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A NOTE ON SEQUENCE-COVERING
π-IMAGES OF METRIC SPACES

Zhaowen Li and Tusheng Xie

Abstract. In this paper, we prove that a space is a sequence-covering π-image of a metric
space if and only if it has a σ-strong network consisting of cs-covers (or sn-covers) if and only if
it is a Cauchy sn-symmetric space.

1. Introduction and definitions

To find internal characterizations of certain images of metric spaces is one
of the central problems in general topology. Some characterizations of quotient
π-images (open π-images, pseudo-open π-images, sequentially-quotient π-images,
weak-open π-images) of metric spaces are obtained in [2–5, 7, 13, 15].

The purpose of this paper is to investigate sequence-covering π-images of metric
spaces. We prove that a space is a sequence-covering π-image of a metric space if
and only if it is has a σ-strong network consisting of cs-covers (or sn-covers) if and
only if it is a Cauchy sn-symmetric space.

Throughout this paper all spaces are Hausdorff, and all mappings are continu-
ous and surjective. N denotes the set of all natural numbers. τ(X) denotes a topol-
ogy on X. For a collection P of subsets of a space X and a mapping f : X → Y ,
we denote {f(P ) : P ∈ P} by f(P), Px = {P ∈ P : x ∈ P} and st(x,P) =

⋃Px.
For the usual product space

∏
i∈N Xi, πi denotes the projective

∏
i∈N Xi onto Xi.

For a sequence {xn} in a space X, we denote 〈xn〉 = {xn : n ∈ N}.

Definition 1.1. [9] Let f : X → Y be a mapping. f is is called a sequence-
covering mapping, if whenever {yn} is a convergent sequence in Y , then there exists
a convergent sequence {xn} in X such that each xn ∈ f−1(yn).
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Definition 1.2. [11] Let X be a space, and P ⊂ X. Then,
(1) A sequence {xn} in X is called eventually in P , if {xn} converges to x, and

there exists m ∈ N such that {x} ∪ {xn : n ≥ m} ⊂ P .
(2) P is called a sequential neighborhood of x in X, if x ∈ P , and whenever a

sequence {xn} in X converges to x , then {xn} is eventually in P .
(3) P is called sequential open in X, if P is a sequential neighborhood of each

of its points.
(4) X is called a sequential space, if any sequential open subset of X is open

in X.

Definition 1.3. [12] Let P be a collection of subsets of a space X and x ∈ X.
(1) P is called a network of x in X, if x ∈ ⋂P and for each neighborhood U

of x, there exists P ∈ P such that P ⊂ U .
(2) P is called a sn-network of x in X, if P is a network of x in X and each

element of P is also a sequential neighborhood of x.
(3) P is called a cs-cover for X, if P is a cover for X, and every convergent

sequence in X is eventually in some element of P.
(4) P is called an sn-cover for X, if P is a cover for X, every element of P is

a sequential neighborhood of some point in X, and for each x ∈ X there exists a
sequential neighborhood P of x in X such that P ∈ P.

Definition 1.4. [2] Let {Pn} be a sequence of covers of a space X.
(1)

⋃{Pn : n ∈ N} is called a σ-strong network for X, if 〈st(x,Pn)〉 is a
network of x in X for each x ∈ X.

(2)
⋃{Pn : n ∈ N} is called a σ-strong network consisting of p-covers, if⋃{Pn : n ∈ N} is a σ-strong network for X and each Pn satisfies property p.

Definition 1.5. Let X be a set. A non-negative real valued function d defined
on X ×X is called a d-function on X, if d(x, x) = 0 and d(x, y) = d(y, x) for any
x ∈ X.

Let d be a d-function on a space X. In this paper we write B(x, 1/n) = {y ∈
X : d(x, y) < 1/n} and d(A) = sup{d(x, y) : x, y ∈ A}, where x ∈ X, n ∈ N and
A ⊂ X.

Definition 1.6. [8] Let d be a d-function on a space X. (X, d) is called an sn-
symmetric space, if d satisfies the condition: {B(x, 1/n) : n ∈ N} is an sn-network
of x in X for any x ∈ X, where d is called an sn-symmetric on X.

Definition 1.7. [6] Let (X, d) be a metric space and let f : X → Y be a
mapping. f is called a π-mapping with respect to d, if for each y ∈ Y and each
open neighborhood V in Y , d(f−1(y), X \ f−1(V )) > 0.

Definition 1.8. [1] Let (X, d) be an sn-symmetric space, Then,
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(1) a sequence {xn} in X is called d-Cauchy, if for each ε > 0, there exists
k ∈ N such that d(xm, xn) < ε for all n,m > k.

(2) X is called a Cauchy sn-symmetric space, if each convergent sequence in
X is d-Cauchy.

2. Main results

Lemma 2.1. [13] Let (X, d) be an sn-symmetric space, n ∈ N and x ∈ X. Put
Pn = {A ⊂ X : d(A) < 1/n}, then st(x,Pn) = B(x, 1/n).

Theorem 2.2. The following are equivalent for a space X:
(1) X is a sequence-covering π-image of a metric space;
(2) X has a σ-strong network consisting of cs-covers;
(3) X has a σ-strong network consisting of sn-covers;
(4) X is a Cauchy sn-symmetric space.

Proof: (1)⇔(2)⇔(3) hold by Theorem 3.1.7 in [12]. We only need to prove
(2)⇔(4).

(2)⇒(4). Suppose
⋃{Pn : n ∈ N} is a σ-strong network consisting of cs-covers

for X. We can assume that Pn+1 refines Pn for each n ∈ N .
For each x, y ∈ X, denote

t(x, y) = min{n : x 6∈ st(y,Pn)} (x 6= y).

We define d(x, y) =
{

0, x = y

2−t(x,y), x 6= y;
then d is a d-function on X.

Claim. For each x, y ∈ X, x ∈ st(y,Pn) if and only if t(x, y) > n.
In fact, the ‘if’ part is obvious. The only if part: Suppose x ∈ st(y,Pn)

but t(x, y) ≤ n, since Pn refine Pt(x,y), then st(y,Pn) ⊂ st(y,Pt(x,y)). Note that
x /∈ st(y,Pt(x,y)), so x /∈ st(y,Pn), a contradiction.

For each x ∈ X and n ∈ N, st(x,Pn) = B(x, 1/2n) by the Claim.
Because

⋃{Pn : n ∈ N} is a σ-strong network for X, then (X, d) is a sn-
symmetric space.

For each sequence {xn} in X converging to x ∈ X and ε > 0, there exists
k ∈ N such that 1/2k < ε. Since Pk is a cs-cover for X, then there exist P ∈ Pk

and l ∈ N such that {x} ∪ {xn : n ≥ l} ⊂ P . If n,m ≥ l, then xn, xm ∈ P , so
xn ∈ st(xm,Pk). Thus t(xn, xm) > k by the Claim.

Hence
d(xn, xm) = 1/2t(xn,xm) < 1/2k < ε if n, m ≥ l.

Therefore {xn} is d-Cauchy. This implies that X is a Cauchy sn-symmetric space.
(4)⇒(2). Suppose X is a Cauchy sn-symmetric space. For each n ∈ N , put

Pn = {A ⊂ X : d(A) < 1/n}
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By Lemma 2.1, st(x,Pn) = B(x, 1/n) for each x ∈ X, so 〈st(x,Pn)〉 is a network
of x in X for each x ∈ X. Thus

⋃{Pn : n ∈ N} is a σ-strong network for X.
For each n ∈ N and each sequence {xi} converging to x ∈ X, since {xi} is

d-Cauchy, then there exists m1 ∈ N such that d(xi, xj) < 1/(n+1) for all i, j ≥ m1.
Since X is a sn-symmetric space, then {B(x, 1/i) : i ∈ N} is an sn-network of x in
X. So B(x, 1/(n + 1)) is a sequential neighborhood of x in X. Thus there exists
m2 ∈ N such that d(x, xi) < 1/(n + 1) for all i ≥ m2. Put

P = {x} ∪ {xi : i ≥ m} where m = m1 + m2,

then P ∈ Pn.
Obviously, {xi} is eventually in P . Hence each Pn is a cs-cover for X. There-

fore, X has a σ-strong network consisting of cs-covers.
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