HARMONIC STARLIKE FUNCTIONS OF COMPLEX ORDER INVOLVING HYPERGEOMETRIC FUNCTIONS

G. Murugusundaramoorthy
Dedicated to my father Prof. P.M. Gangadharan (1938-2011)

Abstract

A family of harmonic starlike functions of complex order in the unit disc has been introduced and investigated by S.A. Halim and A. Janteng [Harmonic functions starlike of complex order, Proc. Int. Symp. on New Development of Geometric function Theory and its Applications, (2008), 132-140]. In this paper we consider a subclass consisting of harmonic parabolic starlike functions of complex order involving special functions and obtain coefficient conditions, extreme points and a growth result.

1. Introduction

Let \mathcal{H} denote the family of harmonic functions $f=h+\bar{g}$ that are orientation preserving and univalent in the open disc $\triangle=\{z:|z|<1\}$ with h and g given by

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, g(z)=\sum_{n=1}^{\infty} b_{n} z^{n},\left|b_{1}\right|<1 . \tag{1.1}
\end{equation*}
$$

We note that the family \mathcal{H} of orientation preserving, normalized harmonic univalent functions reduces to the well known class \mathcal{S} of normalized univalent functions if the co-analytic part of f is identically zero, i.e. $g \equiv 0$. Also, we denote by $\overline{\mathcal{H}}$ the subfamily of \mathcal{H} consisting of harmonic functions $f=h+\bar{g}$ of the form

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}, g(z)=\sum_{n=1}^{\infty}\left|b_{n}\right| z^{n}, \quad\left|b_{1}\right|<1 . \tag{1.2}
\end{equation*}
$$

The seminal work of Clunie and Sheil-Small [2] on harmonic mappings gave rise to many studies of subclasses of complex-valued harmonic univalent functions. In particular, Silverman [18], Jahangiri [7] Rosy et al. [17], Halim and Janteng [6] and others (see $[10,11,12]$) have investigated properties of various subclasses of \mathcal{H} related to harmonic starlike functions.

[^0]The Hadamard product (or convolution) of two power series

$$
\begin{equation*}
\phi(z)=z+\sum_{n=2}^{\infty} \phi_{n} z^{n} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(z)=z+\sum_{n=2}^{\infty} \psi_{n} z^{n} \tag{1.4}
\end{equation*}
$$

in S is defined (as usual) by

$$
\begin{equation*}
(\phi * \psi)(z)=\phi(z) * \psi(z)=z+\sum_{n=2}^{\infty} \phi_{n} \psi_{n} z^{n} . \tag{1.5}
\end{equation*}
$$

For positive real values of $\alpha_{1}, \ldots, \alpha_{l}$ and $\beta_{1}, \ldots, \beta_{m}\left(\beta_{j} \neq 0,-1, \ldots ; j=\right.$ $1,2, \ldots, m)$ the generalized hypergeometric function ${ }_{l} F_{m}(z)$ is defined by

$$
\begin{gather*}
{ }_{l} F_{m}(z) \equiv{ }_{l} F_{m}\left(\alpha_{1}, \ldots \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right):=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{l}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{m}\right)_{n}} \frac{z^{n}}{n!} \tag{1.6}\\
\left(l \leq m+1 ; l, m \in N_{0}:=N \cup\{0\} ; z \in \Delta\right),
\end{gather*}
$$

where N denotes the set of all positive integers and $(a)_{n}$ is the Pochhammer symbol defined by

$$
(a)_{n}=\left\{\begin{array}{lr}
1, & n=0 \tag{1.7}\\
a(a+1)(a+2) \ldots(a+n-1), & n \in N
\end{array}\right.
$$

The notation ${ }_{l} F_{m}$ is quite useful for representing many well-known functions such as the exponential, the Binomial, the Bessel and Laguerre polynomial. Let

$$
H\left[\alpha_{1}, \ldots \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right]: \mathcal{S} \rightarrow \mathcal{S}
$$

be a linear operator defined by

$$
\begin{align*}
H\left[\alpha_{1}, \ldots \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right] \phi(z) & =H_{m}^{l}\left[\alpha_{1}\right] \phi(z) \\
& :=z_{l} F_{m}\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{l} ; \beta_{1}, \beta_{2} \ldots, \beta_{m} ; z\right) * \phi(z) \\
& =z+\sum_{n=2}^{\infty} \omega_{n}\left(\alpha_{1} ; l ; m\right) \phi_{n} z^{n} \tag{1.8}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{n}\left(\alpha_{1} ; l ; m\right)=\frac{\left(\alpha_{1}\right)_{n-1} \ldots\left(\alpha_{l}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \ldots\left(\beta_{m}\right)_{n-1}} \frac{1}{(n-1)!} \tag{1.9}
\end{equation*}
$$

It follows from (1.8) that

$$
H_{0}^{1}[1] \phi(z)=\phi(z), H_{0}^{1}[2] \phi(z)=z \phi^{\prime}(z)
$$

The linear operator $H_{m}^{l}\left[\alpha_{1}\right]$ is the Dziok-Srivastava operator (see [4]) which was subsequently extended by Dziok and Raina [3] by using the Wright generalized hypergeometric function. Recently Srivastava et al. [19] defined the linear operator $\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}$ as follows:

$$
\begin{align*}
\mathcal{L}_{\lambda, \alpha_{1}}^{0} \phi(z) & =\phi(z) \\
\mathcal{L}_{\lambda, l, m}^{1, \alpha_{1}} \phi(z) & =(1-\lambda) H_{m}^{l}\left[\alpha_{1}\right] \phi(z)+\lambda z\left(H_{m}^{l}\left[\alpha_{1}\right] \phi(z)\right)^{\prime}=\mathcal{L}_{\lambda, l, m}^{\alpha_{1}} \phi(z),(\lambda \geq 0) \tag{1.10}
\end{align*}
$$

$$
\begin{equation*}
\mathcal{L}_{\lambda, l, m}^{2, \alpha_{1}} \phi(z)=\mathcal{L}_{\lambda, l, m}^{\alpha_{1}}\left(\mathcal{L}_{\lambda, l, m}^{1, \alpha_{1}} \phi(z)\right) \tag{1.11}
\end{equation*}
$$

and in general,

$$
\begin{equation*}
\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} \phi(z)=\mathcal{L}_{\lambda, l, m}^{\alpha_{1}}\left(\mathcal{L}_{\lambda, l, m}^{\tau-1, \alpha_{1}} \phi(z)\right),\left(l \leq m+1 ; l, m \in N_{0}=N \cup\{0\} ; z \in \Delta\right) \tag{1.12}
\end{equation*}
$$

If the function $\phi(z)$ is given by (1.3), then we see from (1.8), (1.9), (1.10) and (1.12) that

$$
\begin{equation*}
\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} \phi(z):=z+\sum_{n=2}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) \phi_{n} z^{n} \tag{1.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)=\left(\frac{\left(\alpha_{1}\right)_{n-1} \ldots\left(\alpha_{l}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \ldots\left(\beta_{m}\right)_{n-1}} \frac{[1+\lambda(n-1)]}{(n-1)!}\right)^{\tau},\left(n \in N \backslash\{1\}, \tau \in N_{0}\right) \tag{1.14}
\end{equation*}
$$

unless otherwise stated. We note that when $\tau=1$ and $\lambda=0$ the linear operator $\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}$ would reduce to the familiar Dziok-Srivastava linear operator [4], includes (as its special cases) various other linear operators introduced and studied by Carlson and Shaffer [1], Owa [14] and Ruscheweyh [16].

In view of the relationship (1.14) and the linear operator (1.13) for the harmonic function $f=h+\bar{g}$ given by (1.1), Murugusundaramoorthy et al. [11,12] have defined the operator

$$
\begin{equation*}
\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} f(z)=\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)+\overline{\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z)} \tag{1.15}
\end{equation*}
$$

and studied the subclass of \mathcal{H} in terms of this operator.
Goodman [5] introduced two interesting subclasses of \mathcal{S}, namely uniformly convex functions $(\mathcal{U C V})$ and uniformly starlike functions $(\mathcal{U S T})$, and Ronning [15] introduced a subclass of starlike functions \mathcal{S}_{p} corresponding to the class $\mathcal{U C V}$. In order to consider extension of the class \mathcal{S}_{p}, we study in this note the class of harmonic starlike functions of complex order based on the earlier works of Nasr and Aouf [13] and Halim and Janteng [6].

For $0 \leq \alpha<1, b$, a non-zero complex number with $|b|<1$, we let $\mathcal{H} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$ be the subclass of \mathcal{H} consisting of harmonic functions $f=h+\bar{g}$ where h and g are of the form (1.1), satisfying

$$
\begin{equation*}
\Re(w(z))=\Re\left(1+\frac{1}{b}\left(\left(1+e^{i \gamma}\right) \frac{z\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)\right)^{\prime}-\overline{z\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z)\right)^{\prime}}}{\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)+\overline{\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z)}}-e^{i \gamma}-1\right)\right)>\alpha \tag{1.16}
\end{equation*}
$$

$z \in \triangle$, and for all real γ. We also let $\overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)=\mathcal{H} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha) \cap \overline{\mathcal{H}}$.
REmark. With the above conditions, if we choose $\gamma=0$, we can define the generalized class of harmonic starlike functions of complex order satisfying the condition

$$
\Re(w(z))=\Re\left(1+\frac{2}{b}\left(\frac{z\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)\right)^{\prime}-\overline{z\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z)\right)^{\prime}}}{\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)+\overline{\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z)}}-1\right)\right)>\alpha
$$

In this note we obtain sufficient coefficient conditions for harmonic functions $f=h+\bar{g}$ of the form (1.1) to be in $\mathcal{H} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$. We also show that these
conditions are necessary when $f \in \overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$. We also obtain extreme points and growth results.

2. Main results

Theorem 1. Let $f=h+g$ be given by (1.1). If

$$
\begin{align*}
\sum_{n=2}^{\infty} \frac{[2 n-2+(1-\alpha)|b|]}{(1-\alpha)|b|}\left|a_{n}\right| & \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) \\
& +\sum_{n=1}^{\infty} \frac{[2 n+2-(1-\alpha)|b|]}{(1-\alpha)|b|}\left|b_{n}\right| \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) \leq 1 \tag{2.1}
\end{align*}
$$

where $a_{1}=1,0 \leq \alpha<1$ and $b(|b| \leq 1)$ is a non-zero complex number, then f is harmonic univalent and orientation-preserving in \triangle and $f \in \mathcal{H}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$.

Proof. First we establish that f is orientation preserving in \triangle. This is seen as follows, on using (2.1):

$$
\begin{aligned}
\left|\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)\right)^{\prime}\right| & \geq 1-\sum_{n=2}^{\infty} n \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| r^{n-1} \\
& >1-\sum_{n=2}^{\infty} n \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| \\
& \geq 1-\sum_{n=2}^{\infty}\left[\frac{2 n-2+(1-\alpha)|b|}{(1-\alpha)|b|}\right] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| \\
& \geq \sum_{n=1}^{\infty}\left[\frac{2 n+2-(1-\alpha)|b|}{(1-\alpha)|b|}\right] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| \\
& \geq \sum_{n=1}^{\infty} n \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| \\
& \geq \sum_{n=1}^{\infty} n \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| r^{n-1} \geq\left|\left(\mathcal{L}_{\lambda, l, m}^{\alpha_{1}} g(z)\right)^{\prime}\right|
\end{aligned}
$$

To show that f is univalent in \triangle, we show that $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ when $z_{1} \neq z_{2}$. Suppose $z_{1}, z_{2} \in \triangle$ so that $z_{1} \neq z_{2}$. Since the unit disc \triangle is simply connected and convex, we then have $z(t)=(1-t) z_{1}+t z_{2}$ in D where $0 \leq t \leq 1$. Then we write $\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} f\left(z_{2}\right)-\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} f\left(z_{1}\right)$

$$
=\int_{0}^{1}\left[\left(z_{2}-z_{1}\right)\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z(t))^{\prime}\right)+\overline{\left(z_{2}-z_{1}\right)\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z(t))^{\prime}\right)}\right] d t
$$

Since $z_{2}-z_{1} \neq 0$, dividing throughout by $z_{2}-z_{1}$ and taking only the real parts we obtain

$$
\begin{align*}
& \Re\left(\frac{\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} f\left(z_{2}\right)-\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} f\left(z_{1}\right)}{z_{2}-z_{1}}\right) \\
&=\int_{0}^{1} \Re\left[\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z(t))\right)^{\prime}+\frac{\overline{\left(z_{2}-z_{1}\right)}}{z_{2}-z_{1}} \overline{\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z(t))\right)^{\prime}}\right] d t \\
& \quad>\int_{0}^{1}\left[\Re\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z(t))\right)^{\prime}-\left|\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z(t))\right)^{\prime}\right|\right] d t . \tag{2.2}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\Re\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z(t))\right)^{\prime} & -\left|\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z(t))\right)^{\prime}\right| \\
\geq & \Re\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z(t))\right)^{\prime}-\sum_{n=1}^{\infty} n \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| \\
\geq & 1-\sum_{n=2}^{\infty} n \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right|-\sum_{n=1}^{\infty} n \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| \\
\geq & 1-\sum_{n=2}^{\infty}\left[\frac{2 n-2+(1-\alpha)|b|}{(1-\alpha)|b|}\right] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| \\
& \quad-\sum_{n=1}^{\infty}\left[\frac{2 n+2-(1-\alpha)|b|}{(1-\alpha)|b|}\right] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right|
\end{aligned}
$$

$$
\geq 0 \text { by } \quad(2.1)
$$

Therefore this together with inequality (2.2) implies the univalence of f.
Next we show that $f \in \mathcal{H} \mathcal{L}_{\lambda, l, m}^{\tau,, \alpha_{1}}(b, \gamma, \alpha)$. To do so, we need to show that when (2.1) holds, then (1.16) also holds true. Using the fact that $\Re w(z) \geq \alpha$ if and only if $|1-\alpha+w| \geq|1+\alpha-w|$ for $0 \leq \alpha<1$ it suffices to show that

$$
\begin{aligned}
& \mid\left(2 b-\alpha b-e^{i \gamma}-1\right)\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)+\overline{\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z)}\right) \\
& +\left(1+e^{i \gamma}\right)\left(z\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)\right)^{\prime}-\overline{\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z)\right)^{\prime}}\right)\left|-\left|\left(1+\alpha b+e^{i \gamma}\right)\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)+\overline{\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z)}\right)\right|\right. \\
& \quad-\left(1+e^{i \gamma}\right)\left(z\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)\right)^{\prime}-\overline{z\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z)\right)^{\prime}}\right) \mid \geq 0
\end{aligned}
$$

On substituting for $\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)\right)$ and $\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z)\right)$ we obtain

$$
\begin{aligned}
& \mid\left(2 b-\alpha b-\left(1+e^{i \gamma}\right)\right)\left[z+\sum_{n=2}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) a_{n} z^{n}+\sum_{n=1}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) \overline{b_{n} z^{n}}\right] \\
& +\left(1+e^{i \gamma}\right)\left[z+\sum_{n=2}^{\infty} n \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) a_{n} z^{n}-\sum_{n=1}^{\infty} n \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) \overline{b_{n} z^{n}}\right] \mid \\
& -\mid\left(1+\alpha b+e^{i \gamma}\right)\left[z+\sum_{n=2}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) a_{n} z^{n}+\sum_{n=1}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) \overline{b_{n} z^{n}}\right] \\
& -\left(1+e^{i \gamma}\right)\left[z+\sum_{n=2}^{\infty} n \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) a_{n} z^{n}-\sum_{n=1}^{\infty} n \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) \overline{b_{n} z^{n}}\right] \mid \\
& \geq(2-\alpha)|b||z|-\sum_{n=2}^{\infty}\left|(2-\alpha) b+\left(1+e^{i \gamma}\right)(n-1)\right| \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right||z|^{n} \\
& \quad-\sum_{n=1}^{\infty}\left|\left(1+e^{i \gamma}\right)(n+1)-(2-\alpha) b\right| \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right||z|^{n} \\
& \quad-\alpha|b||z|-\sum_{n=2}^{\infty}\left|(n-1)\left(1+e^{i \gamma}\right)-\alpha b\right| \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right||z|^{n} \\
& \quad-\sum_{n=1}^{\infty}\left|(n+1)\left(1+e^{i \gamma}\right)+\alpha b\right| \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right||z|^{n} \\
& \geq 2(1-\alpha)|b||z|\left\{1-\sum_{n=2}^{\infty}\left[\frac{2[2 n-2+(1-\alpha)|b|]}{2(1-\alpha)|b|} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right|\right]\right\}
\end{aligned}
$$

$$
-2(1-\alpha)|b||z| \sum_{n=1}^{\infty}\left[\frac{2[2 n+2-(1-\alpha)|b|]}{2(1-\alpha)|b|} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right|\right]
$$

$$
\geq 0, \quad \text { by } \quad(2.1)
$$

The function

$$
f(z)=z+\sum_{n=2}^{\infty}\left[\frac{(1-\alpha)|b|}{[2 n-2+(1-\alpha)|b|]}\right] x_{n} z^{n}+\sum_{n=1}^{\infty}\left[\frac{(1-\alpha)|b|}{[2 n+2-(1-\alpha)|b|]}\right] \bar{y}_{n} \bar{z}^{n},
$$

where $\sum_{n=2}^{\infty}\left|x_{n}\right|+\sum_{n=1}^{\infty}\left|y_{n}\right|=1$, shows that the coefficient bound given by (2.1) is sharp.

The next theorem shows that condition (2.1) is necessary for $f \in \overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$.
THEOREM 2. Let $f=h+\bar{g}$ be given by (1.2). Then $f \in \overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$ if and only if

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{[2 n-2+(1-\alpha)|b|]}{(1-\alpha)|b|} \omega_{n}^{\tau} & \left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| \\
& +\sum_{n=1}^{\infty} \frac{[2 n+2-(1-\alpha)|b|]}{(1-\alpha)|b|} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| \leq 2 \tag{2.3}
\end{align*}
$$

where $a_{1}=1,0 \leq \alpha<1, b$ is a non-zero complex number such that $|b|<1$.
Proof. Since $\overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha) \subset \mathcal{H} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$, the if part of the Theorem 2 follows from Theorem 1. To prove the only if part, we show that when (2.3) does not hold then f is not in $\overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$.

First, if $f \in \overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$ then

$$
\begin{aligned}
\Re(1+ & \left.\frac{1}{b}\left(\left(1+e^{i \gamma}\right) \frac{z\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)\right)^{\prime}-\overline{z\left(\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z)\right)^{\prime}}}{\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} h(z)+\overline{\mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}} g(z)}}-\left(e^{i \gamma}+1\right)\right)\right)-\alpha \\
= & \Re\left(\frac{(1-\alpha) b z-\sum_{n=2}^{\infty}\left[(1-\alpha) b+(n-1)\left(1+e^{i \gamma}\right)\right] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| z^{n}}{b\left(z-\sum_{n=2}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| z^{n}+\sum_{n=1}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| \bar{z}^{n}\right)}\right) \\
& -\Re\left(\frac{\sum_{n=1}^{\infty}\left[(n+1)\left(1+e^{i \gamma}\right)-(1-\alpha) b\right] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| \bar{z}^{n}}{b\left(z-\sum_{n=2}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| z^{n}+\sum_{n=1}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| \bar{z}^{n}\right)}\right)
\end{aligned}
$$

$$
=\Re\left(\frac{(1-\alpha)|b|^{2}-\sum_{n=2}^{\infty}\left[(1-\alpha) b+(n-1)\left(1+e^{i \gamma}\right)\right] \bar{b} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| z^{n-1}}{|b|^{2}\left(1-\sum_{n=2}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| z^{n-1}+\frac{\bar{z}}{z} \sum_{n=1}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| \bar{z}^{n-1}\right)}\right)
$$

$$
-\Re\left(\frac{+\frac{\bar{z}}{z} \sum_{n=1}^{\infty}\left[(n+1)\left(1+e^{i \gamma}\right)-(1-\alpha) b\right] \bar{b} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| \bar{z}^{n-1}}{|b|^{2}\left(1-\sum_{n=2}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| z^{n-1}+\frac{\bar{z}}{z} \sum_{n=1}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| \bar{z}^{n-1}\right)}\right) \geq 0
$$

The above condition need hold for all values of $\gamma,|z|=r<1$ and any b such that $0<|b|<1$. Choose $\gamma=0, b$ real and positive so that $|b|=b$ and $z=r<1$ on positive real axis. Thus the above condition becomes

$$
\begin{gather*}
(1-\alpha)|b|^{2}-\sum_{n=2}^{\infty}[(2 n-2)+(1-\alpha) b]|b| \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| r^{n-1} \\
|b|^{2}\left(1-\sum_{n=2}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| r^{n-1}+\sum_{n=1}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| r^{n-1}\right) \tag{2.4}\\
-\frac{\sum_{n=1}^{\infty}[(2 n+2)-(1-\alpha) b]|b| \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| r^{n-1}}{|b|^{2}\left(1-\sum_{n=2}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|a_{n}\right| r^{n-1}+\sum_{n=1}^{\infty} \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\left|b_{n}\right| r^{n-1}\right)} \geq 0
\end{gather*}
$$

We need to show that the numerator is positive since the denominator is positive. The numerator is

$$
\begin{aligned}
(1-\alpha)|b|^{2}-|b|\left[\sum_{n=2}^{\infty}[(2 n-2)\right. & +(1-\alpha)|b|]\left|a_{n}\right| \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) r^{n-1} \\
& \left.-\sum_{n=1}^{\infty}[(2 n+2)-(1-\alpha)|b|]\left|b_{n}\right| \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) r^{n-1}\right]
\end{aligned}
$$

which is negative if condition (2.3) does not hold. Thus, there exist some point $z_{0}=r_{0}$ in $(0,1)$ and some real positive b for which the quotient in the above inequalities are negative, which contradicts the condition that $f \in \overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$. Hence the proof is complete.

Next, extreme points of the closed convex hull clco $\overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$ of $\overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$ are determined.

Theorem 3. $f \in \operatorname{clco} \overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$ if and only if

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{gathered}
h_{1}(z)=z, h_{n}(z)=z-\frac{(1-\alpha)|b|}{[2 n-2+(1-\alpha)|b|] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)} z^{n}, n=2,3, \ldots \\
g_{n}(z)=z+\frac{(1-\alpha)|b|}{[2 n+2-(1-\alpha)|b|] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)} \bar{z}^{n}, n=1,2, \ldots ; \\
\sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right)=1, X_{n} \geq 0 \text { and } Y_{n} \geq 0 . \text { In particular, the extreme points of } \\
\mathcal{H} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha) \text { are }\left\{h_{n}\right\} \text { and }\left\{g_{n}\right\} .
\end{gathered}
$$

Proof. For functions f having the form (2.5), we have

$$
\begin{aligned}
f(z)= & \sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right) \\
= & \sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right) z-\sum_{n=2}^{\infty} \frac{(1-\alpha)|b|}{[2 n-2+(1-\alpha)|b|] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)} X_{n} z^{n} \\
& +\sum_{n=1}^{\infty} \frac{(1-\alpha)|b|}{[2 n+2-(1-\alpha)|b|] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)} Y_{n} \bar{z}^{n}
\end{aligned}
$$

Thus

$$
\begin{array}{r}
\sum_{n=2}^{\infty} \frac{[2 n-2+(1-\alpha)|b|] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)}{(1-\alpha)|b|}\left(\frac{(1-\alpha)|b|}{[2 n-2+(1-\alpha)|b|] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)}\right) X_{n} \\
+\sum_{n=1}^{\infty} \frac{\left[2 n+2-(1-\alpha)|b| \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\right.}{(1-\alpha)|b|}\left(\frac{(1-\alpha)|b|}{[2 n+2-(1-\alpha)|b|] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)}\right) Y_{n} \\
=\sum_{n=2}^{\infty} X_{n}+\sum_{n=1}^{\infty} Y_{n}=1-X_{1} \leq 1 .
\end{array}
$$

Therefore, $f \in \operatorname{clco} \overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$.
Conversely, suppose that $f \in \operatorname{clco} \overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$. Set

$$
X_{n}=\frac{2 n-2+(1-\alpha)|b|}{(1-\alpha)|b|}\left|a_{n}\right| \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right), n=2,3, \ldots,
$$

and

$$
Y_{n}=\frac{2 n+2-(1-\alpha)|b|}{(1-\alpha)|b|}\left|b_{n}\right| \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right), n=1,2, \ldots,
$$

where $\sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right)=1$. Then

$$
\begin{aligned}
f(z)= & z-\sum_{n=2}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} b_{n} \bar{z}^{n} \\
= & z-\sum_{n=2}^{\infty} \frac{(1-\alpha)|b|}{[2 n-2+(1-\alpha)|b|] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)} X_{n} z^{n} \\
& +\sum_{n=1}^{\infty} \frac{(1-\alpha)|b|}{[2 n+2-(1-\alpha)|b|] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)} Y_{n} \bar{z}^{n} \\
= & z-\sum_{n=2}^{\infty}\left[X_{n}\left(h_{n}(z)-z\right)\right]+\sum_{n=1}^{\infty}\left[Y_{n}\left(g_{n}(z)-z\right)\right] \\
= & \sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right) .
\end{aligned}
$$

From Theorem 2, we can deduce that $0 \leq X_{n} \leq 1,(n \geq 2)$ and $0 \leq Y_{n} \leq 1$, $(n \geq 1)$. We define $X_{1}=1-\sum_{n=2}^{\infty} X_{n}-\sum_{n=1}^{\infty} Y_{n}$. Again from Theorem 2, $X_{1} \geq 0$. Therefore $\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{n}\right)=f(z)$ as required in the theorem.

Theorem 4. If $f \in \overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$, then for $|z|=r<1$,
$|f(z)| \leq\left(1+b_{1}\right) r+\left(\frac{(1-\alpha)|b|}{[2+(1-\alpha)|b|] \omega_{2}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)}\right.$

$$
\left.-\frac{4-(1-\alpha)|b|}{[2+(1-\alpha)|b|] \omega_{2}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)}\left|b_{1}\right|\right) r^{2}
$$

and

$$
\begin{aligned}
|f(z)| \geq\left(1-b_{1}\right) r-\left(\frac{(1-\alpha)|b|}{}\right. & \\
{[2+(1-\alpha)|b|] \omega_{2}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) } & \\
& \left.-\frac{4-(1-\alpha)|b|}{[2+(1-\alpha)|b|] \omega_{2}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)}\left|b_{1}\right|\right) r^{2}
\end{aligned}
$$

Proof. Let $f(z) \in \overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$. On taking the absolute value of f, we have

$$
\begin{aligned}
|f(z)| \leq & \left.\left(1+\left|b_{1}\right|\right) r+\sum_{n=2}^{\infty}\left[\left|a_{n}\right|+\left|b_{n}\right|\right] \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)\right) r^{n} \\
\leq & \left(1+\left|b_{1}\right|\right) r+r^{2} \sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) \\
= & \left(1+\left|b_{1}\right|\right) r+\frac{(1-\alpha)|b| r^{2}}{[2+(1-\alpha)|b|] \omega_{2}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)} \\
& \times \sum_{n=2}^{\infty}\left(\frac{2+(1-\alpha)|b|}{(1-\alpha)|b|}\left|a_{n}\right|+\frac{2+(1-\alpha)|b|}{(1-\alpha)|b|}\left|b_{n}\right|\right) \omega_{2}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) \\
\leq & \left(1+\left|b_{1}\right|\right) r+\frac{(1-\alpha)|b| r^{2}}{[2+(1-\alpha)|b|] \omega_{2}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)} \\
& \times \sum_{n=2}^{\infty}\left(\frac{2 n-2+(1-\alpha)|b|}{(1-\alpha)|b|}\left|a_{n}\right|+\frac{2 n+2-(1-\alpha)|b|}{(1-\alpha)|b|}\left|b_{n}\right|\right) \omega_{n}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right) \\
\leq & \left(1+\left|b_{1}\right|\right) r+\frac{(1-\alpha)|b|}{[2+(1-\alpha)|b|] \omega_{2}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)}\left(1-\frac{[4-(1-\alpha)|b|]}{(1-\alpha)|b|}\left|b_{1}\right|\right) r^{2} \\
\leq & \left(1+\left|b_{1}\right|\right) r \\
& +\left(\frac{4-(1-\alpha)|b|}{[2+(1-\alpha)|b|] \omega_{2}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)}-\frac{4}{[2+(1-\alpha)|b|] \omega_{2}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)}\left|b_{1}\right|\right) r^{2}
\end{aligned}
$$

Similarly we can prove the other inequality. The result is sharp for the function

$$
\begin{aligned}
f(z)=z+\left|b_{1}\right| \bar{z}+ & \left(\frac{(1-\alpha)|b|}{[2+(1-\alpha)|b|] \omega_{2}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)}\right. \\
& \left.-\frac{4-(1-\alpha)|b|}{[2+(1-\alpha)|b|] \omega_{2}^{\tau}\left(\alpha_{1} ; \lambda ; l ; m\right)}\left|b_{1}\right|\right) \bar{z}^{2},\left|b_{1}\right| \leq \frac{(1-\alpha)|b|}{4-(1-\alpha)|b|}
\end{aligned}
$$

Concluding remarks. By choosing $\tau=1 ; \lambda=0$ and specializing the parameters α_{1}, l, m, the various results presented in this paper would provide interesting analogous results for the class of harmonic functions those considered earlier in $[7-10,12,17,18]$. In fact, by appropriately selecting these arbitrary sequences, the results presented in this paper would find further applications for the class of harmonic functions which would incorporate a generalized form of the Dziok-Srivastava linear operator [4] involving the Hadamard product (or convolution) of the function in (1.1) with the Fox-Wright generalization ${ }_{l} \psi_{m}$ (see [3]) of the hypergeometric function ${ }_{l} F_{m}$. Theorems 1 to 4 would thus eventually lead us further to new results for the class of functions (defined analogously to the class $f \in \overline{\mathcal{H}} \mathcal{L}_{\lambda, l, m}^{\tau, \alpha_{1}}(b, \gamma, \alpha)$), by associating instead the FoxWright generalized hypergeometric function $l \psi_{m}$. Further, it is of interest to note that the results obtained in this paper yield various results studied in the literature by taking $\gamma=0$ with $\tau=1 ; \lambda=0$. We choose to skip further details in this regard.

Acknowledgement. The author would like to thank the referees for their suggestions.

REFERENCES

[1] B.C. Carlson, D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM, J. Math. Anal. 15 (1984), 737-745.
[2] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A.I. Math. 9 (1984), 3-25.
[3] J. Dziok, R.K. Raina, Families of analytic functions associated with the Wright generalized hypergeometric function, Demonstratio Math. 37 (2004), 533-542.
[4] J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Intergral Transform Spec. Funct. 14 (2003), 7-18.
[5] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92.
[6] S.A. Halim, A. Janteng, Harmonic functions starlike of complex order, Proc. Int. Symp. on New Development of Geometric Function Theory and its Applications, (2008), 132-140.
[7] J.M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl. 235 (1999), 470-477.
[8] J.M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Starlikeness of Rucheweyh type harmonic univalent functions, J. Indian Acad. Math. 26 (2004), 191-200.
[9] J.M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Salagean-Type harmonic univalent functions, Southwest J. Pure Appl. Math. 2 (2002), 77-82.
[10] G. Murugusundaramoorthy, R.K. Raina, A subclass of harmonic functions associated with the Wright's generalized hypergeometric function, Hacettepe J. Math and Stat. 38 (2009), 129-136.
[11] G. Murugusundaramoorthy, K. Vijaya, A subclass of harmonic functions with varying arguments defined by hypergeometric functions, Lobach. J. Math. 31 (2010), 261-269.
[12] G. Murugusundaramoorthy, K. Uma, A subclass of harmonic functions associated with the Wright's generalized hypergeometric function, Bull. Math. Anal. Appl. 2 (2010), 69-76.
[13] M.A. Nasr, M.K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.
[14] S. Owa, On the distortion theorems - I, Kyungpook. Math. J. 18 (1978), 53-59.
[15] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189-196.
[16] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[17] T. Rosy, B.A. Stephen, K.G. Subramanian, Goodman-Rønning type harmonic univalent functions, Kyungpook Math. J. 41 (2004), 45-54.
[18] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), 283-289.
[19] H.M. Srivastava, Shu-Hai Li, Huo Tang, Certain classes of k-uniformly close-to-convex functions and other related functions defined by using the Dziok-Srivastava operator, Bull. Math. Anal. Appl. 1 (2009), 49-63.
(received 16.03.2011; in revised form 06.12.2011; available online 15.03.2012)
School of Advanced Sciences, V I T University, Vellore - 632014, T.N., India.
E-mail: gmsmoorthy@yahoo.com

[^0]: 2010 AMS Subject Classification: 30C45, 30C50.
 Keywords and phrases: Harmonic functions; harmonic starlike functions; hypergeometric functions; Dziok-Srivastava operator.

