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NONLINEAR DIFFERENTIAL POLYNOMIALS
SHARING A SMALL FUNCTION

Pulak Sahoo and Sajahan Seikh

Abstract. In the paper, we investigate the uniqueness problems on entire and meromorphic
functions concerning nonlinear differential polynomials that share a small function and obtain
some results which improve and generalize some previous results due to Zhang-Chen-Lin, Banerjee-
Bhattacharjee and Xu-Han-Zhang.

1. Introduction, definitions and results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations of Nevanlinna
theory as explained in [5, 17, 20]. It will be convenient to let E denote any set
of positive real numbers of finite linear measure, not necessarily the same at each
occurrence. For a nonconstant meromorphic function f , we denote by T (r, f) the
Nevanlinna characteristic of f and by S(r, f) any quantity satisfying S(r, f) =
o{T (r, f)} (r →∞, r /∈ E).

Let f and g be two nonconstant meromorphic functions. A meromorphic
function a(z) is said to be a small function of f , provided T (r, a) = S(r, f). Let
k be a positive integer or infinity. We denote by Ek)(a; f) the set of all zeros of
f−a with multiplicities not exceeding k, where each zero is counted according to its
multiplicity. If for some a, E∞)(a; f) = E∞)(a; g) we say that f and g share a CM
(counting multiplicities). We denote by T (r) the maximum of T (r, f) and T (r, g).
The notation S(r) denotes any quantity satisfying S(r) = o{T (r)} (r →∞, r /∈ E).
Throughout this paper, we use the following definition. For any a ∈ C ∪ {∞},

Θ(a, f) = 1− lim sup
r−→∞

N(r, a; f)
T (r, f)

.

In 1999, Lahiri [6] asked the following question.
What can be said if two nonlinear differential polynomials generated by two

meromorphic functions share 1 CM?
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During the last couple of years a substantial amount of investigations have been
carried out by a number of authors on the uniqueness of meromorphic functions
concerning nonlinear diffenential polynomials and naturally several elegant results
have been obtained in this aspect (see [1, 3, 4, 11–13]). In 2004, Lin and Yi proved
the following results.

Theorem A. [13] Let f and g be two transcendental entire functions, and let
n ≥ 7 be an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share 1 CM, then f ≡ g.

Theorem B. [13] Let f and g be two nonconstant meromorphic functions such
that Θ(∞, f) > 2

n+1 , and let n ≥ 11 be an integer. If fn(f − 1)f ′ and gn(g − 1)g′

share 1 CM, then f ≡ g.

In 2005, Lahiri and Sahoo [11] proved the following theorems first of which
improve Theorem A.

Theorem C. Let f and g be two transcendental entire functions, and let n ≥ 7
be an integer. If E3)(1; fn(f − 1)f ′) = E3)(1; gn(g − 1)g′), then f ≡ g.

Theorem D. Let f and g be two transcendental meromorphic functions such
that Θ(∞, f) > 0, Θ(∞, g) > 0, Θ(∞, f) + Θ(∞, g) > 4

n+1 , and let n ≥ 11 be an
integer. If E3)(1; fn(f − 1)f ′) = E3)(1; gn(g − 1)g′), then f ≡ g.

The following example was given in [11] to show that the condition Θ(∞, f)+
Θ(∞, g) > 4

n+1 is sharp in Theorem D.
Example 1. Let

f =
(n + 2)(1− hn+1)
(n + 1)(1− hn+2)

, g =
(n + 2)h(1− hn+1)
(n + 1)(1− hn+2)

and h =
α2(ez − 1)

ez − α
,

where α = exp
(

2πi
n+2

)
and n is a positive integer.

Then T (r, f) = (n + 1)T (r, h) + O(1) and T (r, g) = (n + 1)T (r, h) + O(1).
Also we see that h 6= α, α2 and a root of h = 1 is not a pole of f and g. Hence
Θ(∞; f) = Θ(∞; g) = 2/(n + 1). Also fn+1

(
f

n+1 − 1
n+1

)
≡ gn+1

(
g

n+1 − 1
n+1

)

and fn(f − 1)f ′ ≡ gn(g − 1)g′ but f 6≡ g.
In 2008, Zhang-Chen-Lin proved the following theorem for meromorphic func-

tions concerning some general differential polynomials.

Theorem E. [21] Let f and g be two nonconstant meromorphic functions, let
n and m be two positive integers with n > max{m+10, 3m+3}, and P (z) = amzm+
am−1z

m−1 + · · · + a1z + a0, where a0( 6= 0), a1, . . . , am−1, am( 6= 0) are complex
constants. If fnP (f)f ′ and gnP (g)g′ share 1 CM, then either f ≡ tg for a constant
t such that td = 1, where d = (n+m+1, . . . , n+m+1− i, . . . , n+1), am−i 6= 0 for
some i = 0, 1, . . . , m, or f and g satisfy the algebraic equation R(f, g) = 0, where

R(x, y) = xn+1

(
am

n + m + 1
xm +

am−1

n + m
xm−1 + · · ·+ a0

n + 1

)

− yn+1

(
am

n + m + 1
ym +

am−1

n + m
ym−1 + · · ·+ a0

n + 1

)
.
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In this direction, Banerjee-Bhattacharjee proved the following theorems.

Theorem F. [2] Let f and g be two transcendental meromorphic functions,
and let n, k be two positive integers such that Θ(∞, f) + Θ(∞, g) > 4

n+1 . Suppose
Ek)(1; fn(f − 1)f ′) = Ek)(1; gn(g − 1)g′). If k ≥ 3, Θ(∞, f) > 0, Θ(∞, g) > 0 and
n ≥ 11 or if k = 2 and n ≥ 14 or if k = 1 and n ≥ 21, then f ≡ g.

Theorem G. [2] Let f and g be two nonconstant entire functions, and let n, k
be two positive integers. Suppose Ek)(1; fn(f −1)f ′) = Ek)(1; gn(g−1)g′). If k ≥ 3
and n ≥ 7 or if k = 2 and n ≥ 9 or if k = 1 and n ≥ 13, then f ≡ g.

In 2009, Xu-Han-Zhang proved the following results.

Theorem H. [15] Let f and g be two nonconstant meromorphic functions,
and let n(≥ 1), k(≥ 1), m(≥ 2) be three integers and (n + 1, m) = 1. Suppose
Ek)(1; fn(fm − 1)f ′) = Ek)(1; gn(gm − 1)g′). If k ≥ 3 and n > m + 10 or if k = 2
and n > 3m

2 + 12 or if k = 1 and n > 3m + 18, then f ≡ g.

Theorem I. [15] Let f and g be two nonconstant entire functions, and let n, k,
m be three positive integers. Suppose Ek)(1; fn(fm − 1)f ′) = Ek)(1; gn(gm − 1)g′).
If k ≥ 3 and n > m + 5 or if k = 2 and n > 3m+13

2 or if k = 1 and n > 3m + 11,
then f ≡ g.

This paper is motivated by the following question.
What can be said if the sharing value 1 is replaced by a small function in the

above results?
In the paper we shall investigate the possible solutions in the above question.

In the paper we will prove two theorems first of which not only improve Theorem
E, but also improve and supplement Theorems F and H. Our second result will
improve and supplement Theorems G and I.

The following theorems are the main results of the paper.

Theorem 1. Let f and g be two nonconstant meromorphic functions and
n(≥ 1), k(≥ 1), m(≥ 1) be three integers such that Θ(∞, f) + Θ(∞, g) > 4

n+1 . Let
P (z) be defined as in Theorem E. Suppose Ek) (α; fnP (f)f ′) = Ek) (α; gnP (g)g′)
where α( 6≡ 0,∞) be a small function of f and g and one of the following holds:

(i) k ≥ 3, Θ(∞, f) > 0, Θ(∞, g) > 0 and n > max{3m + 1,m + 9};
(ii) k = 2 and n > max{3m + 1, 3m

2 + 12};
(iii) k = 1 and n > 3m + 17.
Then the conclusion of Theorem E holds.

Remark 1. In Theorem 1, if we take n > max{3m + 1,m + 10} for k = 3,
then the conditions Θ(∞, f) > 0, Θ(∞, g) > 0 can be removed.

Remark 2. Theorem 1 is an improvement of Theorem E.
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Taking am = 1, a0 = −1 and am−i = 0 for i = 1, 2, . . . , m − 1 in P (z) in
Theorem 1, we obtain the following corollary.

Corollary 1. Let f and g be two nonconstant meromorphic functions and
n(≥ 1), k(≥ 1), and m(≥ 2) be three integers. Suppose Ek)(α; fn(fm − 1)f ′) =
Ek)(α; gn(gm − 1)g′) where α(6≡ 0,∞) be a small function of f and g and one of
the following holds:

(i) k ≥ 3 and n > m + 10;
(ii) k = 2 and n > 3m

2 + 12;
(iii) k = 1 and n > 3m + 17.
Then either f ≡ g or f ≡ −g. The possibility f ≡ −g arise only when n is odd

and m is even.

Remark 3. Since Theorems F and H can be obtained as special cases of
Theorem 1, Theorem 1 improves and supplements them.

Theorem 2. Let f and g be two nonconstant entire functions, and let n(≥ 1),
m(≥ 1), k(≥ 1) be three integers. Suppose Ek) (α; fnP (f)f ′) = Ek) (α; gnP (g)g′)
where P (z) and α be defined as in Theorem E and Theorem 1 respectively and one
of the following holds:

(i) k ≥ 3 and n > max{3m + 1,m + 5};
(ii) k = 2 and n > max{3m + 1, 3m

2 + 6};
(iii) k = 1 and n > 3m + 9.
Then the conclusion of Theorem E holds.

Corollary 2. Let f and g be two nonconstant entire functions, and let
n(≥ 1), m(≥ 1) and k(≥ 1) be three integers. Suppose Ek)(α; fn(fm − 1)f ′) =
Ek)(α; gn(gm − 1)g′) where α(6≡ 0,∞) be a small function of f and g and one of
the following holds:

(i) k ≥ 3 and n > m + 5;
(ii) k = 2 and n > 3m

2 + 6;
(iii) k = 1 and n > 3m + 9.
Then the conclusion of Corollary 1 holds.

Remark 4. Since Theorems G and I are special cases of Theorem 2, Theorem
2 improves and supplements them.

We now explain some definitions and notations which are used in the paper.

Definition 1. [11] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the
counting functions of simple a-points of f . For a positive integer p we denote
by N(r, a; f |≤ p) (N(r, a; f |≥ p)) the counting function of those a-points of f
whose multiplicities are not greater (less) than p, where each a-point is counted
according to its multiplicity.
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N(r, a; f |≤ p) and N(r, a; f |≥ p) are defined similarly, where in counting the
a-points of f we ignore the multiplicities. Also N(r, a; f |< p) and N(r, a; f |> p)
are defined analogously.

Definition 2. For an integer k(≥ 2), N(r, a; f |= k) denotes the reduced
counting function of those a-points of f whose multiplicities are exactly k.

Definition 3. [7] Let p be a positive integer or infinity. We denote by
Np(r, a; f) the counting function of a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ p and p times if m > p. Then

Np(r, a; f) = N(r, a; f) + N(r, a; f |≥ 2) + · · ·+ N(r, a; f |≥ p).

Definition 4. [2] Let m be a positive integer and Em)(a; f) = Em)(a; g) for
some a ∈ C. Let z0 be a zero of f − a with multiplicity p and a zero of g − a with
multiplicity q. We denote by NL(r, a; f) the counting function of those a-points of
f and g for which p > q ≥ m + 1, by N

(m+1

E (r, a; f) the reduced counting function
of those a-points of f and g for which p = q ≥ m + 1, and by Nf>m+1(r, 1; g) the
reduced counting function of f and g for which p ≥ m + 2 and q = m + 1. Also by
Nf≥m+1(r, a; f | g 6= a) we denote the reduced counting functions of those a-points
of f and g for which p ≥ m + 1 and q = 0. Analogously we can define NL(r, a; g),
N

(m+1

E (r, a; g) and Ng≥m+1(r, a; g | f 6= a).

Definition 5. [9] Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g = b)
(N(r, a; f | g 6= b)) the counting function of those a-points of f , counted according
to multiplicity, which are the b-points (not the b-points) of g.

Definition 6. [2] Let a, b ∈ C ∪ {∞} and p be a positive integer. Then we
denote by N(r, a; f |≥ p | g = b) (N(r, a; f |≥ p | g 6= b)) the reduced counting
function of those a-points of f with multiplicities ≥ p, which are the b-points (not
the b-points) of g.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [14, 16] Let f be a nonconstant meromorphic function and let
an(z)( 6≡ 0), an−1(z), . . . , a0(z) be meromorphic functions such that T (r, ai(z)) =
S(r, f) for i = 0, 1, 2, . . . , n. Then

T (r, anfn + an−1f
n−1 + · · ·+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2. [18] Let f be a nonconstant meromorphic function. Then

N
(
r, 0; f (k)

)
≤ N(r, 0; f) + kN(r,∞; f) + S(r, f).
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Lemma 3. [19] Let f and g be two nonconstant meromorphic functions. If

f ′′

f ′
− 2f ′

f − 1
≡ g′′

g′
− 2g′

g − 1

and

lim sup
r→∞,r /∈E

N(r, 0; f) + N(r, 0; g) + N(r,∞; f) + N(r,∞; g)
T (r)

< 1

then f ≡ g or fg ≡ 1.

Lemma 4. [2] Let f and g be two nonconstant meromorphic functions. If
Ek)(1; f) = Ek)(1; g) and 2 ≤ k < ∞, then

N(r, 1; f |= 2) + 2N(r, 1; f |= 3) + · · ·+ (k − 1)N(r, 1; f |= k) + kN
(k+1

E (r, 1; f)

+ kNL(r, 1; f) + (k + 1)NL(r, 1; g) + kNg≥k+1(r, 1; g | f 6= 1)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 5. [2] Suppose that f , g be two nonconstant meromorphic functions
and E2)(1; f) = E2)(1; g). Then

Nf≥3(r, 1; f | g 6= 1) ≤ 1
2
N(r, 0; f) +

1
2
N(r,∞; f)− 1

2
N0(r, 0; f ′) + S(r, f),

where N0(r, 0; f ′) denotes the counting function of those zeros of f ′ which are not
the zeros of f(f − 1), each point is counted according to its multiplicity.

Lemma 6. [2] Let f and g be two nonconstant meromorphic functions. If
E1)(1; f) = E1)(1; g), then

2NL(r, 1; f) + 2NL(r, 1; g) + N
(2

E (r, 1; f) + Ng≥2(r, 1; g | f 6= 1)−Nf>2(r, 1; g)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 7. [2] Let f and g be two nonconstant meromorphic functions. If
E1)(1; f) = E1)(1; g), then

Nf≥2(r, 1; f | g 6= 1) ≤ N(r, 0; f) + N(r,∞; f)−N0(r, 0; f ′) + S(r, f).

Lemma 8. [2] Suppose that f , g be two nonconstant meromorphic functions
and E1)(1; f) = E1)(1; g). Then

Nf>2(r, 1; g)+Nf≥2(r, 1; f | g 6= 1) ≤ N(r, 0; f)+N(r,∞; f)−N0(r, 0; f ′)+S(r, f).
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Lemma 9. Let f and g be two nonconstant meromorphic functions and α(6≡
0,∞) be a small function of f and g. Let n and m be two positive integers such
that n > 3m + 1. Then

fnP (f)f ′gnP (g)g′ 6≡ α2,

where P (z) is defined as in Theorem E.

Proof. We suppose that

fnP (f)f ′gnP (g)g′ ≡ α2. (2.1)

We write

P (z) = am(z − b1)l1(z − b2)l2 · · · (z − bi)li · · · (z − bs)ls ,

where
∑s

i=1 li = m, 1 ≤ s ≤ m; bi 6= bj , i 6= j, 1 ≤ i, j ≤ s; bi is nonzero constant
and li is positive integer, i = 1, 2, . . . , s. Let z0 (α(z0) 6= 0,∞) be a zero of f with
multiplicity p. Then z0 is a pole of g with multiplicity q, say. From (2.1) we get
np + p− 1 = nq + mq + q + 1 and so

mq + 2 = (n + 1)(p− q). (2.2)

From (2.2) we get q ≥ n−1
m and from (2.2) we obtain

p ≥ 1
n + 1

[
(n + m + 1)(n− 1)

m
+ 2

]
=

n + m− 1
m

.

Let z1 (α(z1) 6= 0,∞) be a zero of P (f) of order p and be a zero of f − bi of order
qi for i = 1, 2, . . . , s. Then p = liqi for i = 1, 2, . . . , s. Then z1 is a pole of g with
multiplicity q, say. So from (2.1) we get

qili + qi − 1 = (n + m + 1)q + 1 ≥ n + m + 2

i.e., qi ≥ n + m + 3
li + 1

for i = 1, 2, . . . , s. Since a pole of f (which is not a pole of α)

is either a zero of gnP (g) or a zero of g′, we have

N(r,∞; f) ≤ N(r, 0; g) +
s∑

i=1

N(r, bi; g) + N0(r, 0; g′) + S(r, f) + S(r, g)

≤
(

m

n + m− 1
+

m + s

n + m + 3

)
T (r, g) + N0(r, 0; g′) + S(r, f) + S(r, g),

where N0(r, 0; g′) denotes the reduced counting function of those zeros of g′ which
are not the zeros of gP (g).

Then by the second fundamental theorem of Nevanlinna we get

sT (r, f) ≤ N(r,∞; f) + N(r, 0; f) +
s∑

i=1

N(r, bi; f)−N0(r, 0; f ′) + S(r, f)

≤
(

m

n + m− 1
+

m + s

n + m + 3

)
{T (r, f) + T (r, g)}

+ N0(r, 0; g′)−N0(r, 0; f ′) + S(r, f) + S(r, g). (2.3)
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Similarly

sT (r, g) ≤
(

m

n + m− 1
+

m + s

n + m + 3

)
{T (r, f) + T (r, g)}

+ N0(r, 0; f ′)−N0(r, 0; g′) + S(r, f) + S(r, g).

Adding (2.3) and (2.4) we obtain
(

s− 2m

n + m− 1
− 2(m + s)

n + m + 3

)
{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which is a contradiction as n > 3m + 1. This proves the lemma.
Note 1. If P (z) = a0z + a1, for any two nonzero constants a0 and a1, the

lemma holds for n ≥ 5.
Note 2. If P (z) is a polynomial of degree ≥ 2 and all the zeros are simple,

then the lemma is true for n ≥ 4.

Lemma 10. Let f and g be two nonconstant meromorphic functions and

F = fn+1

[
am

n + m + 1
fm +

am−1

n + m
fm−1 + · · ·+ a0

n + 1

]

and

G = gn+1

[
am

n + m + 1
gm +

am−1

n + m
gm−1 + · · ·+ a0

n + 1

]
,

where a0(6= 0), a1, . . . , am−1, am(6= 0) are complex constants. Further let F0 = F ′
α

and G0 = G′
α , where α ( 6≡ 0,∞) is a small function of f and g. Then S(r, F0) and

S(r,G0) are replaceable by S(r, f) and S(r, g) respectively.

Proof. By Lemma 1

T (r, F0) ≤ T (r, F ′) + S(r, f) ≤ 2T (r, F ) + S(r, f)

= 2(n + m + 1)T (r, f) + S(r, f)

and similarly T (r,G0) ≤ 2(n + m + 1)T (r, g) + S(r, g). This proves the lemma.

Lemma 11. Let F , G, F0 and G0 be defined as in Lemma 10. We define
F = fn+1F ∗ and G = gn+1G∗ where

F ∗ =
[

am

n + m + 1
fm +

am−1

n + m
fm−1 + · · ·+ a0

n + 1

]

and

G∗ =
[

am

n + m + 1
gm +

am−1

n + m
gm−1 + · · ·+ a0

n + 1

]
.

Then

(i) T (r, F ) ≤ T (r, F0) + N(r, 0; f) +
m∑

i=1

N(r, ci; f) −
m∑

j=1

N(r, dj ; f) −N(r, 0; f ′) +

S(r, f),
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(ii) T (r,G) ≤ T (r,G0) + N(r, 0; g) +
m∑

i=1

N(r, ci; g)−
m∑

j=1

N(r, dj ; g)−N(r, 0; g′) +

S(r, g),
where c1, c2, . . . , cm are the roots of the equation

am

n + m + 1
zm +

am−1

n + m
zm−1 + · · ·+ a0

n + 1
= 0,

and d1, d2, . . . , dm are the roots of the equation P (z) = 0.

Proof. We prove (i) only, as the proof of (ii) is similar. Using Nevanlinna’s
first fundamental theorem and Lemma 1 we get

T (r, F ) = T (r,
1
F

) + O(1) = N(r, 0; F ) + m(r,
1
F

) + O(1)

≤ N(r, 0;F ) + m(r,
F0

F
) + m(r, 0; F0) + O(1)

= N(r, 0;F ) + T (r, F0)−N(r, 0; F0) + S(r, F )

= T (r, F0) + N(r, 0; f) + N(r, 0; F ∗)−N(r, 0;P (f))−N(r, 0; f ′) + S(r, f)

= T (r, F0) + N(r, 0; f) +
m∑

i=1

N(r, ci; f)−
m∑

j=1

N(r, dj ; f)

−N(r, 0; f ′) + S(r, f).

This proves the lemma.
Thed following lemma can be proved in the line of [10, Lemma 2.10].

Lemma 12. Let F and G be defined as in Lemma 10, where m and n(> m+2)
are positive integers. Then F ′ ≡ G′ implies F ≡ G.

3. Proofs of the theorems

Proof of Theorem 1. Let F , G, F0 and G0 be defined as in Lemma 10. Then
Ek)(1; F0) = Ek)(1; G0). Let

H =

(
F
′′
0

F
′
0

− 2F
′
0

F0 − 1

)
−

(
G
′′
0

G
′
0

− 2G
′
0

G0 − 1

)
. (3.1)

We assume that H 6≡ 0. Suppose that z0 be a simple 1-point of F0. Then z0 is a
simple 1-point of G0. So from (3.1) we see that z0 is a zero of H. Thus

N (r, 1; F0 |= 1) ≤ N(r, 0;H) ≤ T (r,H) + O(1)

≤ N(r,∞; H) + S(r, F ) + S(r,G).
(3.2)

From (3.1) it is clear that

N(r,∞; H) ≤ N(r,∞;F0) + N(r,∞; G0) + N (r, 0;F0 |≥ 2) + N (r, 0; G0 |≥ 2)

+ NL (r, 1;F0) + NL (r, 1; G0) + NF0≥k+1 (r, 1; F0 | G0 6= 1)

+ NG0≥k+1 (r, 1; G0 | F0 6= 1) + N0

(
r, 0; F

′
0

)
+ N0

(
r, 0;G

′
0

)
, (3.3)
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where N0(r, 0;F
′
0)

(
N0(r, 0; G

′
0)

)
denotes the reduced counting function of those

zeros of F
′
0 (G

′
0)which are not the zeros of F0(F0−1) (G0(G0 − 1)). Now we discuss

the following two cases.
Case 1. Let k ≥ 2. By Lemma 4, (3.2) and (3.2) we obtain

N (r, 1; F0) + N (r, 1;G0)

≤ N (r, 1; F0 |= 1) + N (r, 1; F0 |= 2) + · · ·+ N (r, 1; F0 |= k)

+ NL (r, 1;F0) + NL (r, 1; G0) + NF0≥k+1 (r, 1;F0 | G0 6= 1)

+ N
(k+1

E (r, 1; G0) + N (r, 1; G0)

≤ N(r,∞; F0) + N(r,∞; G0) + N(r, 0; F0 |≥ 2) + N(r, 0;G0 |≥ 2)

+ 2NF0≥k+1 (r, 1; F0 | G0 6= 1)− (k − 1)NG0≥k+1 (r, 1; G0 | F0 6= 1)

+ T (r,G0) + N0

(
r, 0; F

′
0

)
+ N0

(
r, 0; G

′
0

)
+ S(r, F0) + S(r,G0).

(3.4)

From (3.4) and Nevanlinna’s second fundamental theorem we obtain

T (r, F0) + T (r,G0)

≤ 2N(r,∞;F0) + 2N(r,∞;G0) + N2 (r, 0;F0) + N2 (r, 0; G0)

+ 2NF0≥k+1 (r, 1;F0 | G0 6= 1)− (k − 1)NG0≥k+1 (r, 1; G0 | F0 6= 1)

+ T (r,G0) + S(r, F0) + S(r,G0). (3.5)

This gives

T (r, F0) ≤ 2N(r,∞;F0) + 2N(r,∞;G0) + N2(r, 0;F0) + N2(r, 0; G0)

+ 2NF0≥k+1 (r, 1;F0 | G0 6= 1)− (k − 1)NG0≥k+1 (r, 1; G0 | F0 6= 1)

+ S(r, F0) + S(r,G0). (3.6)

Similarly

T (r,G0) ≤ 2N(r,∞; F0) + 2N(r,∞; G0) + N2(r, 0; F0) + N2(r, 0; G0)

+ 2NG0≥k+1 (r, 1; G0 | F0 6= 1)− (k − 1)NF0≥k+1 (r, 1;F0 | G0 6= 1)

+ S(r, F0) + S(r,G0). (3.7)

Suppose k ≥ 3. Adding (3.6) and (3.7) we get

T (r, F0) + T (r,G0) ≤ 4N(r,∞;F0) + 4N(r,∞;G0) + 2N2(r, 0;F0)

+ 2N2(r, 0; G0) + S(r, F0) + S(r,G0).

Using Lemmas 10 and 11 we obtain

T (r, F ) + T (r,G)

≤ 4N(r,∞; F0) + 4N(r,∞; G0) + 2N2(r, 0; F0) + 2N2(r, 0; G0) + N(r, 0; f)
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+ N(r, 0; g) +
m∑

i=1

N(r, ci; f) +
m∑

i=1

N(r, ci; g)−
m∑

j=1

N(r, dj ; f)

−
m∑

j=1

N(r, dj ; g)−N(r, 0; f ′)−N(r, 0; g′) + S(r, f) + S(r, g)

≤ 4N(r,∞; f) + 4N(r,∞; g) + 4N(r, 0; f) + 4N(r, 0; g) + N(r, 0; f)

+ N(r, 0; g) +
m∑

i=1

N(r, ci; f) +
m∑

i=1

N(r, ci; g) +
m∑

j=1

N(r, dj ; f)

+
m∑

j=1

N(r, dj ; g) + N(r, 0; f ′) + N(r, 0; g′) + S(r, f) + S(r, g).

Applying Lemmas 1 and 2 we obtain

(n + m + 1){T (r, f) + T (r, g)} ≤ [2m + 11− 5Θ(∞, f) + ε]T (r, f)

+ [2m + 11− 5Θ(∞, g) + ε]T (r, g) + S(r, f) + S(r, g),

where ε(> 0) is arbitrary. This implies

[n−m− 10 + 5Θ(∞, f)− ε]T (r, f) + [n−m− 10 + 5Θ(∞, g)− ε]T (r, g)

≤ S(r, f) + S(r, g).

Since n > m + 9, choosing 0 < ε < min{Θ(∞, f), Θ(∞, g)}, we arrive at a contra-
diction.

Now we assume that k = 2. Adding (3.6), (3.7) and using Lemma 5 we obtain

T (r, F0) + T (r,G0)

≤ 4N(r,∞; F0) + 4N(r,∞;G0) + 2N2(r, 0; F0) + 2N2(r, 0;G0)

+ NF0≥3 (r, 1; F0 | G0 6= 1) + NG0≥3 (r, 1; G0 | F0 6= 1)

+ S(r, F0) + S(r,G0)

≤ 9
2
N(r,∞; F0) +

9
2
N(r,∞;G0) + 2N2(r, 0;F0) + 2N2(r, 0;G0)

+
1
2
N(r, 0;F0) +

1
2
N(r, 0; G0) + S(r, F0) + S(r,G0).

Using Lemmas 10 and 11 we obtain

T (r, F ) + T (r,G)

≤ 9
2
N(r,∞;F0) +

9
2
N(r,∞;G0) + 2N2(r, 0;F0) + 2N2(r, 0; G0)

+
1
2
N(r, 0; F0) +

1
2
N(r, 0; G0) + N(r, 0; f) + N(r, 0; g)

+
m∑

i=1

N(r, ci; f) +
m∑

i=1

N(r, ci; g)−
m∑

j=1

N(r, dj ; f)−
m∑

j=1

N(r, dj ; g)

−N(r, 0; f ′)−N(r, 0; g′) + S(r, f) + S(r, g)



162 P. Sahoo, S. Seikh

≤ 9
2
N(r,∞; f) +

9
2
N(r,∞; g) +

9
2
N(r, 0; f) +

9
2
N(r, 0; g) + N(r, 0; f)

+ N(r, 0; g) +
m∑

i=1

N(r, ci; f) +
m∑

i=1

N(r, ci; g) +
3
2

m∑
j=1

N(r, dj ; f)

+
3
2

m∑
j=1

N(r, dj ; g) +
3
2
N(r, 0; f ′) +

3
2
N(r, 0; g′) + S(r, f) + S(r, g).

From Lemmas 1 and 2 we obtain

(n + m + 1){T (r, f) + T (r, g)}

≤
(

5m

2
+ 13

)
T (r, f) +

(
5m

2
+ 13

)
T (r, g) + S(r, f) + S(r, g),

which is a contradiction since n > 3m
2 + 12.

Case 2. Let k = 1. In view of Lemmas 6–8, (3.2) and (3.3) we obtain

N (r, 1; F0) + N (r, 1; G0)

≤ N (r, 1;F0 |= 1) + NL (r, 1;F0) + NL (r, 1; G0)

+ NF0≥2 (r, 1; F0 | G0 6= 1) + N
(2

E (r, 1; F0) + N (r, 1; G0)

≤ N(r,∞;F0) + N(r,∞;G0) + N (r, 0; F0 |≥ 2) + N (r, 0; G0 |≥ 2)

+ 2NF0≥2 (r, 1; F0 | G0 6= 1) + NF0>2 (r, 1; G0) + T (r,G0)

+ N0(r, 0;F
′
0) + N0(r, 0; G0

′) + S(r, F0) + S(r,G0)

≤ 3N(r,∞;F0) + N(r,∞;G0) + N (r, 0; F0 |≥ 2) + N (r, 0; G0 |≥ 2)

+ 2N(r, 0; F0) + T (r,G0) + N0(r, 0; F
′
0) + N0 (r, 0; G0

′)

+ S(r, F0) + S(r,G0). (3.8)

In view of second fundamental theorem of Nevanlinna we obtain

T (r, F0) + T (r,G0) ≤ 4N(r,∞;F0) + 2N(r,∞; G0) + N2 (r, 0;F0) + N2 (r, 0; G0)

+ 2N(r, 0; F0) + T (r,G0) + S(r, F0) + S(r,G0). (3.9)

This gives

T (r, F0) ≤ 4N(r,∞; F0) + 2N(r,∞;G0) + N2(r, 0; F0) + N2(r, 0;G0)

+ 2N(r, 0;F0) + S(r, F0) + S(r,G0). (3.10)

By Lemmas 10 and 11 we have

T (r, F ) ≤ 4N(r,∞;F0) + 2N(r,∞;G0) + N2(r, 0;F0) + N2(r, 0; G0)

+ 2N(r, 0; F0) + N(r, 0; f) +
m∑

i=1

N(r, ci; f)−
m∑

j=1

N(r, dj ; f)

−N(r, 0; f ′) + S(r, f) + S(r, g)
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≤ 4N(r,∞; f) + 2N(r,∞; g) + 4N(r, 0; f) + 2N(r, 0; g) + N(r, 0; f)

+
m∑

i=1

N(r, ci; f) + 2
m∑

j=1

N(r, dj ; f) +
m∑

j=1

N(r, dj ; g)

+ 2N(r, 0; f ′) + N(r, 0; g′) + S(r, f) + S(r, g).

Hence by Lemmas 1 and 2 we obtain

(n + m + 1)T (r, f) ≤ [3m + 13− 6Θ(∞, f) + ε]T (r, f)

+ [m + 6− 3Θ(∞, g) + ε]T (r, g) + S(r, f) + S(r, g)

≤ [4m + 19− 6Θ(∞, f)− 3Θ(∞, g) + 2ε]T (r)

+ S(r, f) + S(r, g), (3.11)

where ε(> 0) is arbitrary. Similarly

(n + m + 1)T (r, g) ≤ [4m + 19− 3Θ(∞, f)− 6Θ(∞, g) + 2ε]T (r)

+ S(r, f) + S(r, g). (3.12)

From (3.11) and (3.12) we get

[n− 3m− 18 + 3Θ(∞, f) + 3Θ(∞, g) + 3 min{Θ(∞, f), Θ(∞, g)} − 2ε]T (r) ≤ S(r).

Since n > 3m + 17 and Θ(∞, f) + Θ(∞, g) > 4
n+1 , we arrive at a contradiction.

We now assume that H ≡ 0. By Lemma 1 we get

(n + m)T (r, f) = T (r, fnP (f)) + S(r, f)

≤ T (r, F ′) + T (r, f ′) + S(r, f)

≤ T (r, F0) + 2T (r, f) + S(r, f)

and so T (r, F0) ≥ (n + m− 2)T (r, f) + S(r, f). Similarly

T (r,G0) ≥ (n + m− 2)T (r, g) + S(r, g).

Also from Lemma 2 we have

N(r, 0; F0) + N(r,∞; F0) + N(r, 0;G0) + N(r,∞; G0)

≤ N(r, 0; f) +
m∑

j=1

N(r, dj ; f) + N(r, 0; f ′) + N(r,∞; f) + N(r, 0; g)

+
m∑

j=1

N(r, dj ; g) + N(r, 0; g′) + N(r,∞; g) + S(r, f) + S(r, g)

≤ {m + 4− 2Θ(∞; f) + ε}T (r, f) + {m + 4− 2Θ(∞; g) + ε}T (r, g)

+ S(r, f) + S(r, g)

≤ 2m + 8− 2Θ(∞; f)− 2Θ(∞; g) + 2ε

n + m− 2
T (r) + S(r),

where ε(> 0) is sufficiently small.
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In view of the hypothesis we get from above

lim sup
r→∞,r /∈E

N(r, 0;F0) + N(r,∞;F0) + N(r, 0;G0) + N(r,∞; G0)
T (r)

< 1.

Applying Lemma 3 we obtain either F0G0 ≡ 1 or F0 ≡ G0. Since by Lemma 9,
F0G0 6≡ 1, we get by Lemma 12 that F ≡ G. This gives

fn+1

[
am

n + m + 1
fm +

am−1

n + m
fm−1 + · · ·+ a0

n + 1

]

= gn+1

[
am

n + m + 1
gm +

am−1

n + m
gm−1 + · · ·+ a0

n + 1

]
. (3.13)

Let h = f
g . If h is a constant, by putting f = gh in (3.13) we get

am

m + n + 1
gm(hn+m+1 − 1) +

am−1

m + n
gm−1(hn+m − 1) + · · ·+ a0

n + 1
(hn+1 − 1) = 0,

which implies hd = 1, where d = (n+m+1, . . . , n+m+1− i, . . . , n+1), am−i 6= 0
for some i = 0, 1, . . . , m. Thus f ≡ tg for a constant t such that td = 1, d =
(n + m + 1, . . . , n + m + 1− i, . . . , n + 1), am−i 6= 0 for some i = 0, 1, . . . , m.

If h is not a constant, then from (3.13) we can say that f and g satisfy the
algebraic equation R(f, g) = 0, where

R(x, y) = xn+1

(
am

n + m + 1
xm +

am−1

n + m
xm−1 + · · ·+ a0

n + 1

)

− yn+1

(
am

n + m + 1
ym +

am−1

n + m
ym−1 + · · ·+ a0

n + 1

)
.

This completes the proof of the theorem.
Proof of Theorem 2. We omit the proof since proceeding in the same way the

proof can be carried out in the line of the proof of Theorem 1.
Proof of Corollary 1. Proceeding in the like manner as in the proof of Theorem

1 we get

1
n + m + 1

fn+m+1 − 1
n + 1

fn+1 ≡ 1
n + m + 1

gn+m+1 − 1
n + 1

gn+1.

Then using Note 2 of Lemma 9 and [12, Lemma 10] we obtain the conclusions of
the Corollary.
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