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GLOBAL SMOOTHNESS PRESERVATION
BY SOME NONLINEAR MAX-PRODUCT OPERATORS

Lucian Coroianu and Sorin G. Gal

Abstract. In this paper we study the problem of partial global smoothness preservation
in the cases of max-product Bernstein approximation operators, max-product Hermite-Féjer in-
terpolation operators based on the Chebyshev nodes of first kind and max-product Lagrange
interpolation operators based on the Chebyshev nodes of second kind.

1. Introduction

In several recent papers, the approximation and shape preserving properties for
the so-called max-product Bernstein operators (see [2, 3, 6]), max-product Hermite-
Féjer interpolation operators (see [4]) and max-product Lagrange interpolation op-
erators (see [5, 7]) were studied. One of the main characteristic is that these
max-product operators present much better approximation properties than their
linear counterpart (especially than the Hermite-Féjer and Lagrange polynomials).

In this paper we extend these studies for the above mentioned max-product
operators, to the global smoothness preservation property.

The (partial) global smoothness preservation property can be described as
follows. We say that the sequence of operators Ln : C[a, b] → C[a, b], n ∈ N,
(partially) preserves the global smoothness of f , if for any α ∈ (0, 1] and

f ∈ Lipα = {f : [a, b] → R; ∃M > 0, such that |f(x)− f(y)| ≤ M |x− y|α},
there exists 0 < β ≤ α independent of f and n, such that Ln(f) ∈ Lip β, for all
n ∈ N.
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Equivalently, the property Ln(f) ∈ Lip β, for all n ∈ N means that there exists
C > 0 independent of n but possibly depending on f , such that

ω1(Ln(f); h) ≤ Chβ , for all h ∈ [0, 1], n ∈ N.

Here ω1(f ; δ) = sup{|f(x + h) − f(x)|; 0 ≤ h ≤ δ, x, x + h ∈ [a, b]} is the uniform
modulus of continuity, and of course, it can be replaced by other kinds of moduli
of continuity too.

When β = α we have a complete global smoothness preservation.
It is well-known that, in general, if (Ln(f)(x))n∈N is a sequence of linear

Bernstein-type operators, then the complete global smoothness preservation holds
(see e.g. the book [1]), while if (Ln(f)(x))n∈N is a sequence of linear interpolation
operators (in the sense that each Ln(f)(x) coincides with f(x) on a system of given
nodes), then excepting for example some particular Shepard operators, the inter-
polation conditions do not allow to have a complete global smoothness preservation
property, i.e. in this case in general we have β < α (see [10] or [8, Chapter 1]).

In the present paper we study the global smoothness preservation property for
the max-product Bernstein operator in Section 2, for the max-product Hermite-
Féjer operator on the Chebyshev nodes of first kind in Section 3 and for the max-
product Lagrange operator on the Chebyshev nodes of second kind in Section 4.

As a conclusion, we will derive that these max-product operators have the nice
property that the images of the Lipschitz classes Lip α, 0 < α < 1, is the same
Lipschitz class Lip β, with β = α

4+α .

2. Max-product Bernstein operator

In this section we study the global smoothness preservation for the max-
product Bernstein operator.

For a function f : [0, 1] → R+, the Bernstein approximation operator of max-
product kind is given by the formula (see e.g. [9, p. 326])

B(M)
n (f)(x) =

n∨
k=0

pn,k(x)f
(

k
n

)

n∨
k=0

pn,k(x)
,

where pn,k(x) =
(
n
k

)
xk(1− x)n−k and

∨n
k=0 pn,k(x) = maxk={0,...,n}{pn,k(x)}.

Remark. As it was proved in [3], B
(M)
n (f) is a nonlinear (more exactly sublin-

ear on the space of positive functions) operator, well-defined for all x ∈ R, piecewise
rational function on R. Also, as it was proved in [2], B

(M)
n (f) possesses some in-

teresting approximation and shape preserving properties. For example, the order
of uniform approximation is ω1(f ; 1/

√
n) However, for some subclasses of functions

including for example the class of concave functions and also a subclass of the
convex functions, the essentially better order ω1(f ; 1/n) is obtained. In addition,
B

(M)
n (f) is continuous for any positive function f , preserves the monotonicity and

the quasi-convexity.
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For the main results of this paper we need the following five lemmas.

Lemma 2.1. [2, Lemma 3.4] For n ∈ N , n ≥ 1, we have
n∨

k=0

pn,k(x) = pn,j(x), for all x ∈
[

j

n + 1
,
j + 1
n + 1

]
, j = 0, 1, . . . , n.

Remark. It easily follows that

pn,j

(
j + 1
n + 1

)
= pn,j+1

(
j + 1
n + 1

)
for all j ∈ {0, 1, . . . , n}.

Lemma 2.2. Let n ∈ N , n ≥ 1 and j ∈ {0, 1, . . . , n}. The following assertions
hold:

(i) If j ≤ n
2 then pn,j

(
j

n + 1

)
≥ pn,j

(
j + 1
n + 1

)
;

(ii) If j ≥ n
2 then pn,j

(
j

n + 1

)
≤ pn,j

(
j + 1
n + 1

)
.

Proof. After elementary calculus, pn,j( j
n+1 ) ≥ pn,j( j+1

n+1 ) is equivalent with
(

j

j + 1

)j

≥
(

n− j

n− j + 1

)n−j

.

Let us consider the functions g : [0, n] → R, g(x) =
(

x
x+1

)x

and h : [0, n] → R,

h(x) =
(

n−x
n−x+1

)n−x

. We have

g′(x) =
(

x

x + 1

)x (
1

x + 1
− (ln(x + 1)− ln x)

)
≤ 0

for all x ∈ (0, 1], where we used the well-known inequality 1
x+1 ≤ ln(x + 1) − ln x,

x ∈ (0,∞). Therefore, g is nonincreasing on [0, 1]. Since h(x) = g(n − x) for all
x ∈ (0, n], it easily follows that h is nondecreasing on [0, 1]. Because h(n

2 ) = g(n
2 )

and noting the monotonicity of g and h, we conclude that both assertions of the
lemma hold.

Throughout the paper, C, C0, C1, C2, c will denote absolute positive constants
which can be of different values at each occurrence (and of different independencies
mentioned correspondingly).

Lemma 2.3. Let n ∈ N , n ≥ 1 and j ∈ {0, 1, . . . , n}. Then

min
{

pn,j

(
j

n + 1

)
, pn,j

(
j + 1
n + 1

)}
≥ C√

n
,

where C > 0 is an absolute constant independent of n and j.

Proof. We distinguish two cases: (i) n is even and (ii) n is odd.
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Case (i). By Lemma 2.2 and by the Remark after Lemma 2.1, it follows that

min
{

pn,j

(
j

n + 1

)
, pn,j

(
j + 1
n + 1

)}
≥ pn,n0

(
n0

n + 1

)
= pn,n0

(
n0 + 1
n + 1

)

where n0 = n
2 . By direct calculation we get

pn,n0

(
n0

n + 1

)
=

(2n0)!
(n0!)2

·
(

n0(n0 + 1)
(2n0 + 1)2

)n0

=
(2n0)!

(n0!)24n0
·
(

n2
0 + n0

n2
0 + n0 + 1/4

)n0

By the Wallis’s formula (see [12, p. 142])

lim
n→∞

2 · 4 · . . . (2n)
1 · 3 · . . . (2n− 1)

√
2n + 1

=
√

π

2
,

it is immediate that
(2nn!)2

(2n)!
· 1√

2n
∼

√
π

2
,

and therefore there exists two absolute constants C1, C2 > 0 (independent of n),
such that

C1√
n
≤ (2n)!

(n!)24n
≤ C2√

n
, for all n ∈ N.

On the other hand, we have
(

n2
0 + n0

n2
0 + n0 + 1/4

)n0

≥
(

n2
0 + n0

n2
0 + n0 + 1

)n0

≥
(

2n0

2n0 + 1

)n0

≥ 1√
e
.

Taking into account these last two inequalities, we get pn,n0(
n0

n+1 ) ≥ C√
n
, which

proves the lemma in this case.

Case (ii). By Lemma 2.2 and by the Remark after Lemma 2.1, it follows that

min
{

pn,j(
j

n + 1
), pn,j(

j + 1
n + 1

)
}
≥ pn,n1(

n1 + 1
n + 1

)

where n1 = n−1
2 . We have

pn,n1

(
n1 + 1
n + 1

)
=

(2n1 + 1)!
n1!(n1 + 1)!

·
(

n1 + 1
2n1 + 2

)n1

·
(

n1 + 1
2n1 + 2

)n1+1

=
(2n1)!

(n1!)24n
· 2n1 + 1
2n1 + 2

≥ C√
n

.

Collecting the estimates from the above two cases we get the desired conclusion.

Lemma 2.4. One has
n∨

k=0

pn,k(x) ≥ C√
n

for all n ∈ N , n ≥ 1 and x ∈ [0, 1], where C > 0 is a constant independent of n
and x.



Global smoothness preservation by max-product operators 307

Proof. Let x ∈ [0, 1] and n ∈ N be arbitrary fixed. Let us choose
j ∈ {0, 1, . . . , n} such that x ∈ [ j

n+1 , j+1
n+1 ]. Then we have

pn,j(x) =
(

n

j

)
xj(1− x)n−j ≥

(
n

j

)(
j

n + 1

)j (
1− j + 1

n + 1

)n−j

=
(

n

j

)(
j

n + 1

)j (
n− j + 1

n + 1

)n−j (
n− j

n− j + 1

)n−j

= pn,j

(
j

n + 1

)(
n− j

n− j + 1

)n−j

≥ pn,j

(
j

n + 1

)
1
e
.

But applying Lemma 2.3, we get pn,j(x) ≥ C√
n
, which proves the present lemma.

Remark. In fact, the lower estimate in Lemma 2.4 is the best possible. Indeed,
by the proof of Lemma 2.3, there exists absolute constants C1, C2, such that

C1√
n
≤ (2n)!

(n!)24n
≤ C2√

n
,

for all n ∈ N. Then, by Lemma 2.1 and by the proof of Lemma 2.2, it follows that
pn,n0(

n0
n0+1 ) =

∨n
k=0 pn,k( n0

n0+1 ) ≤ C0√
n
, where n0 = [n

2 ] and C0 does not depend on
n. This implies the desired conclusion.

Also, we have the following

Lemma 2.5. For all bounded f : [0, 1] → R+, n ∈ N and h > 0, we have
ω1(B(M)

n (f); h) ≤ Cn2‖f‖h,

where ‖f‖ = sup{|f(x)|; x ∈ [−1, 1]} and C > 0 is a constant independent of f , n
and h.

Proof. By Lemma 2.4, it follows that
∨n

k=0 pn,k(x) ≥ C√
n
, for all x ∈ [0, 1],

with C > 0 independent of n and x. Then, we have

∣∣∣B(M)
n (f)(x)−B(M)

n (f)(y)
∣∣∣ =

∣∣∣∣∣∣∣∣

n∨
k=0

pn,k(x)f
(

k
n

)

n∨
k=0

pn,k(x)
−

n∨
k=0

pn,k(y)f
(

k
n

)

n∨
k=0

pn,k(y)

∣∣∣∣∣∣∣∣

=
1

n∨
k=0

pn,k(x)
n∨

k=0

pn,k(y)
×

×
∣∣∣∣∣

n∨

k=0

pn,k(y)
n∨

k=0

pn,k(x)f(
k

n
)−

n∨

k=0

pn,k(x)
n∨

k=0

pn,k(y)f(
k

n
)

∣∣∣∣∣

≤ Cn

∣∣∣∣∣
n∨

k=0

pn,k(y)
n∨

k=0

pn,k(x)f(
k

n
)−

n∨

k=0

pn,k(x)
n∨

k=0

pn,k(y)f(
k

n
)

∣∣∣∣∣ .

Without loss of generality, let us suppose that B
(M)
n (f)(x) ≥ B

(M)
n (f)(y). Let

k1, k2 ∈ {0, 1, . . . , n} be such that
n∨

k=0

pn,k(y) = pn,k1(y),
n∨

k=0

pn,k(x)f(
k

n
) = pn,k2(x)f(

k2

n
).
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Then∣∣B(M)
n (f)(x)−B(M)

n (f)(y)
∣∣

≤ Cn

(
n∨

k=0

pn,k(y)
n∨

k=0

pn,k(x)f(
k

n
)−

n∨

k=0

pn,k(x)
n∨

k=0

pn,k(y)f(
k

n
)

)

= Cn

(
pn,k1(y)pn,k2(x)f(

k2

n
)−

n∨

k=0

pn,k(x)
n∨

k=0

pn,k(y)f(
k

n
)

)

≤ Cn

(
pn,k1(y)pn,k2(x)f(

k2

n
)− pn,k1(x)pn,k2(y)f(

k2

n
)
)

= Cnf(
k2

n
)[pn,k1(y)pn,k2(x)− pn,k1(x)pn,k2(y)]

= Cnf(
k2

n
)[(pn,k1(y)pn,k2(x)− pn,k1(x)pn,k2(x))

+ (pn,k1(x)pn,k2(x)− pn,k1(x)pn,k2(y))]

= Cnf(
k2

n
)[pn,k2(x)(pn,k1(y)− pn,k1(x)) + pn,k1(x)(pn,k2(x)− pn,k2(y))].

Taking into account that pn,k1(x) ≤ 1 and pn,k2(x) ≤ 1, we get∣∣B(M)
n (f)(x)−B(M)

n (f)(y)
∣∣

≤ Cn ‖f‖ (|pn,k1(y)− pn,k1(x)|+ |pn,k2(x)− pn,k2(y)|)
≤ Cn ‖f‖ (∥∥p′n,k1

∥∥ |x− y|+ ∥∥p′n,k2

∥∥ |x− y|) .

If k = 0 or k = n, then pn,k(x) = xn and we get ‖p′n,k‖ = n. If k ∈ [1, 2, . . . , n−1},
then it is known that p′n,k(x) = n(pn−1,k−1(x) − pn−1,k(x)). Consequently, we
obtain ‖p′n,k‖ ≤ 2n for all k ∈ {0, 1, . . . , n}. Clearly, this implies∣∣∣B(M)

n (f)(x)−B(M)
n (f)(y)

∣∣∣ ≤ Cn2 ‖f‖ |x− y| .
Passing to supremum with |x− y| ≤ h, the lemma is proved.

We are now in position to prove the main result of this section.

Theorem 2.6. Let f : [0, 1] → R+. If f ∈ LipMα with 0 < α ≤ 1, then for
all n ∈ N and 0 ≤ h ≤ 1 we have

ω1(B(M)
n (f); h) ≤ chα/(4+α),

where c > 0 is independent of n and h (but depends on f).

Proof. By Lemma 2.5 we get
ω1(B(M)

n (f); h) ≤ Cn2h, for all h ∈ [0, 1],
where C > 0 is independent of n and h.

On the other hand, for |x− y| ≤ h, by [2, Theorem 4.1], we get
|B(M)

n (f)(x)−B(M)
n (f)(y)|

≤ |B(M)
n (f)(x)− f(x)|+ |f(x)− f(y)|+ |f(y)−B(M)

n (f)(y)|

≤ 2‖B(M)
n (f)− f‖+ Chα ≤ c

[
1

nα/2
+ hα

]
.
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Passing to supremum with |x− y| ≤ h, it follows

ω1(B(M)
n (f); h) ≤ C

[
1

nα/2
+ hα

]
.

Therefore, for all n ∈ N and 0 ≤ h ≤ 1 we get

ω1(B(M)
n (f); h) ≤ c min

{
n2h,

1
nα/2

+ hα

}
,

where c > 0 is independent of n and h. The optimal choice here is obtained when
n2h = 1

nα/2 , that is if h = 1
n2+α/2 . Indeed, if h < 1

n2+α/2 then the minimum is the
first term, and when h > 1

n2+α/2 then is the second term. This therefore implies
n = 1

h1/(2+α/2) and replacing above we obtain

ω1(B(M)
n (f); h) ≤ chα/(4+α), for all n ∈ N, h ∈ [0, 1],

which proves the theorem.
Remarks. 1) Theorem 2.6 shows that the images of the class Lipα, α ∈ (0, 1],

through all the max-product Bernstein operators B
(M)
n , n ∈ N, belong to the same

class Lip β, with β = α
4+α .

2) It is an open question if the exponent α/(4+α) in the statement of Theorem
2.6 is the best possible.

3) Comparing with the complete global smoothness property of the linear Bern-
stein polynomials (see e.g. [1, p. 231, relation (7.1)]), the result in Theorem 2.6
is weaker. But this is not an unexpected result, taking into account that each
max-product Bernstein operator B

(M)
n (f), has a finite number of points where is

not differentiable.

3. Max-product Hermite-Féjer operator

In this section we find global smoothness preservation for the max-product
Hermite-Féjer interpolation operator based on the Chebyshev nodes of first kind.

Let f : [−1, 1] → R and xn,k = cos( 2k+1
2(n+1)π) ∈ (−1, 1), k ∈ {0, . . . , n}, −1 <

xn,n < xn,n−1 < · · · < xn,0 < 1, be the roots of the first kind Chebyshev polynomial
Tn+1(x) = cos[(n + 1)arccos(x)]. Denoting

hn,k(x) = (1− xxn,k) ·
(

Tn+1(x)
(n + 1)(x− xn,k)

)2

,

it is well known that the max-product Hermite-Fejér interpolation operator is given
by the formula (see [5])

H
(M)
2n+1(f)(x) =

n∨
k=0

hn,k(x)f (xn,k)

n∨
k=0

hn,k(x)
,

where
∨n

k=0 hn,k(x) = maxk={0,...,n}{hn,k(x)}.
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Remark. As it was proved in [5], H
(M)
2n+1(f)(x) is a nonlinear (more exactly

sublinear on the space of positive functions) operator, well-defined for all x ∈ R and
a continuous, piecewise rational function on R. Also, H

(M)
2n+1(f)(xn,j) = f(xn,j) for

all n ∈ N and j = 0, 1, . . . , n, that is interpolatory on the points xn,j , n ∈ N, j ∈
{0, . . . , n}.

Firstly, we need the following auxiliary result.

Theorem 3.1. For all bounded f : [−1, 1] → R+, n ∈ N and h > 0, we have

ω1(H
(M)
2n+1(f); h) ≤ Cn4‖f‖h,

where ‖f‖ = sup{|f(x)|; x ∈ [−1, 1]} and C > 0 is independent of n and h.

Proof. Since
∑n

k=0 hn,k(x) = 1 for all x ∈ [−1, 1], it follows that
∨n

k=0 hn,k(x) ≥
1/(n + 1) ≥ 1/(2n), for all x ∈ [−1, 1]. Then, we have

|H(M)
2n+1(f)(x)−H

(M)
2n+1(f)(y)|

=

∣∣∣∣∣∣∣∣

n∨
k=0

hn,k(x)f(xn,k)

n∨
k=0

hn,k(x)
−

n∨
k=0

hn,k(y)f(xn,k)

n∨
k=0

hn,k(y)

∣∣∣∣∣∣∣∣

=
1

n∨
k=0

hn,k(x)
n∨

k=0

hn,k(y)
×

×
∣∣∣∣∣

n∨

k=0

hn,k(y)
n∨

k=0

hn,k(x)f(xn,k)−
n∨

k=0

hn,k(x)
n∨

k=0

hn,k(y)f(xn,k)

∣∣∣∣∣

≤ 4n2

∣∣∣∣∣
n∨

k=0

hn,k(y)
n∨

k=0

hn,k(x)f(xn,k)−
n∨

k=0

hn,k(x)
n∨

k=0

hn,k(y)f(xn,k)

∣∣∣∣∣ .

Without loss of generality, let us suppose that H
(M)
2n+1(f)(x) ≥ H

(M)
2n+1(f)(y). Let

k1, k2 ∈ {0, 1, . . . , n} be such that
n∨

k=0

hn,k(y) = hn,k1(y),

n∨

k=0

hn,k(x)f(xn,k) = hn,k2(x)f(xn,k2).

Then∣∣∣H(M)
2n+1(f)(x)−HM

n (f)(y)
∣∣∣

≤ 4n2

( n∨

k=0

hn,k(y)
n∨

k=0

hn,k(x)f(xn,k)−
n∨

k=0

hn,k(x)
n∨

k=0

hn,k(y)f(xn,k)
)

= 4n2

(
hn,k1(y)hn,k2(x)f(xn,k2)−

n∨

k=0

hn,k(x)
n∨

k=0

hn,k(y)f(xn,k)
)
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≤ 4n2 (hn,k1(y)hn,k2(x)f(xn,k2)− hn,k1(x)hn,k2(y)f(xn,k2))

= 4n2f(xn,k2)[hn,k1(y)hn,k2(x)− hn,k1(x)hn,k2(y)]

= 4n2f(xn,k2)[(hn,k1(y)hn,k2(x)− hn,k1(x)hn,k2(x))

+ (hn,k1(x)hn,k2(x)− hn,k1(x)hn,k2(y))]

= 4n2f(xn,k2)[hn,k2(x)(hn,k1(y)− hn,k1(x)) + hn,k1(x)(hn,k2(x)− hn,k2(y))]
Taking into account that hn,k1(x) ≤ 1 and hn,k2(x) ≤ 1, we get

|H(M)
2n+1(f)(x)−H

(M)
2n+1(f)(y)|

≤ 4n2 ‖f‖ (|hn,k1(y)− hn,k1(x)|+ |hn,k2(x)− hn,k2(y)|)
≤ 4n2 ‖f‖ (∥∥h′n,k1

∥∥ |x− y|+
∥∥h′n,k2

∥∥ |x− y|) .

But by [10] (see also [8], first inequality on page 6) we have
∥∥h′n,j

∥∥ ≤ Cn2, for all
n ∈ N and j ∈ {0, 1, . . . , n}, where C > 0 is an absolute constant independent of n
and j, which implies that∣∣∣H(M)

2n+1(f)(x)−H
(M)
2n+1(f)(y)

∣∣∣ ≤ Cn4 ‖f‖ |x− y| .
Passing to supremum with |x− y| ≤ h, the theorem is proved.

The main result of this section is the following.

Theorem 3.2. Let f : [−1, 1] → R+. If f ∈ LipMα with 0 < α ≤ 1, then for
all n ∈ N and 0 < h < 1 we have

ω1(H
(M)
2n+1(f); h) ≤ chα/(4+α),

where c > 0 is independent of n and h (but depends on f).

Proof. By Theorem 3.1 we get
ω1(H

(M)
2n+1(f); h) ≤ Cn4h, for all h ∈ (0, 1),

where C > 0 is independent of n and h.
On the other hand, for |x− y| ≤ h, by [4, Theorem 3.1], we get

|H(M)
2n+1(f)(x)−H

(M)
2n+1(f)(x)| ≤ |H(M)

2n+1(f)(x)− f(x)|+ |f(x)− f(y)|

+ |f(y)−H
(M)
2n+1(f)(y)| ≤ 2‖H(M)

2n+1(f)− f‖+ Chα ≤ c

[
1

nα
+ hα

]
,

where c > 0 is independent of n and h. Passing to supremum with |x − y| ≤ h it
follows

ω1(H
(M)
2n+1(f); h) ≤ C

[
1

nα
+ hα

]
.

Therefore, for all n ∈ N and 0 < h < 1 we get

ω1(H
(M)
2n+1(f); h) ≤ c min

{
n4h,

1
nα

+ hα

}
.

The optimal choice here is obtained when n4h = 1
nα , that is if h = 1

n4+α . Indeed,
if h < 1

n4+α then the minimum is the first term, and when h > 1
n4+α then is the

second term. This therefore implies n = 1
h1/(4+α) and replacing above we obtain

ω1(H
(M)
2n+1(f); h) ≤ chα/(4+α), for all n ∈ N, h ∈ (0, 1),

which proves the theorem.
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Remarks. 1) Theorem 3.2 shows that the images of the class Lipα, α ∈ (0, 1],
through all the max-product Hermite-Féjer operators H

(M)
2n+1, n ∈ N, belong to the

same class Lipβ, with β = α
4+α .

2) It is an open question if the exponent α/(4+α) in the statement of Theorem
3.2 is the best possible.

4. Max-product Lagrange operator

In this section we find global smoothness preservation properties for the max-
product Lagrange interpolation operator based on the Chebyshev nodes of second
kind, plus the endpoints.

Let f : [−1, 1] → R and xn,k = cos(n−k
n−1π) ∈ [−1, 1], k ∈ {1, . . . , n} be the

Chebyshev knots of second kind in [−1, 1], plus the endpoints. More exactly, it is
known that xn,k are the roots of ωn(x) = sin[(n− 1)t]sint, x = cos t (which repre-
sents in fact the Chebyshev polynomial of second kind of degree n− 2, multiplied
by 1− x2) and that in this case for the fundamental Lagrange polynomials we can
write (see [11, p. 377])

ln,k(x) =
(−1)k−1ωn(x)

(1 + δk,1 + δk,n)(n− 1)(x− xn,k)
, n ≥ 2, k = 1, . . . , n,

where ωn(x) = Πn
k=1(x − xn,k) and δi,j denotes the Kronecker’s symbol, that is

δi,j = 1 if i = j and δi,j = 0 if i 6= j.
Then, the max-product Lagrange interpolation operator is given by the formula

(see [4])

L(M)
n (f)(x) =

n∨
k=1

ln,k(x)f (xn,k)

n∨
k=1

ln,k(x)
, x ∈ [−1, 1],

where
∨n

k=1 ln,k(x) = maxk={1,...,n}{ln,k(x)}.
Remark. As it was proved in [5], L

(M)
n (f)(x) is a nonlinear (more exactly

sublinear on the space of positive functions) operator, well-defined for all x ∈ R
and a continuous, piecewise rational function on R. Also, L

(M)
n (f)(xn,j) = f(xn,j)

for all n ∈ N and j = 1, . . . , n, that is interpolatory on the points xn,j , n ∈ N, j ∈
{0, . . . , n}.

Firstly, we need the following result.

Theorem 4.1. For all bounded f : [−1, 1] → R+, n ∈ N and h > 0, we have

ω1(L(M)
n (f); h) ≤ Cn4‖f‖h,

where C is an absolute constant independent of f , h and n.

Proof. Since
∑n

k=1 ln,k(x) = 1 for all x ∈ [−1, 1], it follows that
∨n

k=1 ln,k(x) ≥
1/n for all x ∈ [−1, 1]. Then, we have∣∣∣L(M)

n (f)(x)− L(M)
n (f)(y)

∣∣∣
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=

∣∣∣∣∣∣∣∣

n∨
k=1

ln,k(x)f(xn,k)

n∨
k=1

ln,k(x)
−

n∨
k=1

ln,k(y)f(xn,k)

n∨
k=1

ln,k(y)

∣∣∣∣∣∣∣∣

=
1

n∨
k=1

ln,k(x)
n∨

k=1

ln,k(y)
×

×
∣∣∣∣∣

n∨

k=1

ln,k(y)
n∨

k=1

ln,k(x)f(xn,k)−
n∨

k=1

ln,k(x)
n∨

k=1

ln,k(y)f(xn,k)

∣∣∣∣∣

≤ n2

∣∣∣∣∣
n∨

k=1

ln,k(y)
n∨

k=1

ln,k(x)f(xn,k)−
n∨

k=1

ln,k(x)
n∨

k=1

ln,k(y)f(xn,k)

∣∣∣∣∣ .

Without loss of generality let us suppose that L
(M)
n (f)(x) ≥ L

(M)
n (f)(y). Let

k1, k2 ∈ {1, 2, . . . , n} be such that
n∨

k=1

ln,k(y) = ln,k1(y),

n∨

k=1

ln,k(x)f(xn,k) = ln,k2(x)f(xn,k2).

Then∣∣∣L(M)
n (f)(x)− L(M)

n (f)(y)
∣∣∣

≤ n2

( n∨

k=1

ln,k(y)
n∨

k=1

ln,k(x)f(xn,k)−
n∨

k=1

ln,k(x)
n∨

k=1

ln,k(y)f(xn,k)
)

= n2

(
ln,k1(y)ln,k2(x)f(xn,k2)−

n∨

k=1

ln,k(x)
n∨

k=1

ln,k(y)f(xn,k)
)

≤ n2 (ln,k1(y)ln,k2(x)f(xn,k2)− ln,k1(x)ln,k2(y)f(xn,k2))

= n2f(xn,k2)[ln,k1(y)ln,k2(x)− ln,k1(x)ln,k2(y)]

= n2f(xn,k2)[(ln,k1(y)ln,k2(x)− ln,k1(x)ln,k2(x))

+ (ln,k1(x)ln,k2(x)− ln,k1(x)ln,k2(y))]

= n2f(xn,k2)[ln,k2(x)(ln,k1(y)− ln,k1(x)) + ln,k1(x)(ln,k2(x)− ln,k2(y))].
Consequently, we get

|L(M)
n (f)(x)− L(M)

n (f)(y)|
≤ C0n

2 ‖f‖ (|ln,k1(y)− ln,k1(x)|+ |ln,k2(x)− ln,k2(y)|)
≤ C0n

2 ‖f‖ (∥∥l′n,k1

∥∥ |x− y|+
∥∥l′n,k2

∥∥ |x− y|) .

By [8, the proof of Theorem 1.2.3, p. 13], we have
∣∣∣l′n,k(x)

∣∣∣ ≤ C0n
2, for all x ∈

[−1, 1], n ∈ N and k ∈ {1, 2, . . . , n}, where C0 is an absolute constant independent
of f and n.
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Replacing this above and passing to supremum with |x− y| ≤ h, the theorem
is proved.

The main result of this section is the following.

Theorem 4.2. Let f : [−1, 1] → R+. If f ∈ LipMα with 0 < α ≤ 1, then for
all n ∈ N and 0 ≤ h ≤ 1 we have

ω1(L(M)
n (f); h) ≤ chα/(4+α),

where c > 0 is independent of n and h (but depends on f).

Proof. By Theorem 4.1 we get

ω1(L(M)
n (f); h) ≤ Cn4h, for all h ∈ [0, 1],

where C > 0 is independent of n and h.

On the other hand, for |x− y| ≤ h, by [5, Theorem 3.3], we get

|L(M)
n (f)(x)− L(M)

n (f)(x)| ≤ |Ln(f)(x)− f(x)|+ |f(x)− f(y)|+ |f(y)− Ln(f)(y)|

≤ 2‖Ln(f)− f‖+ Chα ≤ c

[
1

nα
+ hα

]
,

where c > 0 is independent of n and h. Reasoning in continuation exactly as in the
proof of Theorem 3.2 we get the desired conclusion.

Remarks. 1) Theorem 4.2 shows that the images of the class Lipα, α ∈ (0, 1],
through all the max-product Lagrange operators L

(M)
n , n ∈ N, belong to the same

class Lip β, with β = α
4+α .

2) It is an open question if the exponent α/(4+α) in the statement of Theorem
4.2 is the best possible.

3) Let us note that although they have better approximation properties (of
Jackson type ω1(f ; 1/n), pointed out in [4] and [5]) than their linear counterpart
polynomials, the above max-product Hermite-Féjer and max-product Lagrange op-
erators satisfy weaker global smoothness preservation properties that their linear
counterpart polynomials (compare above Theorem 3.2 with Corollary 1.2.1, pp.
7-8 in [8] and above Theorem 4.2 with Corollary 1.2.2, p. 15 in [8]). These are
consequences of the fact that each max-product Hermite-Féjer operator, H

(M)
2n+1(f),

and each max-product Lagrange interpolation operator L
(M)
n (f), obviously has a

finite number of points where it is not differentiable.
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