FINITE DIMENSIONS DEFINED BY MEANS OF *m*-COVERINGS

Vitaly V. Fedorchuk

Abstract. We introduce and investigate finite dimensions (m, n)-dim defined by means of *m*-coverings. These dimensions generalize the Lebesgue dimension: dim = (2, 1)-dim. If n < m and (m, n)-dim $X < \infty$, then X is weakly infinite-dimensional in the sense of Smirnov.

Introduction

In [7] there were introduced classes of \mathcal{G} -C-spaces and m- \mathcal{G} -C-space, where \mathcal{G} is a class of simplicial complexes and $m \geq 2$ is an integer. Partial cases of these classes were considered in [8], where (m, n)-C-spaces were defined $(m \geq n \geq 1)$. Let (m, n)-C be the class of all (m, n)-C-spaces. Then all classes (m, n)-C are intermediate between the class wid = (2, 1)-C = (n + 1, n)-C of all weakly infinite-dimensional spaces in the sense of Smirnov and the class C of all C-spaces in the sense of Haver [9], Addis and Gresham [1]. For example,

wid =
$$(2,1)$$
- $C \supset (3,1)$ - $C \supset \cdots \supset (m,1)$ - $C \supset \cdots \supset C$.

Here we define new dimension functions: (m, n)-dim (Definition 2.8). From definitions it follows that

$$(m,n)-\dim X < \infty \Rightarrow X \in (m,n)-C.$$

$$(0.1)$$

For every normal space X we have

$$(2,1)-\dim X = \dim X \tag{0.2}$$

in view of the partition theorem.

For every metrizable space we have (Theorem 3.7)

$$(m,n)\operatorname{-dim} X \le \dim X \tag{0.3}$$

²⁰¹⁰ AMS Subject Classification: 54F45

Keywords and phrases: Dimension; dimension (m, n)-dim; metrizable space; hereditarily normal space.

The author was supported by the Russian Foundation for Basic research (Grant 09-01-00741) and the Program "Development of the Scientific Potential of Higher School" of the Ministry for Education of the Russian Federation (Grant 2.1.1.3704).

and (Theorem 3.9)

$$(m,1)-\dim X = \dim X. \tag{0.4}$$

One of the main results is

THEOREM 3.4. If n < m, then for every space X we have

(m, n)-dim $X \le 0 \iff \dim X \le n - 1$.

This theorem gives us a lot of spaces X with (m, n)-dim $X < \dim X$.

In § 2 we study general properties of dimension (m, n)-dim. This dimension satisfies the addition property for hereditarily normal spaces (Theorem 2.17):

$$X = X_1 \cup X_2 \Rightarrow (m, n) - \dim X \le (m, n) - \dim X_1 + (m, n) - \dim X_2 + 1.$$
 (0.5)

Theorem 2.21 states that if X is the limit of an inverse system $\{X_{\alpha}, \pi_{\beta}^{\alpha}, A\}$ of compact spaces, then

$$(m,n)\operatorname{-dim} X \le \sup\{(m,n)\operatorname{-dim} X_{\alpha} : \alpha \in A\}.$$

$$(0.6)$$

§ 1 has an auxiliary character. It contains necessary definitions and facts. One can find an additional information on dimension theory in [3] and [6].

§ 1. Preliminaries

All spaces are assumed to be normal T_1 . All mappings are continuous. The symbol |A| stands for the cardinality of a set A. If A is a subset of a space X, then $\operatorname{Cl}(A) = \operatorname{Cl}_X(A)$ denotes the closure of A in X.

By a cover we mean an open cover of a space. By $\operatorname{cov}(X)$ we denote the set of all covers of X. The set of all finite covers of X is denoted by $\operatorname{cov}_{\infty}(X)$ and $\operatorname{cov}_m(X)$ stands for the set of all covers of X consisting of $\leq m$ members.

Let u and v be families of subsets of a set X. They say that v refines u (v is a refinement of u) if each $V \in v$ is contained in some $U \in u$. A family v combinatorially refines u (v is a combinatorially refinement of u) if there exists an injection $i : v \to u$ such that $V \subset i(V)$ for each $V \in v$. If v refines u we write $u \prec v$.

For a simplicial complex K by v(K) we denote the set of all its vertices. By FinS we denote the set of all non-empty finite subsets of S. Let u be a family of arbitrary sets and let $u_0 = \{U \in u : U \neq \emptyset\}$. The *nerve* N(u) of the family u is a simplicial complex such that $v(N(u)) = \{a_U : U \in u_0\}$ and a set $\Delta \in \operatorname{Finv}(N(u))$ is a simplex of N(u) if and only if $\bigcap \{U : a_U \in \Delta\} \neq \emptyset$.

By the order of a family u of sets we mean the largest n such that u contains n sets with a non-empty intersection. If no such integer exist, we say that u has order ∞ . The order of u is denoted by ordu. Clearly,

ord
$$u \le \iff \dim N(u) \le n - 1;$$

ord $u \le 1 \iff u$ is a disjoint family.

By \mathbb{N} we denote the set of all positive integers.

Let u be a family of subsets of a set X and let $M \subset X$. Then

$$u|M = \{U \cap M : U \in u\}.$$

1.1. OPEN SWELLING LEMMA. If $\Phi = \{F_1, \ldots, F_m\}$ is a sequence of closed subsets of a space X, then there exists a family $v = (V_1, \ldots, V_m)$ of open subsets of X such that

$$F_j \subset V_j, \quad j = 1, \dots, m;$$

 $N(v) = N(\Phi). \quad \blacksquare$

The Urysohn lemma and Lemma 1.1 yield

1.2. LEMMA. Let $u = (U_1, \ldots, U_m)$ be a sequence of open subsets of a space X and let $\Phi = (F_1, \ldots, F_m)$ be a sequence of closed subsets of X such that

$$F_j \subset U_j, \quad j = 1, \dots, m.$$

Then there exists a sequence $v = (V_1, \ldots, V_m)$ of open subsets of X such that

$$F_j \subset V_j \subset \operatorname{Cl}(V_j) \subset U_j, \quad j = 1, \dots, m;$$

 $N(v) = N(\Phi). \quad \blacksquare$

1.3. LEMMA [5]. Let X be a hereditarily normal space and let $M \subset X$. Then for every sequence $v = (V_1, \ldots, V_m)$ of open subsets of M there exists a sequence $w = (W_1, \ldots, W_m)$ of open subsets of X such that w|M = v and N(w) = N(v).

1.4. DEFINITION. Let $u = (U_1, \ldots, U_m)$ be a cover of a space X. A sequence φ of functions $f_j : X \to [0, 1], \quad j = 1, \ldots, m$, is said to be a *partition of unity* subordinated to the cover u if

$$f_1(x) + \dots + f_m(x) = 1 \quad \text{for every} \quad x \in X;$$

$$f_i^{-1}(0; 1] \subset U_j, \quad j = 1, \dots, m.$$

1.5. CLOSED SHRINKING LEMMA. Let $u = (U_1, \ldots, U_m) \in \operatorname{cov}_m(X)$. Then there exists a family $\Phi = (F_1, \ldots, F_m)$ of closed subsets of X such that

$$F_j \subset U_j, \quad j = 1, \dots, m;$$

 $F_1 \cup \dots \cup F_m = X.$

The Urysohn lemma and Lemma 1.5 imply

1.6. PARTITION OF UNITY LEMMA. For every finite cover u of a space X there exists a partition of unity subordinated to u.

1.7. THEOREM ON PARTITIONS [10]. A space X satisfies the inequality $\dim X \leq n \geq 0$ if and only if for every sequence (A_i, B_i) , $i = 1, \ldots, n + 1$, of pairs of disjoint closed subsets of X there exist partitions P_1, \ldots, P_{n+1} between A_i and B_i such that $P_1 \cap \cdots \cap P_{n+1} = \emptyset$.

1.8. DEFINITION. A mapping $f: X \to \Delta_n$ to the *n*-dimensional simplex Δ_n is said to be *inessential*, if the mapping $g = f|f^{-1}S^{n-1}: f^{-1}S^{n-1} \to S^{n-1}$, where S^{n-1} is the combinatorial boundary of Δ_n , can be extended over X.

1.9. THEOREM [2]. A space X satisfies the inequality dim $X \leq n \geq 0$ if and only if each mapping $f: X \to \Delta_{n+1}$ is inessential.

1.10. THEOREM [11]. Let X be a metrizable space with dim $X \leq n \geq 0$. Then X can be represented as the union of n + 1 its subspaces X_i , $i = 1, \ldots, n$, so that dim $X_i \leq 0$.

1.11. BORSUK'S THEOREM ON EXTENSION OF HOMOTOPY [12, 13]. If F is a closed subspace of X, then each mapping $f : (X \times \{0\}) \cup (F \times I) \rightarrow R$ into ANR-compactum R extends over $X \times I$.

1.12. THEOREM [4]. Let $f : X \to K$ and $g : X \to K$ be mappings to a simplicial complex K satisfying the following condition:

if $f(x) \in Oa_i$, then $g(x) \in Oa_i$,

where Oa_j is the star of a vertex $a_j \in K$ in K.

Then f and g are homotopically equivalent.

1.13. DEFINITION. Let $u = (U_1, \ldots, U_m)$ be a finite sequence of sets and let $u \prec v$. An *integration* of the family v with respect to u is the following sequence

 $I(v, u) = (W_1, \dots, W_m):$ $W_1 = \bigcup \{ V \in v : V \subset U_1 \}, \quad W_j = \bigcup \{ V \in v : V \subset U_j; \quad V \not\subset U_k, \quad k < j \}.$

1.14. PROPOSITION. 1) $\cup I(v, u) = \cup v, 2$ $u \prec I(v, u), 3$ ord $I(v, u) \leq \text{ord}v.$

1.15. LEMMA. Let $\alpha = (A_1, \ldots, A_m)$ and $\beta = (B_1, \ldots, B_m)$ be sequences of sets and let $\alpha \lor \beta = (A_1 \cup B_1, \ldots, A_m \cup B_m)$. Assume that

1) ord $\beta \leq 1$;

2) $B_j \cap A_k = \emptyset$ for all $k \neq j$.

Then $N(\alpha \lor \beta) = N(\alpha)$.

Proof. We have to show that for every family j_1, \ldots, j_k ,

 $\bigcap \{A_{j_1} \cup B_{j_1} : i = 1, \dots, k\} = \emptyset \iff \bigcap \{A_{j_i} : i = 1, \dots, k\} = \emptyset.$

Implication \Rightarrow is obvious. Now let $A_{j_1} \cap \cdots \cap A_{j_k} = \emptyset$. Then by virtue of Newton binom we have

 $(A_{j_1} \cup B_{j_1}) \cap (A_{j_2} \cup B_{j_2}) \cap \dots \cap (A_{j_k} \cup B_{j_k}) = \sum_{\mu \subset \{1, \dots, k\}} C_{\mu}$ where $\nu = \{1, \dots, k\} \setminus \mu$ and $C_{\mu} = \left(\bigcap \{A_{j_i} : i \in \mu\} \right) \cap \left(\bigcap \{B_{j_i} : i \in \nu\} \right).$ If $|\mu| = k$, then $C_{\mu} = A_{i_1} \cap \cdots \cap A_{i_k} = \emptyset$ according to our assumption. If $|\mu| = k - 1$, then $C_{\mu} = \emptyset$ in view of condition 2). At last, if $|\mu| \le k - 2$, then $C_{\mu} = \emptyset$ by virtue of 1).

§ 2. Basic properties of finite (m, n)-dimensions

2.1. DEFINITION. Let $u = (U_1, \ldots, U_m) \in \operatorname{cov}_m(X)$ and let $\Phi = (F_1, \ldots, F_m)$ be a family of closed subsets of X such that

$$F_j \subset U_j, \ j = 1, \dots, m;$$

ord $\Phi \leq 1.$

Then (u, Φ) is said to be an *m*-pair in X. The set of all *m*-pairs in X is denoted by m(X).

2.2. DEFINITION. Let $m, n \in \mathbb{N}$, $n \leq m$, (u, Φ) be an *m*-pair in X and let $v = (V_1, \ldots, V_m)$ be a family of open subsets of X such that

$$F_j \subset V_j \subset U_j, \ j = 1, \dots, m;$$

ord $v \le n.$

Then (u, v, Φ) is called an (m, n)-triple in X.

2.3. LEMMA. Let $n_1 \leq n_2$ and let (u, v, Φ) be an (m, n_1) -triple in X. Then (u, v, Φ) is an (m, n_2) -triple in X.

Lemma 1.2 yields

2.4. LEMMA. Every m-pair (u, Φ) in X can be included in (m, 1)-triple (u, v, Φ) in X.

2.5. DEFINITION. Let $(u, \Phi) \in m(X)$. A closed set $P \subset X$ is said to be an *n*-partition of (u, Φ) (notation: $P \in Part(u, \Phi, n)$) if there exists an (m, n)-triple (u, v, Φ) in X such that $P = X \setminus \bigcup v$.

Lemma 2.4 yields

2.6. PROPOSITION. Every m-pair (u, Φ) in X has an n-partition P.

2.7. DEFINITION. Let $(u_i, \Phi_i) \in m(X), i = 1, \dots, r$. The sequence

 $((u_1, \Phi_1), \dots, (u_r, \Phi_r))$ is called *n*-inessential in X if there exist partitions $P_i \in Part(u_i, \Phi_i, n)$ such that $P_1 \cap \dots \cap P_r = \emptyset$.

2.8. DEFINITION. Let $m, n \in \mathbb{N}, n \leq m$. To every space X one assigns the dimension (m, n)-dimX, which is an integer ≥ -1 or ∞ . The dimension function (m, n)-dim is defined in the following way:

(1) (m, n)-dimX = -1 if and only if $X = \emptyset$;

(2) (m, n)-dim $X \leq k$, where $k = 0, 1, \ldots$, if every sequence $((u_1, \Phi_1), \ldots, (u_{k+1}, \Phi_{k+1})), (u_i, \Phi_i) \in m(X)$, is *n*-inessential in X;

(3) (m, n)-dim $X = \infty$, if (m, n)-dimX > k for each $k \in \mathbb{N}$.

2.9. THEOREM. For every space X we have

(2,1)-dim $X = \dim X$.

Proof. We start with inequality (2,1)-dim $X \leq \dim X$. Let dimX = n and let $(u_i, \Phi_i) \in 2(X), i = 1, \ldots, n + 1$. Let $u_i = (U_1^i, U_2^i)$ and $\Phi_i = (F_1^i, F_2^i)$. Put

$$G_1^i = F_1^i \cup (X \setminus U_2^i), \quad G_2^i = F_2^i \cup (X \setminus U_1^i).$$

Then the family $\Gamma_i = (G_1^i, G_2^i)$ is disjoint, $i = 1, \ldots, n+1$. Since dim $X \leq n$, from Theorem 1.7 it follows that there exist partitions P_i in X between G_1^i and G_2^i such that $P_1 \cap \cdots \cap P_{n+1} = \emptyset$. From definitions of the sets G_j^i we get $P_i \in$ Part $(u_i, \Phi_i, 1)$. Hence the sequence $((u_1, \Phi_1), \ldots, (u_{n+1}, \Phi_{n+1}))$ is 1-inessential in X and, consequently, (2,1)-dim $X \leq n$.

Now let (2,1)-dim $X \leq n$. Let $\Phi_i = (F_1^i, F_2^i)$, $i = 1, \ldots, n+1$, be pairs of disjoint closed subsets of X. Put

$$U_1^i = X \setminus F_2^i, \quad U_2^i = X \setminus F_1^i, \quad i = 1, \dots, n+1.$$

Then

$$u_i = (U_1^i, U_2^i) \in \operatorname{cov}_2(X), \ i = 1, \dots, n+1.$$

Moreover, $(u_i, \Phi_i) \in 2(X)$, i = 1, ..., n+1. Since (2, 1)-dim $X \leq n$, there exist partitions $P_i \in Part(u_i, \Phi_i, 1)$ such that $P_1 \cap \cdots \cap P_{n+1} = \emptyset$. Since $P_i \in Part(u_i, \Phi_i, 1)$, there exist pairs $v_i = (V_1^i, V_2^i)$ of disjoint open subsets of X such that

$$F_j^i \subset V_j^i \subset U_j^i, \quad j = 1, 2; \quad i = 1, \dots, n+1;$$
$$P_i = X \setminus V_1^i \cup V_2^i.$$

Hence P_i are partitions of pairs Φ_i . By virtue of Theorem 1.7 we have dim $X \leq n$.

2.10. PROPOSITION. Let M be a closed subset of X. Then

$$(m, n)$$
-dim $M \le (m, n)$ -dim X .

Proof. The theorem is obvious if (m, n)-dimX = -1 or (m, n)-dim $X = \infty$, so that we can assume that (m, n)-dimX = k, $0 \le k < \infty$. Let

$$(u_i, \Phi_i) \in m(M), \quad i = 1, \dots, k+1;$$

 $u_i = (U_1^i, \dots, U_m^i), \quad \Phi_i = (F_1^i, \dots, F_m^i).$

Put $W_j^i = U_j^i \cup (X \setminus M)$ and $w_i = (W_1^i, \dots, W_m^i)$. Then $(w_i, \Phi_i) \in m(X)$. Since (m, n)-dimX = k, the sequence $(w_1, \Phi_1), \dots, (w_{k+1}, \Phi_{k+1})$ is *n*-inessential in X. Clearly, the sequence $(w_1|M, \Phi_1), \dots, (w_{k+1}|M, \Phi_{k+1})$ is *n*-inessential in M. But $w_i|M = u_i$.

2.11. PROPOSITION. If a space X can be represented as the union of a discrete family X_{α} , $\alpha \in A$, of closed subspaces such that (m, n)-dim $X_{\alpha} \leq k$ for $\alpha \in A$, then (m, n)-dim $X \leq k$.

2.12. LEMMA. Let X be a hereditarily normal space and let Y be its subspace. Let F, F_1, F_2, \ldots, F_k be a disjoint family of closed subsets of X, V be a an open subset of Y, OF be a neighbourhood of F in X such that

$$Y \cap \operatorname{Cl}(OF) \subset V; \tag{2.1}$$

$$(V \cup OF) \cap F_j = \emptyset, \quad j = 1, \dots, m.$$
 (2.2)

Then $V \cup F$ is open in $Y_1 = Y \cup F \cup F_1 \cup \cdots \cup F_k$.

PROOF. From (2.1) it follows that $(Y \setminus V) \cap Cl(OF) = \emptyset$ and, consequently, $Cl(Y \setminus V) \cap OF = \emptyset$. Hence

$$OF \subset X \setminus \operatorname{Cl}(Y \setminus V) = W.$$
 (2.3)

On the other hand,

$$V \subset W. \tag{2.4}$$

In fact, since V is open in Y, we have

$$V \cap \operatorname{Cl}(Y \setminus V) = V \cap \operatorname{Cl}_Y(Y \setminus V) = \emptyset.$$
(2.5)

Then $y \in V \Rightarrow (2.5) \Rightarrow y \notin \operatorname{Cl}(Y \setminus V) \Rightarrow y \in X \setminus \operatorname{Cl}(Y \setminus V) = W$.

Conditions (2.3) and (2.4) yield $V \cup OF \subset W$. Consequently, $V \cup F \subset W$ and, in accordance with (2.2), we have

$$V \cup F \subset W \setminus \bigcup \{F_j : j = 1, \dots, m\}.$$
(2.6)

To prove our lemma it suffices to check that

$$V \cap F = Y_1 \cap (W \setminus \bigcup \{F_j : j = 1, \dots, m\}).$$

By virtue of (2.6) it remains to show that

$$Y_1 \cap \left(W \setminus \bigcup \{ F_j : j = 1, \dots, m \} \right) \subset V \cup F.$$

$$(2.7)$$

Since $Y_1 \setminus \bigcup \{F_j : j = 1, \dots, m\} = Y \cup F$, we have

$$Y_1 \cap (W \setminus \bigcup \{F_j : j = 1, \dots, m\}) = W \cap (Y \cup F).$$

Consequently, to prove (2.7), it suffices to check that $W \cap Y \subset V$. But $W \cap Y = Y \setminus \operatorname{Cl}(Y \setminus V)$ according to (2.3). Let $y \in Y \setminus \operatorname{Cl}(Y \setminus V)$. Then there exists a neighbourhood Oy such that $Oy \cap (Y \setminus V) = \emptyset$. Consequently, $Y \cap Oy \subset V$.

2.13. DEFINITION. For a subspace M of a space X, the relative (m, n)-dimension of M is defined by the formula

 $r \cdot (m, n) \cdot d_X M = \sup \{ (m, n) \cdot \dim F : F \subset M \text{ and } F \text{ is closed in } X \}.$

Proposition 2.10 implies

2.14. PROPOSITION. For every normal subspace M of a space X we have

$$r-(m,n)-d_XM \leq (m,n)-\dim M.$$

2.15. LEMMA. Let $(u, \Phi) \in m(X)$, where $u = (U_1, \ldots, U_m)$, $\Phi = (F_1, \ldots, F_m)$. Then there exist a cover $u_1 = (U_1^1, \ldots, U_m^1) \in \operatorname{cov}_m(X)$ and neighbourhoods OF_j such that

$$OF_j \subset \operatorname{Cl}(OF_j) \subset U_j, \quad j = 1, \dots, m;$$

$$(2.8)$$

$$\operatorname{ord}(\operatorname{Cl}(OF_1), \dots, \operatorname{Cl}(OF_m)) \le 1; \tag{2.9}$$

$$\operatorname{Cl}(OF_j) \subset U_j^1 \subset U_j, \quad j = 1, \dots, m; \tag{2.10}$$
$$i_1 \neq i_2 \Rightarrow \operatorname{Cl}(OF_j) \cap U_j^1 = \emptyset \tag{2.11}$$

$$j_1 \neq j_2 \Rightarrow \operatorname{Cl}(OF_{j_1}) \cap U_{j_2}^1 = \emptyset.$$
 (2.11)

Proof. By virtue of Lemma 1.2 there exist neighbourhoods OF_j satisfying conditions (2.8) and (2.9). Put

$$U_j^1 = U_j \setminus \bigcup \{ \operatorname{Cl}(OF_k) : k \neq j \}.$$
(2.12)

Then (2.9) and (2.12) yield (2.10) and (2.11). It remains to show that $u_1 = (U_1^1, \ldots, U_m^1) \in \text{cov}(X)$.

Let $x \in U_j \setminus U_j^1$. Then $x \in Cl(OF_k)$ for some $k \neq j$. Consequently, from (2.10) it follows that $x \in U_k^1$.

2.16. PROPOSITION. If a hereditarily normal space X can be represented as the union of two subspaces Y and Z such that

$$(m, n)$$
-dim $Y \leq k$, r - (m, n) - $d_X Z \leq l$,

then

$$(m, n)$$
-dim $X \le k + l + 1.$ (2.13)

Proof. We can assume that $0 \le k < \infty$, $0 \le l < \infty$. To prove (2.13), we have to show that every sequence $(u_i, \Phi_i) \in m(X)$, $i = 1, \ldots, k + l + 2$, is *n*-inessential in X (see Definition 2.8). Let

$$u_i = (U_1^i, \dots, U_m^i), \quad \Phi_1 = (F_1^i, \dots, F_m^i), \quad i = 1, \dots, k+l+2.$$

By virtue of Lemma 2.15 we may assume that there exist neighbourhoods OF^i_j such that

$$F_j^i \subset OF_j^i \subset \operatorname{Cl}(OF_j^i) \subset U_j^i; \tag{2.14}$$

$$l \neq j \implies U_l^i \cap \operatorname{Cl}(O\Phi_j^i) = \emptyset, \ i = 1, \dots, k+1.$$
 (2.15)

From (2.14) and (2.15) it follows that

$$(u_i, \Omega_i) \in m(X), \text{ where } \Omega_i = (\operatorname{Cl}(O\Phi_1^i), \dots, \operatorname{Cl}(O\Phi_{k+1}^i)).$$

Since (m, n)-dim $Y \leq k$, the sequence $(u_i|Y, \Omega_i|Y)$, $i = 1, \ldots, k+1$, is ninessential in Y. Hence there exist sequences $v_i = (V_1^i, \ldots, V_m^i), i = 1, \ldots, k+1,$ of open subsets of Y such that

$$Y \cap \operatorname{Cl}(OF_j^i) \subset V_j^i \subset U_j^i, \quad i = 1, \dots, k+1; \quad j = 1, \dots, m;$$

ord $v_i \leq n, \quad i = 1, \dots, k+1;$
 $v_1 \cup \dots \cup v_{k+1} \in \operatorname{cov}(Y).$

Put $Y_1^i = Y \cup F_1^i \cup \cdots \cup F_m^i$ and $\varphi_i = (V_1^i \cup F_1^i, \dots, V_m^i \cup F_m^i), \quad i = 1, \dots, k+1.$ By virtue of (2.15) and Lemma 1.15 we have

$$\operatorname{ord}\varphi_i = \operatorname{ord}v_i \le n.$$
 (2.16)

The pair (V_i^i, F_i^i) satisfies conditions of Lemma 2.12. Hence members of φ_i are open in Y_1^i . Since X is hereditarily normal, according to Lemma 1.3 there exist families

$$w_i = (W_1^i, \dots, W_m^i), \quad i = 1, \dots, k+1$$

of open subsets of X such that

$$V_j^i \cup F_j^i \subset W_j^i \subset U_j^i, \quad j = 1, \dots, m;$$

$$ordw_i \le n.$$
(2.17)
(2.18)

$$\operatorname{prd}w_i \le n.$$
 (2.18)

Put $W_i = W_1^i \cup \cdots \cup W_m^i$ and $W = W_1 \cup \cdots \cup W_{k+1}$. By definition we have

$$w_1 \cup \dots \cup w_{k+1} \in \operatorname{cov}(W). \tag{2.19}$$

Let $F = X \setminus W$. By virtue of (2.17) we have $F \subset Z$. Since $r(m, n) - d_X Z < l$, we have (m, n)-dim $F \leq l$. Hence the sequence $(u_i|F, \Phi_i|F), i = k+2, \ldots, k+l+2,$ is n-inessential in F. Following to the first part of the proof we can find families

$$w_i = (W_1^i, \dots, W_m^i), \quad i = k + 2, \dots, k + l + 2,$$

of open subsets of X such that $\operatorname{ord} w_i \leq n$,

$$F_j^i \subset W_j^i \subset U_j^i, \quad i = k+2, \dots, k+l+2; \quad j = 1, \dots, m;$$

and

$$F \subset \bigcup \{W_j^i: i = k + 2, \dots, k + l + 2; j = 1, \dots, m\}.$$

Thus the sequence w_1, \ldots, w_{k+l+2} realizes the conditions of an *n*-inessentialitness of the sequence (u_i, Φ_i) , $i = 1, \ldots, k + l + 2$.

Proposition 2.16 implies

2.17. The addition theorem for (m, n)-dim. If a hereditarily normal space X is represented as the union of two subspaces X_1 and X_2 , then

$$(m, n)$$
-dim $X \le (m, n)$ -dim $X_1 + (m, n)$ -dim $X_2 + 1$.

Theorem 2.17 yields

2.18. COROLLARY. If a hereditarily normal space X can be represented as the union of k + 1 subspaces X_0, X_1, \ldots, X_k such that (m, n)-dim $X_i \leq 0$ for $i = 0, 1, \ldots, k$, then (m, n)-dim $X \leq k$.

2.19. PROPOSITION. Let $f: X \to Y$ be a mapping and let a sequence $(u_i, \Phi_i) \in m(Y)$ be n-inessential in Y. Then the sequence $(f^{-1}u_i, f^{-1}\Phi_i)$ is n-inessential in X.

2.20. PROPOSITION. Let $(u_i^l, \Phi_i^l) \in m(X)$, $u_i^l = ({}^lU_1^i, \ldots, {}^lU_m^i)$, $\Phi_i^l = ({}^lF_1^i, \ldots, {}^lF_m^i)$, $i = 1, \ldots, r$; l = 1, 2. Assume that

$${}^{1}F_{j}^{i} \subset {}^{2}F_{j}^{i} \subset {}^{2}U_{j}^{i} \subset {}^{1}U_{j}^{i}, \quad i = 1, \dots, r; \quad j = 1, \dots, m.$$

Let the sequence (u_i^2, Φ_i^2) , $i = 1, \ldots, r$, be n-inessential in X. Then the sequence (u_i^1, Φ_i^1) , $i = 1, \ldots, r$, is n-inessential in X.

2.21. THEOREM. Let $S = \{X_{\alpha}, \pi_{\beta}^{\alpha}, A\}$ be an inverse system of compact spaces X_{α} with (m, n)-dim $X_{\alpha} \leq k$, and let $X = \lim S$. Then (m, n)-dim $X \leq k$.

PROOF. We have to verify that an arbitrary sequence $(u_i, \Phi_i) \in m(X)$, $i = 1, \ldots, k + 1$, is *n*-inessential in X. Let $u_i = (U_1^i, \ldots, U_m^i)$, $\Phi_i = (F_1^i, \ldots, F_m^i)$. Since X is a compact space, by definition of the inverse limit topology, for each $i = 1, \ldots, k + 1$ there exists $\alpha_i \in A$ and

$$u_i^i = \left({}^i U_1^i, \dots, {}^i U_m^i\right) \in \operatorname{cov}_m(X_{\alpha_i})$$
(2.20)

such that

$$\pi_{\alpha_i}^{-1} \begin{pmatrix} {}^i U_j^i \end{pmatrix} \subset U_j^i, \quad j = 1, \dots, m;$$

$$(2.21)$$

$$\operatorname{ord}(\pi_{\alpha_i}(\Phi_i)) \le 1, \tag{2.22}$$

where $\pi_{\alpha} : X \to X_{\alpha}$ are the limit projections of the system S and $\pi_{\alpha}(\Phi_i) = \left(\pi_{\alpha}(F_1^i), \ldots, \pi_{\alpha}(F_m^i)\right)$. Since A is a directed set, there exists $\alpha_0 \in A$ such that

$$\alpha_i \leq \alpha_o, \quad i = 1, \dots, k+1.$$

 Put

$${}^{0}U_{j}^{i} = \left(\pi_{\alpha_{i}}^{\alpha_{0}}\right)^{-1} \left({}^{i}U_{j}^{i}\right), \quad j = 1, \dots, m;$$
(2.23)

$${}^{0}F_{j}^{i} = \left(\pi_{\alpha_{i}}^{\alpha_{0}}\right)^{-1} \left(\pi_{\alpha}(F_{j}^{i})\right), \quad j = 1, \dots, m;$$
(2.24)

$$u_i^0 = ({}^0U_1^i, \dots, {}^0U_m^i), \quad i = 1, \dots, k+1;$$
 (2.25)

$$\Phi_i^0 = \begin{pmatrix} {}^0F_1^i, \dots, \dots, {}^0F_m^i \end{pmatrix}, \quad i = 1, \dots, k+1.$$
(2.26)

By virtue of (2.20)-(2.22) we have

$$(u_i^0, \Phi_i^0) \in m(X_{\alpha_0}), \quad i = 1, \dots, k+1.$$
 (2.27)

Since (m, n)-dim $X_{\alpha_0} \leq k$, the sequence (2.27) is *n*-inessential in X_{α_0} . Then the sequence

$$\left(\pi_{\alpha_0}^{-1}(u_i^0), \ \pi_{\alpha_0}^{-1}(\Phi_i^0)\right), \ i = 1, \dots, k+1,$$

is *n*-inessential in X according to Proposition 2.19. On the other hand, from (2.21), (2.23)-(2.25) it follows that

$$\Phi_i$$
 refines $\pi_{\alpha_0}^{-1}(\Phi_i^0)$ and $\pi_{\alpha}^{-1}(u_i^0)$ refines u_i , $i = 1, \dots, k+1$.

Consequently, Proposition 2.20 implies that the sequence $(u_i, \Phi_i), i = 1, ..., k+1$, is *n*-inessential in X.

\S 3. Comparison of dimensions

3.1. PROPOSITION. If $n \ge m$, then (m, n)-dim $X \le 0$ for every space X. The condition

$$n_1 \le n_2 \Rightarrow \operatorname{Part}(u, \Phi, n_2) \subset \operatorname{Part}(u, \Phi, n_1)$$
 (3.1)

implies

3.2. Proposition. If $n_1 \leq n_2$, then

$$(m, n_1)$$
-dim $X \ge (m, n_2)$ -dim X

for every space X.

The condition

$$m_1 \le m_2 \Rightarrow \operatorname{cov}_{m_1}(X) \subset \operatorname{cov}_{m_2}(X) \tag{3.2}$$

yields

3.3. PROPOSITION. If $m_1 \leq m_2$, then

$$(m_1, n)$$
-dim $X \leq (m_2, n)$ -dim X

for every space X.

3.4. THEOREM. If n < m, then for every space X we have

(m, n)-dim $X \le 0 \iff \dim X \le n - 1$.

Proof. Let (m, n)-dim $X \leq 0$. We have to show that

$$\dim X \le n - 1. \tag{3.3}$$

According to Theorem 1.9 condition (3.3) is equivalent to the condition

every mapping
$$f: X \to \Delta_n$$
 is inessential. (3.4)

Let a_j , j = 1, ..., n + 1, be the vertices of the simplex Δ_n and let O_j be the stars of Δ_n with respect to a_j . Put

$$U_j = f^{-1}O_j, \quad j = 1, \dots, n+1.$$
 (3.5)

Since n < m, we have $u = (U_1, \ldots, U_{n+1}) \in \operatorname{cov}_m(X)$. Consider a pair (u, Φ) , where $\Phi = (F_1, \ldots, F_{n+1})$ and $F_j = \emptyset$, $j = 1, \ldots, n+1$. Then $(u, \Phi) \in m(X)$. In view of (m, n)-dim $X \leq 0$ there exists a cover $v = (V_1, \ldots, V_{n+1})$ of X such that

$$V_j \subset U_j, \quad j = 1, \dots, n+1; \tag{3.6}$$

$$\operatorname{ord} v \le n.$$
 (3.7)

Consider a partition of unity $(\varphi_1, \ldots, \varphi_{n+1})$ subordinated to the cover v. Let

$$\varphi = \varphi_1 \triangle \ldots \triangle \varphi_{n+1} \to \Delta_n$$

be the barycentric mapping defined by $(\varphi_1, \ldots, \varphi_{n+1})$, that is

$$\varphi(x) = (\varphi_1(x), \dots, \varphi_{n+1}(x)),$$

where $\varphi_j(x)$ is the barycentric coordinate of the point $\varphi(x)$ corresponding to the vertex $a_j \in \Delta_n$. We have

$$\varphi^{-1}O_j = \{x \in X : \varphi_j(x) > 0\} \subset V_j \subset U_j.$$
(3.8)

From (3.7) it follows that

$$\varphi(X) \subset \Delta_n^{n-1} = S^{n-1}, \tag{3.9}$$

where $\Delta_n^{n-1} = S^{n-1}$ is the (n-1)-dimensional skeleton of the simplex Δ_n . Let $F = f^{-1}S^{n-1}$. Conditions (3.5) and (3.8) imply that

$$\varphi(x) \in O_j \Rightarrow f(x) \in O_j.$$

Hence the mappings $\varphi : F \to S^{n-1}$ and $f_0 = f|_F : F \to S^{n-1}$ are homotopically equivalent by Theorem 1.12. Consequently, from (3.9) it follows that the mapping f_0 is extended over X by virtue of Theorem 1.11. Thus f is inessential. Inequality (3.3) is proved.

Now let $\dim X \leq n-1$. We have to check that

$$(m,n)-\dim X \le 0. \tag{3.10}$$

If m = n, then (3.10) is a corollary of Proposition 3.1, so that we assume that $m - n \ge 1$. Let (u, Φ) , $u = (U_1, \ldots, U_m)$, $\Phi = (F_1, \ldots, F_m)$, be an *m*-pair in *X*. To prove (3.10), we have to find a cover $v = (V_1, \ldots, V_m) \in \operatorname{cov}_m(X)$ such that

$$F_j \subset V_j \subset U_j, \quad j = 1, \dots, m; \tag{3.11}$$

$$\operatorname{ord} v \le n. \tag{3.12}$$

Let us take a cover $u_1 = (U_1^1, \ldots, U_m^1)$ and neighbourhoods OF_j from Lemma 2.15. Since dim $X \leq n-1$, there exist a cover $w_1 \in cov(X)$ such that w_1 refines u_1 and $ordw_1 \leq n$. Let $w = (W_1, \ldots, W_m)$ be an integration of w_1 with respect to u_1 . In accordance with Definition 1.13 and Proposition 1.14 w is a cover of order $\leq n$ such that

$$W_j \subset U_j^1, \quad j = 1, \dots, m. \tag{3.13}$$

Put $V_j = W_j \cup OF_j$ and $v = (V_1, \ldots, V_m)$. From Lemma 1.15 (for $A_j = W_j$ and $B_j = OF_j$), (2.10), and (3.13) it follows that v is a cover satisfying conditions (2.11) and (2.12).

Theorem 3.4 implies

3.5. THEOREM. Let $m \ge n+2$. Then dim $X \le n$ if and only if for every cover $u = (U_1, \ldots, U_m) \in \operatorname{cov}_m(X)$ and for every disjoint family $\Phi = (F_1, \ldots, F_m)$ of closed subsets of X such that $F_j \subset U_j$ there exists a cover $v = (V_1, \ldots, V_m) \in \operatorname{cov}_m(X)$ such that

$$F_j \subset V_j \subset U_j, \quad j = 1, \dots, m;$$

ord $v \le n+1.$

Another corollary of Theorem 3.4 is

3.6. THEOREM. For every space X we have

$$\dim X \le 0 \Rightarrow (m, n) \text{-} \dim X \le 0.$$

Proof. Theorem 3.4 implies that (m, 1)-dim $X \leq 0$. Applying Proposition 3.2 we get the required property.

3.7. THEOREM. For every metrizable space X we have

$$(m,n)-\dim X \le \dim X. \tag{3.14}$$

Proof. The assertion is obvious if dimX = -1 or dim $X = \infty$. Assume that dimX = k, $0 \le k < \infty$. By virtue of Katetov theorem (Theorem 1.10) there exist subspaces $X_i \subset X$, $0 \le i \le k$, such that dim $X_i \le 0$ and $X = X_0 \cup X_1 \cup \cdots \cup X_k$. According to Theorem 3.6 we have (m, n)-dim $X \le 0$. It remains to apply Corollary 2.18. ■

3.8. QUESTION. Does equality (3.14) hold for an arbitrary space X?

3.9. THEOREM. If $m \geq 2$, then

$$(m,1)-\dim X = \dim X \tag{3.15}$$

for every metrizable space X.

Proof. By virtue of Theorem 2.9

(

$$(2,1)-\dim X = \dim X.$$
 (3.16)

From (3.16) and Proposition 3.3 it follows that (m, 1)-dim $X \leq \dim X$. At last, Theorem 3.7 yields

$$m, 1$$
)-dim $X \ge \dim X$.

3.10. QUESTION. Does equality (3.15) hold for an arbitrary space X?

REFERENCES

- D.F. Addis, J.H. Gresham, A class of infinite-dimensional spaces I. Dimension theory and Alexandroff's problem, Fund. Math. 101 (1978), 195–205.
- [2] P.S. Alexandroff, On the dimension of normal spaces, Proc. Roy. Soc. London, A 189 (1947), 11–39.
- [3] P.S. Alexandroff, B.A. Pasynkov, Introduction to Dimension Theory, Moscow, Nayka, 1972 (in Russian).
- [4] R. Cauty, Sur le prolongement des fonctions continues à valeurs dans les CW-complexes, C.R. Acad.Sci. 274 (1972), A35–A37.
- [5] E. Čech, Théorie général de l'homologie dans un espace quelconque, Fund. Math. 19 (1932), 149–183.
- [6] R. Engelking, Theory of Dimensions. Finite and Infinite, Sigma Ser. Pure Math. 10, Heldermann, Lemgo, 1995.
- [7] V.V. Fedorchuk, C-spaces and simplicial complexes, Sib. Matem. J. 50 (2009), 933–941 (in Russian).
- [8] V.V. Fedorchuk, C-spaces and matrix of infinite-dimensionality, Topology Appl. 157 (2010), 2622–2634.
- W.E. Haver, A covering property for metric spaces, Lecture Notes Math. 375 (1974), 108– 113.
- [10] E. Hemmingsen, Some theorems on dimension theory for normal Hausdorff spaces, Duke Math. J. 13 (1946), 495–504.
- [11] M. Katétov, On the dimension of metric spaces, Dokl. AN USSR 79 (1951), 189–191 (In Russian).
- [12] K. Morita, On generalizations of Borsuk's homotopy extension theorem, Fund. Math. 88 (1975), 1–6.
- [13] M. Starbird, The Borsuk homotopy extension without binormality condition, Fund. Math. 87 (1975), 207–211.

(received 27.12.2011; in revised form 06.02.2012; available online 15.03.2012)

Mech.-Math. Faculty, Moscow State University, Moscow, Russia *E-mail*: vvfedorchuk@gmail.com