in revised form 06.02.2012; available online 15.03.2012)
Abant Izzet Baysal University, Faculty of Science and Arts, Department of Mathematics, 14280 Golkoy Bolu
E-mail: karsli_h@ibu.edu.tr
School of Applied Sciences, Netaji Subhas Institute of Technology, Sector 3 Dwarka New Delhi110075, India
E-mail: vijaygupta2001@hotmail.com

