GLOBAL SMOOTHNESS PRESERVATION BY SOME NONLINEAR MAX-PRODUCT OPERATORS

Lucian Coroianu and Sorin G. Gal

Abstract

In this paper we study the problem of partial global smoothness preservation in the cases of max-product Bernstein approximation operators, max-product Hermite-Féjer interpolation operators based on the Chebyshev nodes of first kind and max-product Lagrange interpolation operators based on the Chebyshev nodes of second kind.

1. Introduction

In several recent papers, the approximation and shape preserving properties for the so-called max-product Bernstein operators (see [2, 3, 6]), max-product HermiteFéjer interpolation operators (see [4]) and max-product Lagrange interpolation operators (see $[5,7]$) were studied. One of the main characteristic is that these max-product operators present much better approximation properties than their linear counterpart (especially than the Hermite-Féjer and Lagrange polynomials).

In this paper we extend these studies for the above mentioned max-product operators, to the global smoothness preservation property.

The (partial) global smoothness preservation property can be described as follows. We say that the sequence of operators $L_{n}: C[a, b] \rightarrow C[a, b], n \in \mathbb{N}$, (partially) preserves the global smoothness of f, if for any $\alpha \in(0,1]$ and

$$
f \in \operatorname{Lip} \alpha=\left\{f:[a, b] \rightarrow \mathbb{R} ; \exists M>0, \text { such that }|f(x)-f(y)| \leq M|x-y|^{\alpha}\right\}
$$

there exists $0<\beta \leq \alpha$ independent of f and n, such that $L_{n}(f) \in \operatorname{Lip} \beta$, for all $n \in \mathbb{N}$.

[^0]Equivalently, the property $L_{n}(f) \in \operatorname{Lip} \beta$, for all $n \in \mathbb{N}$ means that there exists $C>0$ independent of n but possibly depending on f, such that

$$
\omega_{1}\left(L_{n}(f) ; h\right) \leq C h^{\beta}, \text { for all } h \in[0,1], n \in \mathbb{N}
$$

Here $\omega_{1}(f ; \delta)=\sup \{|f(x+h)-f(x)| ; 0 \leq h \leq \delta, x, x+h \in[a, b]\}$ is the uniform modulus of continuity, and of course, it can be replaced by other kinds of moduli of continuity too.

When $\beta=\alpha$ we have a complete global smoothness preservation.
It is well-known that, in general, if $\left(L_{n}(f)(x)\right)_{n \in \mathbb{N}}$ is a sequence of linear Bernstein-type operators, then the complete global smoothness preservation holds (see e.g. the book [1]), while if $\left(L_{n}(f)(x)\right)_{n \in \mathbb{N}}$ is a sequence of linear interpolation operators (in the sense that each $L_{n}(f)(x)$ coincides with $f(x)$ on a system of given nodes), then excepting for example some particular Shepard operators, the interpolation conditions do not allow to have a complete global smoothness preservation property, i.e. in this case in general we have $\beta<\alpha$ (see [10] or [8, Chapter 1]).

In the present paper we study the global smoothness preservation property for the max-product Bernstein operator in Section 2, for the max-product HermiteFéjer operator on the Chebyshev nodes of first kind in Section 3 and for the maxproduct Lagrange operator on the Chebyshev nodes of second kind in Section 4.

As a conclusion, we will derive that these max-product operators have the nice property that the images of the Lipschitz classes $\operatorname{Lip} \alpha, 0<\alpha<1$, is the same Lipschitz class $\operatorname{Lip} \beta$, with $\beta=\frac{\alpha}{4+\alpha}$.

2. Max-product Bernstein operator

In this section we study the global smoothness preservation for the maxproduct Bernstein operator.

For a function $f:[0,1] \rightarrow \mathbb{R}_{+}$, the Bernstein approximation operator of maxproduct kind is given by the formula (see e.g. [9, p. 326])

$$
B_{n}^{(M)}(f)(x)=\frac{\bigvee_{k=0}^{n} p_{n, k}(x) f\left(\frac{k}{n}\right)}{\bigvee_{k=0}^{n} p_{n, k}(x)}
$$

where $p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}$ and $\bigvee_{k=0}^{n} p_{n, k}(x)=\max _{k=\{0, \ldots, n\}}\left\{p_{n, k}(x)\right\}$.
REmark. As it was proved in [3], $B_{n}^{(M)}(f)$ is a nonlinear (more exactly sublinear on the space of positive functions) operator, well-defined for all $x \in \mathbb{R}$, piecewise rational function on \mathbb{R}. Also, as it was proved in $[2], B_{n}^{(M)}(f)$ possesses some interesting approximation and shape preserving properties. For example, the order of uniform approximation is $\omega_{1}(f ; 1 / \sqrt{n})$ However, for some subclasses of functions including for example the class of concave functions and also a subclass of the convex functions, the essentially better order $\omega_{1}(f ; 1 / n)$ is obtained. In addition, $B_{n}^{(M)}(f)$ is continuous for any positive function f, preserves the monotonicity and the quasi-convexity.

For the main results of this paper we need the following five lemmas.
Lemma 2.1. [2, Lemma 3.4] For $n \in N, n \geq 1$, we have

$$
\bigvee_{k=0}^{n} p_{n, k}(x)=p_{n, j}(x), \text { for all } x \in\left[\frac{j}{n+1}, \frac{j+1}{n+1}\right], j=0,1, \ldots, n
$$

Remark. It easily follows that

$$
p_{n, j}\left(\frac{j+1}{n+1}\right)=p_{n, j+1}\left(\frac{j+1}{n+1}\right) \text { for all } j \in\{0,1, \ldots, n\}
$$

Lemma 2.2. Let $n \in N, n \geq 1$ and $j \in\{0,1, \ldots, n\}$. The following assertions hold:
(i) If $j \leq \frac{n}{2}$ then $p_{n, j}\left(\frac{j}{n+1}\right) \geq p_{n, j}\left(\frac{j+1}{n+1}\right)$;
(ii) If $j \geq \frac{n}{2}$ then $p_{n, j}\left(\frac{j}{n+1}\right) \leq p_{n, j}\left(\frac{j+1}{n+1}\right)$.

Proof. After elementary calculus, $p_{n, j}\left(\frac{j}{n+1}\right) \geq p_{n, j}\left(\frac{j+1}{n+1}\right)$ is equivalent with

$$
\left(\frac{j}{j+1}\right)^{j} \geq\left(\frac{n-j}{n-j+1}\right)^{n-j}
$$

Let us consider the functions $g:[0, n] \rightarrow \mathbb{R}, g(x)=\left(\frac{x}{x+1}\right)^{x}$ and $h:[0, n] \rightarrow \mathbb{R}$, $h(x)=\left(\frac{n-x}{n-x+1}\right)^{n-x}$. We have

$$
g^{\prime}(x)=\left(\frac{x}{x+1}\right)^{x}\left(\frac{1}{x+1}-(\ln (x+1)-\ln x)\right) \leq 0
$$

for all $x \in(0,1]$, where we used the well-known inequality $\frac{1}{x+1} \leq \ln (x+1)-\ln x$, $x \in(0, \infty)$. Therefore, g is nonincreasing on $[0,1]$. Since $h(x)=g(n-x)$ for all $x \in(0, n]$, it easily follows that h is nondecreasing on $[0,1]$. Because $h\left(\frac{n}{2}\right)=g\left(\frac{n}{2}\right)$ and noting the monotonicity of g and h, we conclude that both assertions of the lemma hold.

Throughout the paper, $C, C_{0}, C_{1}, C_{2}, c$ will denote absolute positive constants which can be of different values at each occurrence (and of different independencies mentioned correspondingly).

Lemma 2.3. Let $n \in N, n \geq 1$ and $j \in\{0,1, \ldots, n\}$. Then

$$
\min \left\{p_{n, j}\left(\frac{j}{n+1}\right), p_{n, j}\left(\frac{j+1}{n+1}\right)\right\} \geq \frac{C}{\sqrt{n}}
$$

where $C>0$ is an absolute constant independent of n and j.
Proof. We distinguish two cases: (i) n is even and (ii) n is odd.

Case (i). By Lemma 2.2 and by the Remark after Lemma 2.1, it follows that

$$
\min \left\{p_{n, j}\left(\frac{j}{n+1}\right), p_{n, j}\left(\frac{j+1}{n+1}\right)\right\} \geq p_{n, n_{0}}\left(\frac{n_{0}}{n+1}\right)=p_{n, n_{0}}\left(\frac{n_{0}+1}{n+1}\right)
$$

where $n_{0}=\frac{n}{2}$. By direct calculation we get

$$
p_{n, n_{0}}\left(\frac{n_{0}}{n+1}\right)=\frac{\left(2 n_{0}\right)!}{\left(n_{0}!\right)^{2}} \cdot\left(\frac{n_{0}\left(n_{0}+1\right)}{\left(2 n_{0}+1\right)^{2}}\right)^{n_{0}}=\frac{\left(2 n_{0}\right)!}{\left(n_{0}!\right)^{2} 4^{n_{0}}} \cdot\left(\frac{n_{0}^{2}+n_{0}}{n_{0}^{2}+n_{0}+1 / 4}\right)^{n_{0}}
$$

By the Wallis's formula (see [12, p. 142])

$$
\lim _{n \rightarrow \infty} \frac{2 \cdot 4 \cdot \ldots(2 n)}{1 \cdot 3 \cdot \ldots(2 n-1) \sqrt{2 n+1}}=\sqrt{\frac{\pi}{2}}
$$

it is immediate that

$$
\frac{\left(2^{n} n!\right)^{2}}{(2 n)!} \cdot \frac{1}{\sqrt{2 n}} \sim \sqrt{\frac{\pi}{2}}
$$

and therefore there exists two absolute constants $C_{1}, C_{2}>0$ (independent of n), such that

$$
\frac{C_{1}}{\sqrt{n}} \leq \frac{(2 n)!}{(n!)^{2} 4^{n}} \leq \frac{C_{2}}{\sqrt{n}}, \text { for all } n \in \mathbb{N}
$$

On the other hand, we have

$$
\left(\frac{n_{0}^{2}+n_{0}}{n_{0}^{2}+n_{0}+1 / 4}\right)^{n_{0}} \geq\left(\frac{n_{0}^{2}+n_{0}}{n_{0}^{2}+n_{0}+1}\right)^{n_{0}} \geq\left(\frac{2 n_{0}}{2 n_{0}+1}\right)^{n_{0}} \geq \frac{1}{\sqrt{e}}
$$

Taking into account these last two inequalities, we get $p_{n, n_{0}}\left(\frac{n_{0}}{n+1}\right) \geq \frac{C}{\sqrt{n}}$, which proves the lemma in this case.

Case (ii). By Lemma 2.2 and by the Remark after Lemma 2.1, it follows that

$$
\min \left\{p_{n, j}\left(\frac{j}{n+1}\right), p_{n, j}\left(\frac{j+1}{n+1}\right)\right\} \geq p_{n, n_{1}}\left(\frac{n_{1}+1}{n+1}\right)
$$

where $n_{1}=\frac{n-1}{2}$. We have

$$
\begin{aligned}
p_{n, n_{1}}\left(\frac{n_{1}+1}{n+1}\right) & =\frac{\left(2 n_{1}+1\right)!}{n_{1}!\left(n_{1}+1\right)!} \cdot\left(\frac{n_{1}+1}{2 n_{1}+2}\right)^{n_{1}} \cdot\left(\frac{n_{1}+1}{2 n_{1}+2}\right)^{n_{1}+1} \\
& =\frac{\left(2 n_{1}\right)!}{\left(n_{1}!\right)^{2} 4^{n}} \cdot \frac{2 n_{1}+1}{2 n_{1}+2} \geq \frac{C}{\sqrt{n}}
\end{aligned}
$$

Collecting the estimates from the above two cases we get the desired conclusion.
Lemma 2.4. One has

$$
\bigvee_{k=0}^{n} p_{n, k}(x) \geq \frac{C}{\sqrt{n}}
$$

for all $n \in N, n \geq 1$ and $x \in[0,1]$, where $C>0$ is a constant independent of n and x.

Proof. Let $x \in[0,1]$ and $n \in \mathbb{N}$ be arbitrary fixed. Let us choose $j \in\{0,1, \ldots, n\}$ such that $x \in\left[\frac{j}{n+1}, \frac{j+1}{n+1}\right]$. Then we have

$$
\begin{aligned}
p_{n, j}(x) & =\binom{n}{j} x^{j}(1-x)^{n-j} \geq\binom{ n}{j}\left(\frac{j}{n+1}\right)^{j}\left(1-\frac{j+1}{n+1}\right)^{n-j} \\
& =\binom{n}{j}\left(\frac{j}{n+1}\right)^{j}\left(\frac{n-j+1}{n+1}\right)^{n-j}\left(\frac{n-j}{n-j+1}\right)^{n-j} \\
& =p_{n, j}\left(\frac{j}{n+1}\right)\left(\frac{n-j}{n-j+1}\right)^{n-j} \geq p_{n, j}\left(\frac{j}{n+1}\right) \frac{1}{e} .
\end{aligned}
$$

But applying Lemma 2.3, we get $p_{n, j}(x) \geq \frac{C}{\sqrt{n}}$, which proves the present lemma.
Remark. In fact, the lower estimate in Lemma 2.4 is the best possible. Indeed, by the proof of Lemma 2.3, there exists absolute constants C_{1}, C_{2}, such that

$$
\frac{C_{1}}{\sqrt{n}} \leq \frac{(2 n)!}{(n!)^{2} 4^{n}} \leq \frac{C_{2}}{\sqrt{n}},
$$

for all $n \in \mathbb{N}$. Then, by Lemma 2.1 and by the proof of Lemma 2.2, it follows that $p_{n, n_{0}}\left(\frac{n_{0}}{n_{0}+1}\right)=\bigvee_{k=0}^{n} p_{n, k}\left(\frac{n_{0}}{n_{0}+1}\right) \leq \frac{C_{0}}{\sqrt{n}}$, where $n_{0}=\left[\frac{n}{2}\right]$ and C_{0} does not depend on n. This implies the desired conclusion.

Also, we have the following
Lemma 2.5. For all bounded $f:[0,1] \rightarrow R_{+}, n \in N$ and $h>0$, we have

$$
\omega_{1}\left(B_{n}^{(M)}(f) ; h\right) \leq C n^{2}\|f\| h,
$$

where $\|f\|=\sup \{|f(x)| ; x \in[-1,1]\}$ and $C>0$ is a constant independent of f, n and h.

Proof. By Lemma 2.4, it follows that $\bigvee_{k=0}^{n} p_{n, k}(x) \geq \frac{C}{\sqrt{n}}$, for all $x \in[0,1]$, with $C>0$ independent of n and x. Then, we have

$$
\left.\begin{aligned}
& \left|B_{n}^{(M)}(f)(x)-B_{n}^{(M)}(f)(y)\right|
\end{aligned}=\left|\frac{\bigvee_{k=0}^{n} p_{n, k}(x) f\left(\frac{k}{n}\right)}{\bigvee_{k=0}^{n} p_{n, k}(x)}-\frac{\bigvee_{k=0}^{n} p_{n, k}(y) f\left(\frac{k}{n}\right)}{\bigvee_{k=0}^{n} p_{n, k}(y)}\right| \right\rvert\,
$$

Without loss of generality, let us suppose that $B_{n}^{(M)}(f)(x) \geq B_{n}^{(M)}(f)(y)$. Let $k_{1}, k_{2} \in\{0,1, \ldots, n\}$ be such that

$$
\bigvee_{k=0}^{n} p_{n, k}(y)=p_{n, k_{1}}(y), \quad \bigvee_{k=0}^{n} p_{n, k}(x) f\left(\frac{k}{n}\right)=p_{n, k_{2}}(x) f\left(\frac{k_{2}}{n}\right)
$$

Then

$$
\begin{aligned}
&\left|B_{n}^{(M)}(f)(x)-B_{n}^{(M)}(f)(y)\right| \\
& \leq C n\left(\bigvee_{k=0}^{n} p_{n, k}(y) \bigvee_{k=0}^{n} p_{n, k}(x) f\left(\frac{k}{n}\right)-\bigvee_{k=0}^{n} p_{n, k}(x) \bigvee_{k=0}^{n} p_{n, k}(y) f\left(\frac{k}{n}\right)\right) \\
&= C n\left(p_{n, k_{1}}(y) p_{n, k_{2}}(x) f\left(\frac{k_{2}}{n}\right)-\bigvee_{k=0}^{n} p_{n, k}(x) \bigvee_{k=0}^{n} p_{n, k}(y) f\left(\frac{k}{n}\right)\right) \\
& \leq C n\left(p_{n, k_{1}}(y) p_{n, k_{2}}(x) f\left(\frac{k_{2}}{n}\right)-p_{n, k_{1}}(x) p_{n, k_{2}}(y) f\left(\frac{k_{2}}{n}\right)\right) \\
&= C n f\left(\frac{k_{2}}{n}\right)\left[p_{n, k_{1}}(y) p_{n, k_{2}}(x)-p_{n, k_{1}}(x) p_{n, k_{2}}(y)\right] \\
&= C n f\left(\frac{k_{2}}{n}\right)\left[\left(p_{n, k_{1}}(y) p_{n, k_{2}}(x)-p_{n, k_{1}}(x) p_{n, k_{2}}(x)\right)\right. \\
&\left.\quad+\left(p_{n, k_{1}}(x) p_{n, k_{2}}(x)-p_{n, k_{1}}(x) p_{n, k_{2}}(y)\right)\right] \\
&= C n f\left(\frac{k_{2}}{n}\right)\left[p_{n, k_{2}}(x)\left(p_{n, k_{1}}(y)-p_{n, k_{1}}(x)\right)+p_{n, k_{1}}(x)\left(p_{n, k_{2}}(x)-p_{n, k_{2}}(y)\right)\right] .
\end{aligned}
$$

Taking into account that $p_{n, k_{1}}(x) \leq 1$ and $p_{n, k_{2}}(x) \leq 1$, we get

$$
\begin{aligned}
\mid B_{n}^{(M)}(f)(x) & -B_{n}^{(M)}(f)(y) \mid \\
& \leq C n\|f\|\left(\left|p_{n, k_{1}}(y)-p_{n, k_{1}}(x)\right|+\left|p_{n, k_{2}}(x)-p_{n, k_{2}}(y)\right|\right) \\
& \leq C n\|f\|\left(\left\|p_{n, k_{1}}^{\prime}\right\||x-y|+\left\|p_{n, k_{2}}^{\prime}\right\||x-y|\right)
\end{aligned}
$$

If $k=0$ or $k=n$, then $p_{n, k}(x)=x^{n}$ and we get $\left\|p_{n, k}^{\prime}\right\|=n$. If $k \in[1,2, \ldots, n-1\}$, then it is known that $p_{n, k}^{\prime}(x)=n\left(p_{n-1, k-1}(x)-p_{n-1, k}(x)\right)$. Consequently, we obtain $\left\|p_{n, k}^{\prime}\right\| \leq 2 n$ for all $k \in\{0,1, \ldots, n\}$. Clearly, this implies

$$
\left|B_{n}^{(M)}(f)(x)-B_{n}^{(M)}(f)(y)\right| \leq C n^{2}\|f\||x-y|
$$

Passing to supremum with $|x-y| \leq h$, the lemma is proved.
We are now in position to prove the main result of this section.
Theorem 2.6. Let $f:[0,1] \rightarrow R_{+}$. If $f \in \operatorname{Lip}_{M} \alpha$ with $0<\alpha \leq 1$, then for all $n \in N$ and $0 \leq h \leq 1$ we have

$$
\omega_{1}\left(B_{n}^{(M)}(f) ; h\right) \leq c h^{\alpha /(4+\alpha)}
$$

where $c>0$ is independent of n and h (but depends on f).
Proof. By Lemma 2.5 we get

$$
\omega_{1}\left(B_{n}^{(M)}(f) ; h\right) \leq C n^{2} h, \text { for all } h \in[0,1]
$$

where $C>0$ is independent of n and h.
On the other hand, for $|x-y| \leq h$, by [2, Theorem 4.1], we get

$$
\begin{aligned}
&\left|B_{n}^{(M)}(f)(x)-B_{n}^{(M)}(f)(y)\right| \\
& \leq\left|B_{n}^{(M)}(f)(x)-f(x)\right|+|f(x)-f(y)|+\left|f(y)-B_{n}^{(M)}(f)(y)\right| \\
& \leq 2\left\|B_{n}^{(M)}(f)-f\right\|+C h^{\alpha} \leq c\left[\frac{1}{n^{\alpha / 2}}+h^{\alpha}\right]
\end{aligned}
$$

Passing to supremum with $|x-y| \leq h$, it follows

$$
\omega_{1}\left(B_{n}^{(M)}(f) ; h\right) \leq C\left[\frac{1}{n^{\alpha / 2}}+h^{\alpha}\right] .
$$

Therefore, for all $n \in \mathbb{N}$ and $0 \leq h \leq 1$ we get

$$
\omega_{1}\left(B_{n}^{(M)}(f) ; h\right) \leq c \min \left\{n^{2} h, \frac{1}{n^{\alpha / 2}}+h^{\alpha}\right\}
$$

where $c>0$ is independent of n and h. The optimal choice here is obtained when $n^{2} h=\frac{1}{n^{\alpha / 2}}$, that is if $h=\frac{1}{n^{2+\alpha / 2}}$. Indeed, if $h<\frac{1}{n^{2+\alpha / 2}}$ then the minimum is the first term, and when $h>\frac{1}{n^{2+\alpha / 2}}$ then is the second term. This therefore implies $n=\frac{1}{h^{1 /(2+\alpha / 2)}}$ and replacing above we obtain

$$
\omega_{1}\left(B_{n}^{(M)}(f) ; h\right) \leq c h^{\alpha /(4+\alpha)}, \text { for all } n \in \mathbb{N}, h \in[0,1]
$$

which proves the theorem.
Remarks. 1) Theorem 2.6 shows that the images of the class Lip $\alpha, \alpha \in(0,1]$, through all the max-product Bernstein operators $B_{n}^{(M)}, n \in \mathbb{N}$, belong to the same class Lip β, with $\beta=\frac{\alpha}{4+\alpha}$.
2) It is an open question if the exponent $\alpha /(4+\alpha)$ in the statement of Theorem 2.6 is the best possible.
3) Comparing with the complete global smoothness property of the linear Bernstein polynomials (see e.g. [1, p. 231, relation (7.1)]), the result in Theorem 2.6 is weaker. But this is not an unexpected result, taking into account that each max-product Bernstein operator $B_{n}^{(M)}(f)$, has a finite number of points where is not differentiable.

3. Max-product Hermite-Féjer operator

In this section we find global smoothness preservation for the max-product Hermite-Féjer interpolation operator based on the Chebyshev nodes of first kind.

Let $f:[-1,1] \rightarrow \mathbb{R}$ and $x_{n, k}=\cos \left(\frac{2 k+1}{2(n+1)} \pi\right) \in(-1,1), k \in\{0, \ldots, n\},-1<$ $x_{n, n}<x_{n, n-1}<\cdots<x_{n, 0}<1$, be the roots of the first kind Chebyshev polynomial $T_{n+1}(x)=\cos [(n+1) \arccos (x)]$. Denoting

$$
h_{n, k}(x)=\left(1-x x_{n, k}\right) \cdot\left(\frac{T_{n+1}(x)}{(n+1)\left(x-x_{n, k}\right)}\right)^{2}
$$

it is well known that the max-product Hermite-Fejér interpolation operator is given by the formula (see [5])

$$
H_{2 n+1}^{(M)}(f)(x)=\frac{\bigvee_{k=0}^{n} h_{n, k}(x) f\left(x_{n, k}\right)}{\bigvee_{k=0}^{n} h_{n, k}(x)}
$$

where $\bigvee_{k=0}^{n} h_{n, k}(x)=\max _{k=\{0, \ldots, n\}}\left\{h_{n, k}(x)\right\}$.

REMARK. As it was proved in [5], $H_{2 n+1}^{(M)}(f)(x)$ is a nonlinear (more exactly sublinear on the space of positive functions) operator, well-defined for all $x \in \mathbb{R}$ and a continuous, piecewise rational function on \mathbb{R}. Also, $H_{2 n+1}^{(M)}(f)\left(x_{n, j}\right)=f\left(x_{n, j}\right)$ for all $n \in \mathbb{N}$ and $j=0,1, \ldots, n$, that is interpolatory on the points $x_{n, j}, n \in \mathbb{N}, j \in$ $\{0, \ldots, n\}$.

Firstly, we need the following auxiliary result.
Theorem 3.1. For all bounded $f:[-1,1] \rightarrow \mathbb{R}_{+}, n \in N$ and $h>0$, we have

$$
\omega_{1}\left(H_{2 n+1}^{(M)}(f) ; h\right) \leq C n^{4}\|f\| h
$$

where $\|f\|=\sup \{|f(x)| ; x \in[-1,1]\}$ and $C>0$ is independent of n and h.
Proof. Since $\sum_{k=0}^{n} h_{n, k}(x)=1$ for all $x \in[-1,1]$, it follows that $\bigvee_{k=0}^{n} h_{n, k}(x) \geq$ $1 /(n+1) \geq 1 /(2 n)$, for all $x \in[-1,1]$. Then, we have

$$
\begin{aligned}
& \left|H_{2 n+1}^{(M)}(f)(x)-H_{2 n+1}^{(M)}(f)(y)\right| \\
& =\left|\frac{\bigvee_{k=0}^{n} h_{n, k}(x) f\left(x_{n, k}\right)}{\bigvee_{k=0}^{n} h_{n, k}(x)}-\frac{\bigvee_{k=0}^{n} h_{n, k}(y) f\left(x_{n, k}\right)}{\bigvee_{k=0}^{n} h_{n, k}(y)}\right| \\
& =\frac{1}{\bigvee_{k=0}^{n} h_{n, k}(x) \bigvee_{k=0}^{n} h_{n, k}(y)} \times \\
& \quad \times\left|\bigvee_{k=0}^{n} h_{n, k}(y) \bigvee_{k=0}^{n} h_{n, k}(x) f\left(x_{n, k}\right)-\bigvee_{k=0}^{n} h_{n, k}(x) \bigvee_{k=0}^{n} h_{n, k}(y) f\left(x_{n, k}\right)\right| \\
& \leq 4 n^{2}\left|\bigvee_{k=0}^{n} h_{n, k}(y) \bigvee_{k=0}^{n} h_{n, k}(x) f\left(x_{n, k}\right)-\bigvee_{k=0}^{n} h_{n, k}(x) \bigvee_{k=0}^{n} h_{n, k}(y) f\left(x_{n, k}\right)\right|
\end{aligned}
$$

Without loss of generality, let us suppose that $H_{2 n+1}^{(M)}(f)(x) \geq H_{2 n+1}^{(M)}(f)(y)$. Let $k_{1}, k_{2} \in\{0,1, \ldots, n\}$ be such that

$$
\begin{aligned}
\bigvee_{k=0}^{n} h_{n, k}(y) & =h_{n, k_{1}}(y) \\
\bigvee_{k=0}^{n} h_{n, k}(x) f\left(x_{n, k}\right) & =h_{n, k_{2}}(x) f\left(x_{n, k_{2}}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left|H_{2 n+1}^{(M)}(f)(x)-H_{n}^{M}(f)(y)\right| \\
& \quad \leq 4 n^{2}\left(\bigvee_{k=0}^{n} h_{n, k}(y) \bigvee_{k=0}^{n} h_{n, k}(x) f\left(x_{n, k}\right)-\bigvee_{k=0}^{n} h_{n, k}(x) \bigvee_{k=0}^{n} h_{n, k}(y) f\left(x_{n, k}\right)\right) \\
& \quad=4 n^{2}\left(h_{n, k_{1}}(y) h_{n, k_{2}}(x) f\left(x_{n, k_{2}}\right)-\bigvee_{k=0}^{n} h_{n, k}(x) \bigvee_{k=0}^{n} h_{n, k}(y) f\left(x_{n, k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & 4 n^{2}\left(h_{n, k_{1}}(y) h_{n, k_{2}}(x) f\left(x_{n, k_{2}}\right)-h_{n, k_{1}}(x) h_{n, k_{2}}(y) f\left(x_{n, k_{2}}\right)\right) \\
= & 4 n^{2} f\left(x_{n, k_{2}}\right)\left[h_{n, k_{1}}(y) h_{n, k_{2}}(x)-h_{n, k_{1}}(x) h_{n, k_{2}}(y)\right] \\
= & 4 n^{2} f\left(x_{n, k_{2}}\right)\left[\left(h_{n, k_{1}}(y) h_{n, k_{2}}(x)-h_{n, k_{1}}(x) h_{n, k_{2}}(x)\right)\right. \\
& \left.+\left(h_{n, k_{1}}(x) h_{n, k_{2}}(x)-h_{n, k_{1}}(x) h_{n, k_{2}}(y)\right)\right] \\
= & 4 n^{2} f\left(x_{n, k_{2}}\right)\left[h_{n, k_{2}}(x)\left(h_{n, k_{1}}(y)-h_{n, k_{1}}(x)\right)+h_{n, k_{1}}(x)\left(h_{n, k_{2}}(x)-h_{n, k_{2}}(y)\right)\right]
\end{aligned}
$$

Taking into account that $h_{n, k_{1}}(x) \leq 1$ and $h_{n, k_{2}}(x) \leq 1$, we get

$$
\begin{aligned}
\mid H_{2 n+1}^{(M)}(f)(x) & -H_{2 n+1}^{(M)}(f)(y) \mid \\
& \leq 4 n^{2}\|f\|\left(\left|h_{n, k_{1}}(y)-h_{n, k_{1}}(x)\right|+\left|h_{n, k_{2}}(x)-h_{n, k_{2}}(y)\right|\right) \\
& \leq 4 n^{2}\|f\|\left(\left\|h_{n, k_{1}}^{\prime}\right\||x-y|+\left\|h_{n, k_{2}}^{\prime}\right\||x-y|\right) .
\end{aligned}
$$

But by [10] (see also [8], first inequality on page 6) we have $\left\|h_{n, j}^{\prime}\right\| \leq C n^{2}$, for all $n \in N$ and $j \in\{0,1, \ldots, n\}$, where $C>0$ is an absolute constant independent of n and j, which implies that

$$
\left|H_{2 n+1}^{(M)}(f)(x)-H_{2 n+1}^{(M)}(f)(y)\right| \leq C n^{4}\|f\||x-y| .
$$

Passing to supremum with $|x-y| \leq h$, the theorem is proved.
The main result of this section is the following.
Theorem 3.2. Let $f:[-1,1] \rightarrow \mathbb{R}_{+}$. If $f \in$ Lip $_{M} \alpha$ with $0<\alpha \leq 1$, then for all $n \in \mathbb{N}$ and $0<h<1$ we have

$$
\omega_{1}\left(H_{2 n+1}^{(M)}(f) ; h\right) \leq c h^{\alpha /(4+\alpha)},
$$

where $c>0$ is independent of n and h (but depends on f).
Proof. By Theorem 3.1 we get

$$
\omega_{1}\left(H_{2 n+1}^{(M)}(f) ; h\right) \leq C n^{4} h, \text { for all } h \in(0,1),
$$

where $C>0$ is independent of n and h.
On the other hand, for $|x-y| \leq h$, by [4, Theorem 3.1], we get

$$
\begin{aligned}
& \left|H_{2 n+1}^{(M)}(f)(x)-H_{2 n+1}^{(M)}(f)(x)\right| \leq\left|H_{2 n+1}^{(M)}(f)(x)-f(x)\right|+|f(x)-f(y)| \\
& \quad+\left|f(y)-H_{2 n+1}^{(M)}(f)(y)\right| \leq 2\left\|H_{2 n+1}^{(M)}(f)-f\right\|+C h^{\alpha} \leq c\left[\frac{1}{n^{\alpha}}+h^{\alpha}\right],
\end{aligned}
$$

where $c>0$ is independent of n and h. Passing to supremum with $|x-y| \leq h$ it follows

$$
\omega_{1}\left(H_{2 n+1}^{(M)}(f) ; h\right) \leq C\left[\frac{1}{n^{\alpha}}+h^{\alpha}\right] .
$$

Therefore, for all $n \in \mathbb{N}$ and $0<h<1$ we get

$$
\omega_{1}\left(H_{2 n+1}^{(M)}(f) ; h\right) \leq c \min \left\{n^{4} h, \frac{1}{n^{\alpha}}+h^{\alpha}\right\} .
$$

The optimal choice here is obtained when $n^{4} h=\frac{1}{n^{\alpha}}$, that is if $h=\frac{1}{n^{4+\alpha}}$. Indeed, if $h<\frac{1}{n^{4+\alpha}}$ then the minimum is the first term, and when $h>\frac{1}{n^{4+\alpha}}$ then is the second term. This therefore implies $n=\frac{1}{h^{1 /(4+\alpha)}}$ and replacing above we obtain

$$
\omega_{1}\left(H_{2 n+1}^{(M)}(f) ; h\right) \leq c h^{\alpha /(4+\alpha)}, \text { for all } n \in \mathbb{N}, h \in(0,1),
$$

which proves the theorem.

Remarks. 1) Theorem 3.2 shows that the images of the class Lip $\alpha, \alpha \in(0,1]$, through all the max-product Hermite-Féjer operators $H_{2 n+1}^{(M)}, n \in \mathbb{N}$, belong to the same class $\operatorname{Lip} \beta$, with $\beta=\frac{\alpha}{4+\alpha}$.
2) It is an open question if the exponent $\alpha /(4+\alpha)$ in the statement of Theorem 3.2 is the best possible.

4. Max-product Lagrange operator

In this section we find global smoothness preservation properties for the maxproduct Lagrange interpolation operator based on the Chebyshev nodes of second kind, plus the endpoints.

Let $f:[-1,1] \rightarrow \mathbb{R}$ and $x_{n, k}=\cos \left(\frac{n-k}{n-1} \pi\right) \in[-1,1], k \in\{1, \ldots, n\}$ be the Chebyshev knots of second kind in $[-1,1]$, plus the endpoints. More exactly, it is known that $x_{n, k}$ are the roots of $\omega_{n}(x)=\sin [(n-1) t] \sin t, x=\cos t$ (which represents in fact the Chebyshev polynomial of second kind of degree $n-2$, multiplied by $1-x^{2}$) and that in this case for the fundamental Lagrange polynomials we can write (see [11, p. 377])

$$
l_{n, k}(x)=\frac{(-1)^{k-1} \omega_{n}(x)}{\left(1+\delta_{k, 1}+\delta_{k, n}\right)(n-1)\left(x-x_{n, k}\right)}, \quad n \geq 2, \quad k=1, \ldots, n
$$

where $\omega_{n}(x)=\Pi_{k=1}^{n}\left(x-x_{n, k}\right)$ and $\delta_{i, j}$ denotes the Kronecker's symbol, that is $\delta_{i, j}=1$ if $i=j$ and $\delta_{i, j}=0$ if $i \neq j$.

Then, the max-product Lagrange interpolation operator is given by the formula (see [4])

$$
L_{n}^{(M)}(f)(x)=\frac{\bigvee_{k=1}^{n} l_{n, k}(x) f\left(x_{n, k}\right)}{\bigvee_{k=1}^{n} l_{n, k}(x)}, \quad x \in[-1,1]
$$

where $\bigvee_{k=1}^{n} l_{n, k}(x)=\max _{k=\{1, \ldots, n\}}\left\{l_{n, k}(x)\right\}$.
REmark. As it was proved in [5], $L_{n}^{(M)}(f)(x)$ is a nonlinear (more exactly sublinear on the space of positive functions) operator, well-defined for all $x \in \mathbb{R}$ and a continuous, piecewise rational function on \mathbb{R}. Also, $L_{n}^{(M)}(f)\left(x_{n, j}\right)=f\left(x_{n, j}\right)$ for all $n \in \mathbb{N}$ and $j=1, \ldots, n$, that is interpolatory on the points $x_{n, j}, n \in \mathbb{N}, j \in$ $\{0, \ldots, n\}$.

Firstly, we need the following result.
Theorem 4.1. For all bounded $f:[-1,1] \rightarrow \mathbb{R}_{+}, n \in N$ and $h>0$, we have

$$
\omega_{1}\left(L_{n}^{(M)}(f) ; h\right) \leq C n^{4}\|f\| h
$$

where C is an absolute constant independent of f, h and n.
Proof. Since $\sum_{k=1}^{n} l_{n, k}(x)=1$ for all $x \in[-1,1]$, it follows that $\bigvee_{k=1}^{n} l_{n, k}(x) \geq$ $1 / n$ for all $x \in[-1,1]$. Then, we have

$$
\left|L_{n}^{(M)}(f)(x)-L_{n}^{(M)}(f)(y)\right|
$$

$$
\begin{gathered}
=\left|\frac{\bigvee_{k=1}^{n} l_{n, k}(x) f\left(x_{n, k}\right)}{\bigvee_{k=1}^{n} l_{n, k}(x)}-\frac{\bigvee_{k=1}^{n} l_{n, k}(y) f\left(x_{n, k}\right)}{\bigvee_{k=1}^{n} l_{n, k}(y)}\right| \\
=\frac{1}{\bigvee_{k=1}^{n} l_{n, k}(x) \bigvee_{k=1}^{n} l_{n, k}(y)} \times \\
\times\left|\bigvee_{k=1}^{n} l_{n, k}(y) \bigvee_{k=1}^{n} l_{n, k}(x) f\left(x_{n, k}\right)-\bigvee_{k=1}^{n} l_{n, k}(x) \bigvee_{k=1}^{n} l_{n, k}(y) f\left(x_{n, k}\right)\right| \\
\leq n^{2}\left|\bigvee_{k=1}^{n} l_{n, k}(y) \bigvee_{k=1}^{n} l_{n, k}(x) f\left(x_{n, k}\right)-\bigvee_{k=1}^{n} l_{n, k}(x) \bigvee_{k=1}^{n} l_{n, k}(y) f\left(x_{n, k}\right)\right|
\end{gathered}
$$

Without loss of generality let us suppose that $L_{n}^{(M)}(f)(x) \geq L_{n}^{(M)}(f)(y)$. Let $k_{1}, k_{2} \in\{1,2, \ldots, n\}$ be such that

$$
\begin{aligned}
\bigvee_{k=1}^{n} l_{n, k}(y) & =l_{n, k_{1}}(y) \\
\bigvee_{k=1}^{n} l_{n, k}(x) f\left(x_{n, k}\right) & =l_{n, k_{2}}(x) f\left(x_{n, k_{2}}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
&\left|L_{n}^{(M)}(f)(x)-L_{n}^{(M)}(f)(y)\right| \\
& \leq n^{2}\left(\bigvee_{k=1}^{n} l_{n, k}(y) \bigvee_{k=1}^{n} l_{n, k}(x) f\left(x_{n, k}\right)-\bigvee_{k=1}^{n} l_{n, k}(x) \bigvee_{k=1}^{n} l_{n, k}(y) f\left(x_{n, k}\right)\right) \\
&= n^{2}\left(l_{n, k_{1}}(y) l_{n, k_{2}}(x) f\left(x_{n, k_{2}}\right)-\bigvee_{k=1}^{n} l_{n, k}(x) \bigvee_{k=1}^{n} l_{n, k}(y) f\left(x_{n, k}\right)\right) \\
& \leq n^{2}\left(l_{n, k_{1}}(y) l_{n, k_{2}}(x) f\left(x_{n, k_{2}}\right)-l_{n, k_{1}}(x) l_{n, k_{2}}(y) f\left(x_{n, k_{2}}\right)\right) \\
&= n^{2} f\left(x_{n, k_{2}}\right)\left[l_{n, k_{1}}(y) l_{n, k_{2}}(x)-l_{n, k_{1}}(x) l_{n, k_{2}}(y)\right] \\
&= n^{2} f\left(x_{n, k_{2}}\right)\left[\left(l_{n, k_{1}}(y) l_{n, k_{2}}(x)-l_{n, k_{1}}(x) l_{n, k_{2}}(x)\right)\right. \\
&\left.+\left(l_{n, k_{1}}(x) l_{n, k_{2}}(x)-l_{n, k_{1}}(x) l_{n, k_{2}}(y)\right)\right] \\
&= n^{2} f\left(x_{n, k_{2}}\right)\left[l_{n, k_{2}}(x)\left(l_{n, k_{1}}(y)-l_{n, k_{1}}(x)\right)+l_{n, k_{1}}(x)\left(l_{n, k_{2}}(x)-l_{n, k_{2}}(y)\right)\right] .
\end{aligned}
$$

Consequently, we get

$$
\begin{aligned}
\mid L_{n}^{(M)}(f)(x) & -L_{n}^{(M)}(f)(y) \mid \\
& \leq C_{0} n^{2}\|f\|\left(\left|l_{n, k_{1}}(y)-l_{n, k_{1}}(x)\right|+\left|l_{n, k_{2}}(x)-l_{n, k_{2}}(y)\right|\right) \\
& \leq C_{0} n^{2}\|f\|\left(\left\|l_{n, k_{1}}^{\prime}\right\||x-y|+\left\|l_{n, k_{2}}^{\prime}\right\||x-y|\right)
\end{aligned}
$$

By [8, the proof of Theorem 1.2.3, p. 13], we have $\left|l_{n, k}^{\prime}(x)\right| \leq C_{0} n^{2}$, for all $x \in$ $[-1,1], n \in \mathbb{N}$ and $k \in\{1,2, \ldots, n\}$, where C_{0} is an absolute constant independent of f and n.

Replacing this above and passing to supremum with $|x-y| \leq h$, the theorem is proved.

The main result of this section is the following.
Theorem 4.2. Let $f:[-1,1] \rightarrow \mathbb{R}_{+}$. If $f \in$ Lip $_{M} \alpha$ with $0<\alpha \leq 1$, then for all $n \in \mathbb{N}$ and $0 \leq h \leq 1$ we have

$$
\omega_{1}\left(L_{n}^{(M)}(f) ; h\right) \leq c h^{\alpha /(4+\alpha)}
$$

where $c>0$ is independent of n and h (but depends on f).
Proof. By Theorem 4.1 we get

$$
\omega_{1}\left(L_{n}^{(M)}(f) ; h\right) \leq C n^{4} h, \text { for all } h \in[0,1]
$$

where $C>0$ is independent of n and h.
On the other hand, for $|x-y| \leq h$, by [5, Theorem 3.3], we get

$$
\begin{aligned}
\left|L_{n}^{(M)}(f)(x)-L_{n}^{(M)}(f)(x)\right| & \leq\left|L_{n}(f)(x)-f(x)\right|+|f(x)-f(y)|+\left|f(y)-L_{n}(f)(y)\right| \\
& \leq 2\left\|L_{n}(f)-f\right\|+C h^{\alpha} \leq c\left[\frac{1}{n^{\alpha}}+h^{\alpha}\right]
\end{aligned}
$$

where $c>0$ is independent of n and h. Reasoning in continuation exactly as in the proof of Theorem 3.2 we get the desired conclusion.

Remarks. 1) Theorem 4.2 shows that the images of the class $\operatorname{Lip} \alpha, \alpha \in(0,1]$, through all the max-product Lagrange operators $L_{n}^{(M)}, n \in \mathbb{N}$, belong to the same class Lip β, with $\beta=\frac{\alpha}{4+\alpha}$.
2) It is an open question if the exponent $\alpha /(4+\alpha)$ in the statement of Theorem 4.2 is the best possible.
3) Let us note that although they have better approximation properties (of Jackson type $\omega_{1}(f ; 1 / n)$, pointed out in [4] and [5]) than their linear counterpart polynomials, the above max-product Hermite-Féjer and max-product Lagrange operators satisfy weaker global smoothness preservation properties that their linear counterpart polynomials (compare above Theorem 3.2 with Corollary 1.2.1, pp. $7-8$ in [8] and above Theorem 4.2 with Corollary 1.2 .2 , p. 15 in [8]). These are consequences of the fact that each max-product Hermite-Féjer operator, $H_{2 n+1}^{(M)}(f)$, and each max-product Lagrange interpolation operator $L_{n}^{(M)}(f)$, obviously has a finite number of points where it is not differentiable.

REFERENCES

[1] G.A. Anastassiou, S.G. Gal, Moduli of Continuity and Global Smoothness Preservation, Birkhäuser, Boston-Basel-Berlin, 2000.
[2] B. Bede, L. Coroianu, S.G. Gal, Approximation and shape preserving properties of the Bernstein operator of max-product kind, Intern. J. Math. and Math. Sci. volume 2009, Art. ID 590589, 26 pages, doi:10.1155/2009/590589.
[3] B. Bede, S.G. Gal, Approximation by nonlinear Bernstein and Favard-Szász-Mirakjan operators of max-product kind, J. Concrete Appl. Math. 8 (2010), 193-207.
[4] L. Coroianu, S.G. Gal, Approximation by nonlinear Hermite-Fejér interpolation operators of max-product kind on Chebyshev nodes, Revue d'Anal. Numér. Théor. Approx. (Cluj) 39 (2010), 21-31.
[5] L. Coroianu, S.G. Gal, Approximation by nonlinear Lagrange interpolation operators of maxproduct kind on Chebyshev nodes, J. Comp. Anal. Appl. 13 (2011), 211-224.
[6] L. Coroianu and S.G. Gal, Classes of functions with improved estimates in approximation by the max-product Bernstein operator, Analysis and Applications, accepted for publication.
[7] L. Coroianu, S.G. Gal, Approximation by max-product Lagrange interpolation operators, Studia Univ. "Babes-Bolyai", ser. math., 56, 2 (2011), 315-325.
[8] S.G. Gal, Global Smoothness and Shape Preserving Interpolation by Classical Operators, Birkhäuser, Boston-Basel-Berlin, 2005.
[9] S.G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser, Boston-Basel-Berlin, 2008.
[10] S.G. Gal, J. Szabados, On the preservation of global smoothness by some interpolation operators, Studia Sci. Math. Hungar. 35 (1999), 397-414.
[11] G. Mastroianni, J. Szabados, Jackson order of approximation by Lagrange interpolation, Suppl. Rend. Circ. Mat. Palermo ser. II, 33 (1993), 375-386.
[12] E. Stein, R. Shakarchi, Complex Analysis, Princeton University Press, Princeton, NJ, 2003.
(received 21.02.2011; in revised form 13.04.2011; available online 01.07.2011)
University of Oradea, Department of Mathematics and Computer Science, Str. Universitatii 1, 410087 Oradea, Romania
E-mail: lcoroianu@uoradea.ro, galso@uoradea.ro

[^0]: 2010 AMS Subject Classification: 41A05, 41A20, 41A17.
 Keywords and phrases: Max-product Bernstein approximation operator; max-product Hermite-Féjer interpolation operator; max-product Lagrange interpolation operator; Chebyshev nodes of the first and second kind; global smoothness preservation.

 The work of the first author was supported by the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/-/107/1.5/S/76841 with the title "Modern Doctoral Studies:Internationalization and Interdisciplinarity". Also, the works of both authors was supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0861.

