FINITE DIMENSIONS DEFINED BY MEANS OF m-COVERINGS

Vitaly V. Fedorchuk

Abstract

We introduce and investigate finite dimensions (m, n)-dim defined by means of m-coverings. These dimensions generalize the Lebesgue dimension: dim $=(2,1)$-dim. If $n<m$ and $(m, n)-\operatorname{dim} X<\infty$, then X is weakly infinite-dimensional in the sense of Smirnov.

Introduction

In [7] there were introduced classes of \mathcal{G} - C-spaces and m - \mathcal{G} - C-space, where \mathcal{G} is a class of simplicial complexes and $m \geq 2$ is an integer. Partial cases of these classes were considered in [8], where (m, n) - C-spaces were defined ($m \geq n \geq 1$). Let $(m, n)-C$ be the class of all $(m, n)-C$-spaces. Then all classes $(m, n)-C$ are intermediate between the class wid $=(2,1)-C=(n+1, n)-C$ of all weakly infinitedimensional spaces in the sense of Smirnov and the class C of all C-spaces in the sense of Haver [9], Addis and Gresham [1]. For example,

$$
\text { wid }=(2,1)-C \supset(3,1)-C \supset \cdots \supset(m, 1)-C \supset \cdots \supset C .
$$

Here we define new dimension functions: (m, n)-dim (Definition 2.8). From definitions it follows that

$$
\begin{equation*}
(m, n)-\operatorname{dim} X<\infty \Rightarrow X \in(m, n)-C \tag{0.1}
\end{equation*}
$$

For every normal space X we have

$$
\begin{equation*}
(2,1)-\operatorname{dim} X=\operatorname{dim} X \tag{0.2}
\end{equation*}
$$

in view of the partition theorem.
For every metrizable space we have (Theorem 3.7)

$$
\begin{equation*}
(m, n)-\operatorname{dim} X \leq \operatorname{dim} X \tag{0.3}
\end{equation*}
$$

2010 AMS Subject Classification: 54F45
Keywords and phrases: Dimension; dimension (m, n)-dim; metrizable space; hereditarily normal space.

The author was supported by the Russian Foundation for Basic research (Grant 09-01-00741) and the Program "Development of the Scientific Potential of Higher School" of the Ministry for Education of the Russian Federation (Grant 2.1.1.3704).
and (Theorem 3.9)

$$
\begin{equation*}
(m, 1)-\operatorname{dim} X=\operatorname{dim} X \tag{0.4}
\end{equation*}
$$

One of the main results is
Theorem 3.4. If $n<m$, then for every space X we have

$$
(m, n)-\operatorname{dim} X \leq 0 \Longleftrightarrow \operatorname{dim} X \leq n-1
$$

This theorem gives us a lot of spaces X with $(m, n)-\operatorname{dim} X<\operatorname{dim} X$.
In $\S 2$ we study general properties of dimension (m, n)-dim. This dimension satisfies the addition property for hereditarily normal spaces (Theorem 2.17):

$$
\begin{equation*}
X=X_{1} \cup X_{2} \Rightarrow(m, n)-\operatorname{dim} X \leq(m, n)-\operatorname{dim} X_{1}+(m, n)-\operatorname{dim} X_{2}+1 \tag{0.5}
\end{equation*}
$$

Theorem 2.21 states that if X is the limit of an inverse system $\left\{X_{\alpha}, \pi_{\beta}^{\alpha}, A\right\}$ of compact spaces, then

$$
\begin{equation*}
(m, n)-\operatorname{dim} X \leq \sup \left\{(m, n)-\operatorname{dim} X_{\alpha}: \alpha \in A\right\} \tag{0.6}
\end{equation*}
$$

$\S 1$ has an auxiliary character. It contains necessary definitions and facts. One can find an additional information on dimension theory in [3] and [6].

§ 1. Preliminaries

All spaces are assumed to be normal T_{1}. All mappings are continuous. The symbol $|A|$ stands for the cardinality of a set A. If A is a subset of a space X, then $\mathrm{Cl}(A)=\mathrm{Cl}_{X}(A)$ denotes the closure of A in X.

By a cover we mean an open cover of a space. By $\operatorname{cov}(X)$ we denote the set of all covers of X. The set of all finite covers of X is denoted by $\operatorname{cov}_{\infty}(X)$ and $\operatorname{cov}_{m}(X)$ stands for the set of all covers of X consisting of $\leq m$ members.

Let u and v be families of subsets of a set X. They say that v refines u (v is a refinement of u) if each $V \in v$ is contained in some $U \in u$. A family v combinatorially refines u (v is a combinatorially refinement of u) if there exists an injection $i: v \rightarrow u$ such that $V \subset i(V)$ for each $V \in v$. If v refines u we write $u \prec v$.

For a simplicial complex K by $v(K)$ we denote the set of all its vertices. By Fin S we denote the set of all non-empty finite subsets of S. Let u be a family of arbitrary sets and let $u_{0}=\{U \in u: U \neq \emptyset\}$. The nerve $N(u)$ of the family u is a simplicial complex such that $v(N(u))=\left\{a_{U}: U \in u_{0}\right\}$ and a set $\triangle \in \operatorname{Fin} v(N(u))$ is a simplex of $N(u)$ if and only if $\bigcap\left\{U: a_{U} \in \triangle\right\} \neq \emptyset$.

By the order of a family u of sets we mean the largest n such that u contains n sets with a non-empty intersection. If no such integer exist, we say that u has order ∞. The order of u is denoted by ord u. Clearly,

$$
\operatorname{ord} u \leq \Longleftrightarrow \operatorname{dim} N(u) \leq n-1
$$

$\operatorname{ord} u \leq 1 \Longleftrightarrow u$ is a disjoint family.

By \mathbb{N} we denote the set of all positive integers.
Let u be a family of subsets of a set X and let $M \subset X$. Then

$$
u \mid M=\{U \cap M: U \in u\}
$$

1.1. Open swelling lemma. If $\Phi=\left\{F_{1}, \ldots, F_{m}\right\}$ is a sequence of closed subsets of a space X, then there exists a family $v=\left(V_{1}, \ldots, V_{m}\right)$ of open subsets of X such that

$$
\begin{gathered}
F_{j} \subset V_{j}, \quad j=1, \ldots, m \\
N(v)=N(\Phi)
\end{gathered}
$$

The Urysohn lemma and Lemma 1.1 yield
1.2. Lemma. Let $u=\left(U_{1}, \ldots, U_{m}\right)$ be a sequence of open subsets of a space X and let $\Phi=\left(F_{1}, \ldots, F_{m}\right)$ be a sequence of closed subsets of X such that

$$
F_{j} \subset U_{j}, \quad j=1, \ldots, m
$$

Then there exists a sequence $v=\left(V_{1}, \ldots, V_{m}\right)$ of open subsets of X such that

$$
\begin{gathered}
F_{j} \subset V_{j} \subset \mathrm{Cl}\left(V_{j}\right) \subset U_{j}, \quad j=1, \ldots, m \\
N(v)=N(\Phi)
\end{gathered}
$$

1.3. Lemma [5]. Let X be a hereditarily normal space and let $M \subset X$. Then for every sequence $v=\left(V_{1}, \ldots, V_{m}\right)$ of open subsets of M there exists a sequence $w=\left(W_{1}, \ldots, W_{m}\right)$ of open subsets of X such that $w \mid M=v$ and $N(w)=N(v)$.
1.4. Definition. Let $u=\left(U_{1}, \ldots, U_{m}\right)$ be a cover of a space X. A sequence φ of functions $f_{j}: X \rightarrow[0 ; 1], \quad j=1, \ldots, m$, is said to be a partition of unity subordinated to the cover u if

$$
\begin{gathered}
f_{1}(x)+\cdots+f_{m}(x)=1 \quad \text { for every } \quad x \in X \\
f_{j}^{-1}(0 ; 1] \subset U_{j}, \quad j=1, \ldots, m
\end{gathered}
$$

1.5. Closed shrinking lemma. Let $u=\left(U_{1}, \ldots, U_{m}\right) \in \operatorname{cov}_{m}(X)$. Then there exists a family $\Phi=\left(F_{1}, \ldots, F_{m}\right)$ of closed subsets of X such that

$$
\begin{gathered}
F_{j} \subset U_{j}, \quad j=1, \ldots, m \\
F_{1} \cup \cdots \cup F_{m}=X
\end{gathered}
$$

The Urysohn lemma and Lemma 1.5 imply
1.6. Partition of unity lemma. For every finite cover u of a space X there exists a partition of unity subordinated to u.
1.7. Theorem on partitions [10]. A space X satisfies the inequality $\operatorname{dim} X \leq n \geq 0$ if and only if for every sequence $\left(A_{i}, B_{i}\right), \quad i=1, \ldots, n+1$, of pairs of disjoint closed subsets of X there exist partitions P_{1}, \ldots, P_{n+1} between A_{i} and B_{i} such that $P_{1} \cap \cdots \cap P_{n+1}=\emptyset$.
1.8. Definition. A mapping $f: X \rightarrow \Delta_{n}$ to the n-dimensional simplex Δ_{n} is said to be inessential, if the mapping $g=f \mid f^{-1} S^{n-1}: f^{-1} S^{n-1} \rightarrow S^{n-1}$, where S^{n-1} is the combinatorial boundary of Δ_{n}, can be extended over X.
1.9. Theorem [2]. A space X satisfies the inequality $\operatorname{dim} X \leq n \geq 0$ if and only if each mapping $f: X \rightarrow \Delta_{n+1}$ is inessential.
1.10. Theorem [11]. Let X be a metrizable space with $\operatorname{dim} X \leq n \geq 0$. Then X can be represented as the union of $n+1$ its subspaces $X_{i}, \quad i=1, \ldots, n$, so that $\operatorname{dim} X_{i} \leq 0$.
1.11. Borsuk's theorem on extension of homotopy [12, 13]. If F is a closed subspace of X, then each mapping $f:(X \times\{0\}) \cup(F \times I) \rightarrow R$ into ANR-compactum R extends over $X \times I$.
1.12. ThEOREM [4]. Let $f: X \rightarrow K$ and $g: X \rightarrow K$ be mappings to a simplicial complex K satisfying the following condition:

$$
\text { if } \quad f(x) \in O a_{j}, \quad \text { then } \quad g(x) \in O a_{j},
$$

where $O a_{j}$ is the star of a vertex $a_{j} \in K$ in K.
Then f and g are homotopically equivalent.
1.13. Definition. Let $u=\left(U_{1}, \ldots, U_{m}\right)$ be a finite sequence of sets and let $u \prec v$. An integration of the family v with respect to u is the following sequence
$I(v, u)=\left(W_{1}, \ldots, W_{m}\right):$
$W_{1}=\bigcup\left\{V \in v: V \subset U_{1}\right\}, \quad W_{j}=\bigcup\left\{V \in v: V \subset U_{j} ; \quad V \not \subset U_{k}, \quad k<j\right\}$.
1.14. Proposition. 1) $\cup I(v, u)=\cup v, 2) u \prec I(v, u), 3) \operatorname{ord} I(v, u) \leq \operatorname{ord} v$.
1.15. Lemma. Let $\alpha=\left(A_{1}, \ldots, A_{m}\right)$ and $\beta=\left(B_{1} \ldots, B_{m}\right)$ be sequences of sets and let $\alpha \vee \beta=\left(A_{1} \cup B_{1}, \ldots, A_{m} \cup B_{m}\right)$. Assume that

1) $\operatorname{ord} \beta \leq 1$;
2) $B_{j} \cap A_{k}=\emptyset$ for all $k \neq j$.

Then $N(\alpha \vee \beta)=N(\alpha)$.
Proof. We have to show that for every family j_{1}, \ldots, j_{k},
$\bigcap\left\{A_{j_{1}} \cup B_{j_{1}}: i=1, \ldots, k\right\}=\emptyset \Longleftrightarrow \bigcap\left\{A_{j_{i}}: i=1, \ldots, k\right\}=\emptyset$.
Implication \Rightarrow is obvious. Now let $A_{j_{1}} \cap \cdots \cap A_{j_{k}}=\emptyset$. Then by virtue of Newton binom we have

$$
\left(A_{j_{1}} \cup B_{j_{1}}\right) \cap\left(A_{j_{2}} \cup B_{j_{2}}\right) \cap \cdots \cap\left(A_{j_{k}} \cup B_{j_{k}}\right)=\sum_{\mu \subset\{1, \ldots, k\}} C_{\mu}
$$

where $\nu=\{1, \ldots, k\} \backslash \mu$ and $C_{\mu}=\left(\bigcap\left\{A_{j_{i}}: i \in \mu\right\}\right) \cap\left(\bigcap\left\{B_{j_{i}}: i \in \nu\right\}\right)$.

If $|\mu|=k$, then $C_{\mu}=A_{i_{1}} \cap \cdots \cap A_{i_{k}}=\emptyset$ according to our assumption. If $|\mu|=k-1$, then $C_{\mu}=\emptyset$ in view of condition 2). At last, if $|\mu| \leq k-2$, then $C_{\mu}=\emptyset$ by virtue of 1).

§ 2. Basic properties of finite (m, n)-dimensions

2.1. Definition. Let $u=\left(U_{1}, \ldots, U_{m}\right) \in \operatorname{cov}_{m}(X)$ and let $\Phi=\left(F_{1}, \ldots, F_{m}\right)$ be a family of closed subsets of X such that

$$
\begin{gathered}
F_{j} \subset U_{j}, j=1, \ldots, m \\
\operatorname{ord} \Phi \leq 1
\end{gathered}
$$

Then (u, Φ) is said to be an m-pair in X. The set of all m-pairs in X is denoted by $m(X)$.
2.2. Definition. Let $m, n \in \mathbb{N}, n \leq m,(u, \Phi)$ be an m-pair in X and let $v=\left(V_{1}, \ldots, V_{m}\right)$ be a family of open subsets of X such that

$$
\begin{gathered}
F_{j} \subset V_{j} \subset U_{j}, j=1, \ldots, m \\
\quad \text { ord } v \leq n
\end{gathered}
$$

Then (u, v, Φ) is called an (m, n)-triple in X.
2.3. Lemma. Let $n_{1} \leq n_{2}$ and let (u, v, Φ) be an (m, n_{1})-triple in X. Then (u, v, Φ) is an $\left(m, n_{2}\right)$-triple in X.

Lemma 1.2 yields
2.4. Lemma. Every m-pair (u, Φ) in X can be included in $(m, 1)$-triple (u, v, Φ) in X.
2.5. Definition. Let $(u, \Phi) \in m(X)$. A closed set $P \subset X$ is said to be an n-partition of (u, Φ) (notation: $P \in \operatorname{Part}(u, \Phi, n))$ if there exists an (m, n)-triple (u, v, Φ) in X such that $P=X \backslash \bigcup v$.

Lemma 2.4 yields
2.6. Proposition. Every m-pair (u, Φ) in X has an n-partition $P . ■$
2.7. Definition. Let $\left(u_{i}, \Phi_{i}\right) \in m(X), i=1, \ldots, r$. The sequence $\left(\left(u_{1}, \Phi_{1}\right), \ldots,\left(u_{r}, \Phi_{r}\right)\right)$ is called n-inessential in X if there exist partitions $P_{i} \in$ $\operatorname{Part}\left(u_{i}, \Phi_{i}, n\right)$ such that $P_{1} \cap \cdots \cap P_{r}=\emptyset$.
2.8. Definition. Let $m, n \in \mathbb{N}, n \leq m$. To every space X one assigns the dimension $(m, n)-\operatorname{dim} X$, which is an integer ≥-1 or ∞. The dimension function (m, n)-dim is defined in the following way:
(1) $(m, n)-\operatorname{dim} X=-1$ if and only if $X=\emptyset$;
(2) $(m, n)-\operatorname{dim} X \leq k$, where $k=0,1, \ldots$, if every sequence $\left(\left(u_{1}, \Phi_{1}\right), \ldots,\left(u_{k+1}, \Phi_{k+1}\right)\right),\left(u_{i}, \Phi_{i}\right) \in m(X)$, is n-inessential in X;
(3) $(m, n)-\operatorname{dim} X=\infty$, if $(m, n)-\operatorname{dim} X>k$ for each $k \in \mathbb{N}$.
2.9. Theorem. For every space X we have

$$
(2,1)-\operatorname{dim} X=\operatorname{dim} X
$$

Proof. We start with inequality $(2,1)-\operatorname{dim} X \leq \operatorname{dim} X$. Let $\operatorname{dim} X=n$ and let $\left(u_{i}, \Phi_{i}\right) \in 2(X), i=1, \ldots, n+1$. Let $u_{i}=\left(U_{1}^{i}, U_{2}^{i}\right)$ and $\Phi_{i}=\left(F_{1}^{i}, F_{2}^{i}\right)$. Put

$$
G_{1}^{i}=F_{1}^{i} \cup\left(X \backslash U_{2}^{i}\right), \quad G_{2}^{i}=F_{2}^{i} \cup\left(X \backslash U_{1}^{i}\right)
$$

Then the family $\Gamma_{i}=\left(G_{1}^{i}, G_{2}^{i}\right)$ is disjoint, $i=1, \ldots, n+1$. Since $\operatorname{dim} X \leq n$, from Theorem 1.7 it follows that there exist partitions P_{i} in X between G_{1}^{i} and G_{2}^{i} such that $P_{1} \cap \cdots \cap P_{n+1}=\emptyset$. From definitions of the sets G_{j}^{i} we get $P_{i} \in$ $\operatorname{Part}\left(u_{i}, \Phi_{i}, 1\right)$. Hence the sequence $\left(\left(u_{1}, \Phi_{1}\right), \ldots,\left(u_{n+1}, \Phi_{n+1}\right)\right)$ is 1-inessential in X and, consequently, $(2,1)-\operatorname{dim} X \leq n$.

Now let $(2,1)-\operatorname{dim} X \leq n$. Let $\Phi_{i}=\left(F_{1}^{i}, F_{2}^{i}\right), \quad i=1, \ldots, n+1$, be pairs of disjoint closed subsets of X. Put

$$
U_{1}^{i}=X \backslash F_{2}^{i}, \quad U_{2}^{i}=X \backslash F_{1}^{i}, \quad i=1, \ldots, n+1
$$

Then

$$
u_{i}=\left(U_{1}^{i}, U_{2}^{i}\right) \in \operatorname{cov}_{2}(X), \quad i=1, \ldots, n+1
$$

Moreover, $\left(u_{i}, \Phi_{i}\right) \in 2(X), \quad i=1, \ldots, n+1$. Since $(2,1)$ - $\operatorname{dim} X \leq n$, there exist partitions $P_{i} \in \operatorname{Part}\left(u_{i}, \Phi_{i}, 1\right)$ such that $P_{1} \cap \cdots \cap P_{n+1}=\emptyset$. Since $P_{i} \in \operatorname{Part}\left(u_{i}, \Phi_{i}, 1\right)$, there exist pairs $v_{i}=\left(V_{1}^{i}, V_{2}^{i}\right)$ of disjoint open subsets of X such that

$$
\begin{gathered}
F_{j}^{i} \subset V_{j}^{i} \subset U_{j}^{i}, \quad j=1,2 ; \quad i=1, \ldots, n+1 \\
P_{i}=X \backslash V_{1}^{i} \cup V_{2}^{i}
\end{gathered}
$$

Hence P_{i} are partitions of pairs Φ_{i}. By virtue of Theorem 1.7 we have $\operatorname{dim} X \leq n$.
2.10. Proposition. Let M be a closed subset of X. Then

$$
(m, n)-\operatorname{dim} M \leq(m, n)-\operatorname{dim} X
$$

Proof. The theorem is obvious if $(m, n)-\operatorname{dim} X=-1$ or $(m, n)-\operatorname{dim} X=\infty$, so that we can assume that $(m, n)-\operatorname{dim} X=k, \quad 0 \leq k<\infty$. Let

$$
\begin{gathered}
\left(u_{i}, \Phi_{i}\right) \in m(M), \quad i=1, \ldots, k+1 \\
u_{i}=\left(U_{1}^{i}, \ldots, U_{m}^{i}\right), \quad \Phi_{i}=\left(F_{1}^{i}, \ldots, F_{m}^{i}\right) .
\end{gathered}
$$

Put $W_{j}^{i}=U_{j}^{i} \cup(X \backslash M)$ and $w_{i}=\left(W_{1}^{i}, \ldots, W_{m}^{i}\right)$. Then $\left(w_{i}, \Phi_{i}\right) \in m(X)$. Since $(m, n)-\operatorname{dim} X=k$, the sequence $\left(w_{1}, \Phi_{1}\right), \ldots,\left(w_{k+1}, \Phi_{k+1}\right)$ is n-inessential in X. Clearly, the sequence $\left(w_{1} \mid M, \Phi_{1}\right), \ldots,\left(w_{k+1} \mid M, \Phi_{k+1}\right)$ is n-inessential in M. But $w_{i} \mid M=u_{i}$.■
2.11. Proposition. If a space X can be represented as the union of a discrete family $X_{\alpha}, \alpha \in A$, of closed subspaces such that $(m, n)-\operatorname{dim} X_{\alpha} \leq k$ for $\alpha \in A$, then $(m, n)-\operatorname{dim} X \leq k$.
2.12. Lemma. Let X be a hereditarily normal space and let Y be its subspace. Let $F, F_{1}, F_{2}, \ldots, F_{k}$ be a disjoint family of closed subsets of X, V be a an open subset of $Y, O F$ be a neighbourhood of F in X such that

$$
\begin{gather*}
Y \cap \mathrm{Cl}(O F) \subset V \tag{2.1}\\
(V \cup O F) \cap F_{j}=\emptyset, \quad j=1, \ldots, m \tag{2.2}
\end{gather*}
$$

Then $V \cup F$ is open in $Y_{1}=Y \cup F \cup F_{1} \cup \cdots \cup F_{k}$.
Proof. From (2.1) it follows that $(Y \backslash V) \cap \mathrm{Cl}(O F)=\emptyset$ and, consequently, $\mathrm{Cl}(Y \backslash V) \cap O F=\emptyset$. Hence

$$
\begin{equation*}
O F \subset X \backslash \mathrm{Cl}(Y \backslash V)=W \tag{2.3}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
V \subset W \tag{2.4}
\end{equation*}
$$

In fact, since V is open in Y, we have

$$
\begin{equation*}
V \cap \mathrm{Cl}(Y \backslash V)=V \cap \mathrm{Cl}_{Y}(Y \backslash V)=\emptyset \tag{2.5}
\end{equation*}
$$

Then $y \in V \Rightarrow(2.5) \Rightarrow y \notin \mathrm{Cl}(Y \backslash V) \Rightarrow y \in X \backslash \mathrm{Cl}(Y \backslash V)=W$.
Conditions (2.3) and (2.4) yield $V \cup O F \subset W$. Consequently, $V \cup F \subset W$ and, in accordance with (2.2), we have

$$
\begin{equation*}
V \cup F \subset W \backslash \bigcup\left\{F_{j}: j=1, \ldots, m\right\} \tag{2.6}
\end{equation*}
$$

To prove our lemma it suffices to check that

$$
V \cap F=Y_{1} \cap\left(W \backslash \bigcup\left\{F_{j}: j=1, \ldots, m\right\}\right)
$$

By virtue of (2.6) it remains to show that

$$
\begin{equation*}
Y_{1} \cap\left(W \backslash \bigcup\left\{F_{j}: j=1, \ldots, m\right\}\right) \subset V \cup F \tag{2.7}
\end{equation*}
$$

Since $Y_{1} \backslash \bigcup\left\{F_{j}: j=1, \ldots, m\right\}=Y \cup F$, we have

$$
Y_{1} \cap\left(W \backslash \bigcup\left\{F_{j}: j=1, \ldots, m\right\}\right)=W \cap(Y \cup F)
$$

Consequently, to prove (2.7), it suffices to check that $W \cap Y \subset V$. But $W \cap Y=$ $Y \backslash \mathrm{Cl}(Y \backslash V)$ according to (2.3). Let $y \in Y \backslash \mathrm{Cl}(Y \backslash V)$. Then there exists a neighbourhood $O y$ such that $O y \cap(Y \backslash V)=\emptyset$. Consequently, $Y \cap O y \subset V$.
2.13. Definition. For a subspace M of a space X, the relative (m, n) dimension of M is defined by the formula

$$
r-(m, n)-d_{X} M=\sup \{(m, n)-\operatorname{dim} F: F \subset M \text { and } F \text { is closed in } X\}
$$

Proposition 2.10 implies
2.14. Proposition. For every normal subspace M of a space X we have

$$
r-(m, n)-d_{X} M \leq(m, n)-\operatorname{dim} M
$$

2.15. Lemma. Let $(u, \Phi) \in m(X)$, where $u=\left(U_{1}, \ldots, U_{m}\right), \Phi=\left(F_{1}, \ldots, F_{m}\right)$. Then there exist a cover $u_{1}=\left(U_{1}^{1}, \ldots, U_{m}^{1}\right) \in \operatorname{cov}_{m}(X)$ and neighbourhoods $O F_{j}$ such that

$$
\begin{gather*}
O F_{j} \subset \mathrm{Cl}\left(O F_{j}\right) \subset U_{j}, \quad j=1, \ldots, m ; \tag{2.8}\\
\quad \operatorname{ord}\left(\mathrm{Cl}\left(O F_{1}\right), \ldots, \mathrm{Cl}\left(O F_{m}\right)\right) \leq 1 ; \tag{2.9}\\
\mathrm{Cl}\left(O F_{j}\right) \subset U_{j}^{1} \subset U_{j}, \quad j=1, \ldots, m ; \tag{2.10}\\
\quad j_{1} \neq j_{2} \Rightarrow \mathrm{Cl}\left(O F_{j_{1}}\right) \cap U_{j_{2}}^{1}=\emptyset . \tag{2.11}
\end{gather*}
$$

Proof. By virtue of Lemma 1.2 there exist neighbourhoods $O F_{j}$ satisfying conditions (2.8) and (2.9). Put

$$
\begin{equation*}
U_{j}^{1}=U_{j} \backslash \bigcup\left\{\mathrm{Cl}\left(O F_{k}\right): k \neq j\right\} \tag{2.12}
\end{equation*}
$$

Then (2.9) and (2.12) yield (2.10) and (2.11). It remains to show that $u_{1}=$ $\left(U_{1}^{1}, \ldots, U_{m}^{1}\right) \in \operatorname{cov}(X)$.

Let $x \in U_{j} \backslash U_{j}^{1}$. Then $x \in \operatorname{Cl}\left(O F_{k}\right)$ for some $k \neq j$. Consequently, from (2.10) it follows that $x \in U_{k}^{1}$.
2.16. Proposition. If a hereditarily normal space X can be represented as the union of two subspaces Y and Z such that

$$
(m, n)-\operatorname{dim} Y \leq k, \quad r-(m, n)-d_{X} Z \leq l
$$

then

$$
\begin{equation*}
(m, n)-\operatorname{dim} X \leq k+l+1 \tag{2.13}
\end{equation*}
$$

Proof. We can assume that $0 \leq k<\infty, 0 \leq l<\infty$. To prove (2.13), we have to show that every sequence $\left(u_{i}, \Phi_{i}\right) \in m(X), \quad i=1, \ldots, k+l+2$, is n-inessential in X (see Definition 2.8). Let

$$
u_{i}=\left(U_{1}^{i}, \ldots, U_{m}^{i}\right), \quad \Phi_{1}=\left(F_{1}^{i}, \ldots, F_{m}^{i}\right), \quad i=1, \ldots, k+l+2
$$

By virtue of Lemma 2.15 we may assume that there exist neighbourhoods $O F_{j}^{i}$ such that

$$
\begin{gather*}
F_{j}^{i} \subset O F_{j}^{i} \subset \mathrm{Cl}\left(O F_{j}^{i}\right) \subset U_{j}^{i} \tag{2.14}\\
l \neq j \Longrightarrow U_{l}^{i} \cap \mathrm{Cl}\left(O \Phi_{j}^{i}\right)=\emptyset, \quad i=1, \ldots, k+1 \tag{2.15}
\end{gather*}
$$

From (2.14) and (2.15) it follows that

$$
\left(u_{i}, \Omega_{i}\right) \in m(X), \quad \text { where } \Omega_{i}=\left(\mathrm{Cl}\left(O \Phi_{1}^{i}\right), \ldots, \mathrm{Cl}\left(O \Phi_{k+1}^{i}\right)\right)
$$

Since $(m, n)-\operatorname{dim} Y \leq k$, the sequence $\left(u_{i}\left|Y, \Omega_{i}\right| Y\right), \quad i=1, \ldots, k+1$, is n inessential in Y. Hence there exist sequences $v_{i}=\left(V_{1}^{i}, \ldots, V_{m}^{i}\right), \quad i=1, \ldots, k+1$, of open subsets of Y such that

$$
\begin{gathered}
Y \cap \mathrm{Cl}\left(O F_{j}^{i}\right) \subset V_{j}^{i} \subset U_{j}^{i}, \quad i=1, \ldots, k+1 ; \quad j=1, \ldots, m \\
\\
\operatorname{ord} v_{i} \leq n, \quad i=1, \ldots, k+1 \\
\\
v_{1} \cup \cdots \cup v_{k+1} \in \operatorname{cov}(Y)
\end{gathered}
$$

Put $Y_{1}^{i}=Y \cup F_{1}^{i} \cup \cdots \cup F_{m}^{i}$ and $\varphi_{i}=\left(V_{1}^{i} \cup F_{1}^{i}, \ldots, V_{m}^{i} \cup F_{m}^{i}\right), \quad i=1, \ldots, k+1$. By virtue of (2.15) and Lemma 1.15 we have

$$
\begin{equation*}
\operatorname{ord} \varphi_{i}=\operatorname{ord} v_{i} \leq n \tag{2.16}
\end{equation*}
$$

The pair $\left(V_{j}^{i}, F_{j}^{i}\right)$ satisfies conditions of Lemma 2.12. Hence members of φ_{i} are open in Y_{1}^{i}. Since X is hereditarily normal, according to Lemma 1.3 there exist families

$$
w_{i}=\left(W_{1}^{i}, \ldots, W_{m}^{i}\right), \quad i=1, \ldots, k+1
$$

of open subsets of X such that

$$
\begin{gather*}
V_{j}^{i} \cup F_{j}^{i} \subset W_{j}^{i} \subset U_{j}^{i}, \quad j=1, \ldots, m \tag{2.17}\\
\text { ord } w_{i} \leq n \tag{2.18}
\end{gather*}
$$

Put $W_{i}=W_{1}^{i} \cup \cdots \cup W_{m}^{i}$ and $W=W_{1} \cup \cdots \cup W_{k+1}$. By definition we have

$$
\begin{equation*}
w_{1} \cup \cdots \cup w_{k+1} \in \operatorname{cov}(W) \tag{2.19}
\end{equation*}
$$

Let $F=X \backslash W$. By virtue of (2.17) we have $F \subset Z$. Since $r-(m, n)-d_{X} Z \leq l$, we have $(m, n)-\operatorname{dim} F \leq l$. Hence the sequence $\left(u_{i}\left|F, \Phi_{i}\right| F\right), i=k+2, \ldots, k+l+2$, is n-inessential in \bar{F}. Following to the first part of the proof we can find families

$$
w_{i}=\left(W_{1}^{i}, \ldots, W_{m}^{i}\right), \quad i=k+2, \ldots, k+l+2
$$

of open subsets of X such that $\operatorname{ord} w_{i} \leq n$,

$$
F_{j}^{i} \subset W_{j}^{i} \subset U_{j}^{i}, \quad i=k+2, \ldots, k+l+2 ; \quad j=1, \ldots, m
$$

and

$$
F \subset \bigcup\left\{W_{j}^{i}: \quad i=k+2, \ldots, k+l+2 ; \quad j=1, \ldots, m\right\}
$$

Thus the sequence w_{1}, \ldots, w_{k+l+2} realizes the conditions of an n-inessentialitness of the sequence $\left(u_{i}, \Phi_{i}\right), \quad i=1, \ldots, k+l+2$.

Proposition 2.16 implies
2.17. THE ADDITION THEOREM FOR (m, n)-dim. If a hereditarily normal space X is represented as the union of two subspaces X_{1} and X_{2}, then

$$
(m, n)-\operatorname{dim} X \leq(m, n)-\operatorname{dim} X_{1}+(m, n)-\operatorname{dim} X_{2}+1
$$

Theorem 2.17 yields
2.18. Corollary. If a hereditarily normal space X can be represented as the union of $k+1$ subspaces $X_{0}, X_{1}, \ldots, X_{k}$ such that $(m, n)-\operatorname{dim} X_{i} \leq 0$ for $i=$ $0,1, \ldots, k$, then $(m, n)-\operatorname{dim} X \leq k$.
2.19. Proposition. Let $f: X \rightarrow Y$ be a mapping and let a sequence $\left(u_{i}, \Phi_{i}\right) \in$ $m(Y)$ be n-inessential in Y. Then the sequence $\left(f^{-1} u_{i}, f^{-1} \Phi_{i}\right)$ is n-inessential in X.
2.20. Proposition. Let $\left(u_{i}^{l}, \Phi_{i}^{l}\right) \in m(X), \quad u_{i}^{l}=\left({ }_{1}^{l} U_{1}^{i}, \ldots,{ }^{l} U_{m}^{i}\right), \Phi_{i}^{l}=$ $\left({ }^{l} F_{1}^{i}, \ldots,{ }^{l} F_{m}^{i}\right), \quad i=1, \ldots, r ; \quad l=1,2$. Assume that

$$
{ }^{1} F_{j}^{i} \subset{ }^{2} F_{j}^{i} \subset{ }^{2} U_{j}^{i} \subset{ }^{1} U_{j}^{i}, \quad i=1, \ldots, r ; \quad j=1, \ldots, m
$$

Let the sequence $\left(u_{i}^{2}, \Phi_{i}^{2}\right), \quad i=1, \ldots, r$, be n-inessential in X. Then the sequence $\left(u_{i}^{1}, \Phi_{i}^{1}\right), \quad i=1, \ldots, r$, is n-inessential in X.
2.21. Theorem. Let $S=\left\{X_{\alpha}, \pi_{\beta}^{\alpha}, A\right\}$ be an inverse system of compact spaces X_{α} with $(m, n)-\operatorname{dim} X_{\alpha} \leq k$, and let $X=\lim S$. Then $(m, n)-\operatorname{dim} X \leq k$.

Proof. We have to verify that an arbitrary sequence $\left(u_{i}, \Phi_{i}\right) \in m(X), i=$ $1, \ldots, k+1$, is n-inessential in X. Let $u_{i}=\left(U_{1}^{i}, \ldots, U_{m}^{i}\right), \Phi_{i}=\left(F_{1}^{i}, \ldots, F_{m}^{i}\right)$. Since X is a compact space, by definition of the inverse limit topology, for each $i=1, \ldots, k+1$ there exists $\alpha_{i} \in A$ and

$$
\begin{equation*}
u_{i}^{i}=\left({ }^{i} U_{1}^{i}, \ldots,{ }^{i} U_{m}^{i}\right) \in \operatorname{cov}_{m}\left(X_{\alpha_{i}}\right) \tag{2.20}
\end{equation*}
$$

such that

$$
\begin{gather*}
\pi_{\alpha_{i}}^{-1}\left({ }^{i} U_{j}^{i}\right) \subset U_{j}^{i}, \quad j=1, \ldots, m \tag{2.21}\\
\operatorname{ord}\left(\pi_{\alpha_{i}}\left(\Phi_{i}\right)\right) \leq 1 \tag{2.22}
\end{gather*}
$$

where $\pi_{\alpha}: X \rightarrow X_{\alpha}$ are the limit projections of the system S and $\pi_{\alpha}\left(\Phi_{i}\right)=$ $\left(\pi_{\alpha}\left(F_{1}^{i}\right), \ldots, \pi_{\alpha}\left(F_{m}^{i}\right)\right)$. Since A is a directed set, there exists $\alpha_{0} \in A$ such that

$$
\alpha_{i} \leq \alpha_{o}, \quad i=1, \ldots, k+1
$$

Put

$$
\begin{gather*}
{ }^{0} U_{j}^{i}=\left(\pi_{\alpha_{i}}^{\alpha_{0}}\right)^{-1}\left({ }^{i} U_{j}^{i}\right), \quad j=1, \ldots, m \tag{2.23}\\
{ }^{0} F_{j}^{i}=\left(\pi_{\alpha_{i}}^{\alpha_{0}}\right)^{-1}\left(\pi_{\alpha}\left(F_{j}^{i}\right)\right), \quad j=1, \ldots, m \tag{2.24}\\
u_{i}^{0}=\left({ }^{0} U_{1}^{i}, \ldots,{ }^{0} U_{m}^{i}\right), \quad i=1, \ldots, k+1 \tag{2.25}\\
\Phi_{i}^{0}=\left({ }^{0} F_{1}^{i}, \ldots, \ldots,{ }^{0} F_{m}^{i}\right), \quad i=1, \ldots, k+1 . \tag{2.26}
\end{gather*}
$$

By virtue of (2.20)-(2.22) we have

$$
\begin{equation*}
\left(u_{i}^{0}, \Phi_{i}^{0}\right) \in m\left(X_{\alpha_{0}}\right), \quad i=1, \ldots, k+1 \tag{2.27}
\end{equation*}
$$

Since $(m, n)-\operatorname{dim} X_{\alpha_{0}} \leq k$, the sequence (2.27) is n-inessential in $X_{\alpha_{0}}$. Then the sequence

$$
\left(\pi_{\alpha_{0}}^{-1}\left(u_{i}^{0}\right), \pi_{\alpha_{0}}^{-1}\left(\Phi_{i}^{0}\right)\right), \quad i=1, \ldots, k+1
$$

is n-inessential in X according to Proposition 2.19. On the other hand, from (2.21), (2.23)-(2.25) it follows that
$\Phi_{i} \quad$ refines $\pi_{\alpha_{0}}^{-1}\left(\Phi_{i}^{0}\right)$ and $\pi_{\alpha}^{-1}\left(u_{i}^{0}\right)$ refines $u_{i}, \quad i=1, \ldots, k+1$.
Consequently, Proposition 2.20 implies that the sequence $\left(u_{i}, \Phi_{i}\right), i=1, \ldots, k+1$, is n-inessential in X.

\S 3. Comparison of dimensions

3.1. Proposition. If $n \geq m$, then $(m, n)-\operatorname{dim} X \leq 0$ for every space X.

The condition

$$
\begin{equation*}
n_{1} \leq n_{2} \Rightarrow \operatorname{Part}\left(u, \Phi, n_{2}\right) \subset \operatorname{Part}\left(u, \Phi, n_{1}\right) \tag{3.1}
\end{equation*}
$$

implies
3.2. Proposition. If $n_{1} \leq n_{2}$, then

$$
\left(m, n_{1}\right)-\operatorname{dim} X \geq\left(m, n_{2}\right)-\operatorname{dim} X
$$

for every space X.
The condition

$$
\begin{equation*}
m_{1} \leq m_{2} \Rightarrow \operatorname{cov}_{m_{1}}(X) \subset \operatorname{cov}_{m_{2}}(X) \tag{3.2}
\end{equation*}
$$

yields
3.3. Proposition. If $m_{1} \leq m_{2}$, then

$$
\left(m_{1}, n\right)-\operatorname{dim} X \leq\left(m_{2}, n\right)-\operatorname{dim} X
$$

for every space X.■
3.4. Theorem. If $n<m$, then for every space X we have

$$
(m, n)-\operatorname{dim} X \leq 0 \Longleftrightarrow \operatorname{dim} X \leq n-1
$$

Proof. Let $(m, n)-\operatorname{dim} X \leq 0$. We have to show that

$$
\begin{equation*}
\operatorname{dim} X \leq n-1 \tag{3.3}
\end{equation*}
$$

According to Theorem 1.9 condition (3.3) is equivalent to the condition

$$
\begin{equation*}
\text { every mapping } \quad f: X \rightarrow \Delta_{n} \quad \text { is inessential. } \tag{3.4}
\end{equation*}
$$

Let $a_{j}, j=1, \ldots, n+1$, be the vertices of the simplex Δ_{n} and let O_{j} be the stars of Δ_{n} with respect to a_{j}. Put

$$
\begin{equation*}
U_{j}=f^{-1} O_{j}, \quad j=1, \ldots, n+1 \tag{3.5}
\end{equation*}
$$

Since $n<m$, we have $u=\left(U_{1}, \ldots, U_{n+1}\right) \in \operatorname{cov}_{m}(X)$. Consider a pair (u, Φ), where $\Phi=\left(F_{1}, \ldots, F_{n+1}\right)$ and $F_{j}=\emptyset, \quad j=1, \ldots, n+1$. Then $(u, \Phi) \in m(X)$. In view of $(m, n)-\operatorname{dim} X \leq 0$ there exists a cover $v=\left(V_{1}, \ldots, V_{n+1}\right)$ of X such that

$$
\begin{gather*}
V_{j} \subset U_{j}, \quad j=1, \ldots, n+1 \tag{3.6}\\
\text { ord } v \leq n \tag{3.7}
\end{gather*}
$$

Consider a partition of unity $\left(\varphi_{1}, \ldots, \varphi_{n+1}\right)$ subordinated to the cover v. Let

$$
\varphi=\varphi_{1} \Delta \ldots \Delta \varphi_{n+1} \rightarrow \Delta_{n}
$$

be the barycentric mapping defined by $\left(\varphi_{1}, \ldots, \varphi_{n+1}\right)$, that is

$$
\varphi(x)=\left(\varphi_{1}(x), \ldots, \varphi_{n+1}(x)\right)
$$

where $\varphi_{j}(x)$ is the barycentric coordinate of the point $\varphi(x)$ corresponding to the vertex $a_{j} \in \Delta_{n}$. We have

$$
\begin{equation*}
\varphi^{-1} O_{j}=\left\{x \in X: \varphi_{j}(x)>0\right\} \subset V_{j} \subset U_{j} \tag{3.8}
\end{equation*}
$$

From (3.7) it follows that

$$
\begin{equation*}
\varphi(X) \subset \Delta_{n}^{n-1}=S^{n-1} \tag{3.9}
\end{equation*}
$$

where $\Delta_{n}^{n-1}=S^{n-1}$ is the $(n-1)$-dimensional skeleton of the simplex Δ_{n}. Let $F=f^{-1} S^{n-1}$. Conditions (3.5) and (3.8) imply that

$$
\varphi(x) \in O_{j} \Rightarrow f(x) \in O_{j}
$$

Hence the mappings $\varphi: F \rightarrow S^{n-1}$ and $f_{0}=\left.f\right|_{F}: F \rightarrow S^{n-1}$ are homotopically equivalent by Theorem 1.12. Consequently, from (3.9) it follows that the mapping f_{0} is extended over X by virtue of Theorem 1.11. Thus f is inessential. Inequality (3.3) is proved.

Now let $\operatorname{dim} X \leq n-1$. We have to check that

$$
\begin{equation*}
(m, n)-\operatorname{dim} X \leq 0 \tag{3.10}
\end{equation*}
$$

If $m=n$, then (3.10) is a corollary of Proposition 3.1, so that we assume that $m-n \geq 1$. Let $(u, \Phi), u=\left(U_{1}, \ldots, U_{m}\right), \Phi=\left(F_{1}, \ldots, F_{m}\right)$, be an m-pair in X. To prove (3.10), we have to find a cover $v=\left(V_{1}, \ldots, V_{m}\right) \in \operatorname{cov}_{m}(X)$ such that

$$
\begin{gather*}
F_{j} \subset V_{j} \subset U_{j}, \quad j=1, \ldots, m \tag{3.11}\\
\text { ord } v \leq n \tag{3.12}
\end{gather*}
$$

Let us take a cover $u_{1}=\left(U_{1}^{1}, \ldots, U_{m}^{1}\right)$ and neighbourhoods $O F_{j}$ from Lemma 2.15. Since $\operatorname{dim} X \leq n-1$, there exist a cover $w_{1} \in \operatorname{cov}(X)$ such that w_{1} refines u_{1} and $\operatorname{ord} w_{1} \leq n$. Let $w=\left(W_{1}, \ldots, W_{m}\right)$ be an integration of w_{1} with respect to u_{1}. In accordance with Definition 1.13 and Proposition $1.14 w$ is a cover of order $\leq n$ such that

$$
\begin{equation*}
W_{j} \subset U_{j}^{1}, \quad j=1, \ldots, m \tag{3.13}
\end{equation*}
$$

Put $V_{j}=W_{j} \cup O F_{j}$ and $v=\left(V_{1}, \ldots, V_{m}\right)$. From Lemma 1.15 (for $A_{j}=W_{j}$ and $\left.B_{j}=O F_{j}\right),(2.10)$, and (3.13) it follows that v is a cover satisfying conditions (2.11) and (2,12).

Theorem 3.4 implies
3.5. Theorem. Let $m \geq n+2$. Then $\operatorname{dim} X \leq n$ if and only if for every cover $u=\left(U_{1}, \ldots, U_{m}\right) \in \operatorname{cov}_{m}(X)$ and for every disjoint family $\Phi=\left(F_{1}, \ldots, F_{m}\right)$ of closed subsets of X such that $F_{j} \subset U_{j}$ there exists a cover $v=\left(V_{1}, \ldots, V_{m}\right) \in$ $\operatorname{cov}_{m}(X)$ such that

$$
\begin{gathered}
F_{j} \subset V_{j} \subset U_{j}, \quad j=1, \ldots, m \\
\quad \text { ord } v \leq n+1
\end{gathered}
$$

Another corollary of Theorem 3.4 is
3.6. Theorem. For every space X we have

$$
\operatorname{dim} X \leq 0 \Rightarrow(m, n)-\operatorname{dim} X \leq 0
$$

Proof. Theorem 3.4 implies that $(m, 1)-\operatorname{dim} X \leq 0$. Applying Proposition 3.2 we get the required property.
3.7. Theorem. For every metrizable space X we have

$$
\begin{equation*}
(m, n)-\operatorname{dim} X \leq \operatorname{dim} X \tag{3.14}
\end{equation*}
$$

Proof. The assertion is obvious if $\operatorname{dim} X=-1$ or $\operatorname{dim} X=\infty$. Assume that $\operatorname{dim} X=k, 0 \leq k<\infty$. By virtue of Katetov theorem (Theorem 1.10) there exist subspaces $X_{i} \subset X, 0 \leq i \leq k$, such that $\operatorname{dim} X_{i} \leq 0$ and $X=X_{0} \cup X_{1} \cup \cdots \cup X_{k}$. According to Theorem 3.6 we have $(m, n)-\operatorname{dim} X \leq 0$. It remains to apply Corollary 2.18.
3.8. Question. Does equality (3.14) hold for an arbitrary space X ?
3.9. Theorem. If $m \geq 2$, then

$$
\begin{equation*}
(m, 1)-\operatorname{dim} X=\operatorname{dim} X \tag{3.15}
\end{equation*}
$$

for every metrizable space X.
Proof. By virtue of Theorem 2.9

$$
\begin{equation*}
(2,1)-\operatorname{dim} X=\operatorname{dim} X \tag{3.16}
\end{equation*}
$$

From (3.16) and Proposition 3.3 it follows that $(m, 1)-\operatorname{dim} X \leq \operatorname{dim} X$. At last, Theorem 3.7 yields

$$
(m, 1)-\operatorname{dim} X \geq \operatorname{dim} X
$$

3.10. Question. Does equality (3.15) hold for an arbitrary space X ?

REFERENCES

[1] D.F. Addis, J.H. Gresham, A class of infinite-dimensional spaces I. Dimension theory and Alexandroff's problem, Fund. Math. 101 (1978), 195-205.
[2] P.S. Alexandroff, On the dimension of normal spaces, Proc. Roy. Soc. London, A 189 (1947), 11-39.
[3] P.S. Alexandroff, B.A. Pasynkov, Introduction to Dimension Theory, Moscow, Nayka, 1972 (in Russian).
[4] R. Cauty, Sur le prolongement des fonctions continues á valeurs dans les $C W$-complexes, C.R. Acad.Sci. 274 (1972), A35-A37.
[5] E. Čech, Théorie général de l’homologie dans un espace quelconque, Fund. Math. 19 (1932), 149-183.
[6] R. Engelking, Theory of Dimensions. Finite and Infinite, Sigma Ser. Pure Math. 10, Heldermann, Lemgo, 1995.
[7] V.V. Fedorchuk, C-spaces and simplicial complexes, Sib. Matem. J. 50 (2009), 933-941 (in Russian).
[8] V.V. Fedorchuk, C-spaces and matrix of infinite-dimensionality, Topology Appl. 157 (2010), 2622-2634.
[9] W.E. Haver, A covering property for metric spaces, Lecture Notes Math. 375 (1974), 108113.
[10] E. Hemmingsen, Some theorems on dimension theory for normal Hausdorff spaces, Duke Math. J. 13 (1946), 495-504.
[11] M. Katétov, On the dimension of metric spaces, Dokl. AN USSR 79 (1951), 189-191 (In Russian).
[12] K. Morita, On generalizations of Borsuk's homotopy extension theorem, Fund. Math. 88 (1975), 1-6.
[13] M. Starbird, The Borsuk homotopy extension without binormality condition, Fund. Math. 87 (1975), 207-211.
(received 27.12.2011; in revised form 06.02.2012; available online 15.03.2012)
Mech.-Math. Faculty, Moscow State University, Moscow, Russia
E-mail: vvfedorchuk@gmail.com

