DOUBLY CONNECTED DOMINATION SUBDIVISION NUMBERS OF GRAPHS

H. Karami, R. Khoeilar and S.M. Sheikholeslami

Abstract

A set S of vertices of a connected graph G is a doubly connected dominating set (DCDS) if every vertex not in S is adjacent to some vertex in S and the subgraphs induced by S and $V-S$ are connected. The doubly connected domination number $\gamma_{c c}(G)$ is the minimum size of such a set. The doubly connected domination subdivision number $\mathrm{sd}_{\gamma_{c c}}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the doubly connected domination number. In this paper first we establish upper bounds on the doubly connected domination subdivision number in terms of the order n of G or of its edge connectivity number $\kappa^{\prime}(G)$. We also prove that $\gamma_{c c}(G)+\operatorname{sd}_{\gamma_{c c}}(G) \leq n$ with equality if and only if either $G=K_{2}$ or for each pair of adjacent non-cut vertices $u, v \in \bar{V}(G), G[V(G)-\{u, v\}]$ is disconnected.

1. Introduction

In the whole paper, G is a simple connected graph with vertex set $V(G)$ and edge set $E(G)$ (briefly V and E). We denote by n its order $|V|$ and by m its size $|E|$. For every vertex $v \in V(G)$, the open neighborhood $N(v)$ is the set $\{u \in$ $V(G) \mid u v \in E(G)\}$ and the closed neighborhood is the set $N[v]=N(v) \cup\{v\}$. The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\bigcup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N[S]=N(S) \cup S$. The S-private neighbors of a vertex v of S are the vertices of $N[v] \backslash N[S \backslash\{v\}]$. The vertex v is its own private neighbor if it is isolated in S. The other private neighbors are external, i.e., belong to $V \backslash S$. The minimum and maximum degrees of G are respectively denoted by δ and Δ. The edge connectivity number $\kappa^{\prime}(G)$ of G is the minimum number of edges whose removal results in a disconnected graph. For every graph, $\kappa^{\prime}(G) \leq \delta$. A matching is a set of independent edges and the matching number $\alpha^{\prime}(G)$ is the size of a maximum matching.

A subset S of vertices of G is a dominating set if $N[S]=V$, is a connected dominating set if the induced subgraph $G[S]$ is connected and is a doubly connected dominating set if the induced subgraphs $G[S]$ and $G[V(G)-S]$ are connected.

[^0]The (connected, doubly connected) domination number $\gamma(G)\left(\gamma_{c}(G), \gamma_{c c}(G)\right)$ is the minimum cardinality of a (connected, doubly connected) dominating set of G, and a (connected, doubly connected) dominating set of minimum cardinality is called a γ set (γ_{c}-set, $\gamma_{c c}$-set). Since any doubly connected dominating set is also a connected dominating set, $\gamma_{c}(G) \leq \gamma_{c c}(G)$ for any connected graph G with $\Delta<n-1$. The doubly connected domination number was introduced by Cyman et al. in [2] and has been studied by several authors (see for instance [1]).

The (connected, doubly connected) domination subdivision number $\operatorname{sd}_{\gamma}(G)$ $\left(\operatorname{sd}_{\gamma_{c}}(G), \operatorname{sd}_{\gamma_{c c}}(G)\right)$ of a graph G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the (connected, doubly connected) domination number. (An edge $u v \in E(G)$ is subdivided if the edge $u v$ is deleted, but a new vertex x is added, along with two new edges $u x$ and $v x$. The vertex x is called a subdivision vertex).

The (connected) domination subdivision number have been studied by several authors (see, for example, $[3,4]$). The purpose of this paper is to initialize the study of the doubly connected domination subdivision number $\mathrm{sd}_{\gamma_{c c}}(G)$. Although it may not be immediately obvious that it is defined for all connected graphs of order $n \geq 2$, we will show this shortly.

We make use of the following results in this paper.
THEOREM A. If G is a simple planar triangle-free graph of order $n \geq 3$ and size m, then $m \leq 2 n-4$.

ThEOREM B. (Mantel [6]) The maximum number of edges in an n-vertex triangle-free graph is $\left\lfloor\frac{n^{2}}{4}\right\rfloor$.

Theorem C. (Cyman [2]) For every connected graph G on $n \geq 2$ vertices

$$
\gamma_{c c}(G) \leq n-1
$$

with equality if and only if either $G=K_{2}$ or for each pair of adjacent non-cut vertices $u, v \in V(G), G[V(G)-\{u, v\}]$ is disconnected.

Theorem D. (Cyman [2]) Let G be connected graph with $n \geq 2$ vertices and let G^{\prime} be obtained from G by subdividing one edge of G. Then $\gamma_{c c}(G) \leq \gamma_{c c}\left(G^{\prime}\right)$.

We finish this section with presenting an upper bound on $\gamma_{c c}(G)$ and some observations giving some sufficient conditions for a graph to have small $\operatorname{sd}_{\gamma_{c c}}(G)$.

Theorem 1. For any connected graph G of order $n \geq 2$, $\gamma_{c c}(G) \leq n-\delta(G)$.
Proof. Let $P: x_{1} x_{2} \ldots x_{r}$ be the longest path in G. Obviously $r \geq \delta(G)+1$. Assume that $G^{\prime}=G-\left\{x_{1}, \ldots, x_{\delta}\right\}$. We claim that G^{\prime} is connected. Suppose to the contrary that G^{\prime} is disconnected. Let C be the component of G^{\prime} such that $x_{\delta(G)+1} \notin C$ and let $y_{0} y_{1} \ldots y_{m}$ be the longest path of C. Suppose $S_{1}=\left\{x_{1}, \ldots, x_{\delta}\right\}, S_{2}=\left\{y_{0}, \ldots, y_{m}\right\}$ and let $\ell=d\left(S_{1}, S_{2}\right)$. Then we may assume $x_{k} y_{j}$ if $\ell=1$ and $x_{k} z_{1} \ldots z_{\ell-1} y_{j}$ when $\ell \geq 2$ is the shortest
(S_{1}, S_{2})-path where $1 \leq k \leq \delta$ and $0 \leq j \leq m$. Let i be the largest positive integer such that $y_{o} y_{i} \in E(G)$. If $j \geq i$, then $y_{0} \ldots y_{j} x_{k} x_{k+1} \ldots x_{r}$ if $\ell=1$ and $y_{0} \ldots y_{j} z_{\ell-1} \ldots z_{1} x_{k} x_{k+1} \ldots x_{r}$ when $\ell \geq 2$ is a path of G longer than P which is a contradiction. If $j<i$, then $y_{j+1} \ldots y_{i} y_{0} \ldots y_{j} x_{k} x_{k+1} \ldots x_{r}$ if $\ell=1$ and $y_{j+1} \ldots y_{i} y_{0} \ldots y_{j} z \ell-1 \ldots z_{1} x_{k} x_{k+1} \ldots x_{r}$ when $\ell \geq 2$ is a path of G longer than P which is a contradiction again. Thus G^{\prime} is connected. Since $\delta(G)>\delta\left(G\left[x_{1}, \ldots, x_{\delta}\right]\right)$, we deduce that each $x_{i}(1 \leq i \leq \delta)$ has at least one neighbor in $V(G)-\left\{x_{1}, \ldots, x_{\delta}\right\}$, and hence $V(G)-\left\{x_{1}, \ldots, x_{\delta}\right\}$ is a dominating set of G. Since also $G\left[x_{1}, \ldots, x_{\delta}\right]$ is connected, $V(G)-\left\{x_{1}, \ldots, x_{\delta}\right\}$ is a doubly connected dominating set of G. Thus $\gamma_{c c}(G) \leq n-\delta(G)$ and the proof is complete.

The upper bound is attained for instance for cycles.
ObSERVATIon 2. If a connected graph G of order $n \geq 2$ satisfies one of the following properties, then $s d_{\gamma_{c c}}(G)=1$:
(i) $\gamma_{c c}(G)=1$;
(ii) $\gamma_{c c}(G)=2$ and G contains a $\gamma_{c c}(G)$-set $\{a, b\}$ such that $N(a) \cap N(b)=\emptyset$.

Proof. (i) Obviously $\operatorname{sd}_{\gamma_{c c}}\left(K_{2}\right)=1$. Thus we may assume that $n \geq 3$. Then clearly the graph G^{\prime} obtained from G by subdividing any edge of G has no vertex of degree $n\left(G^{\prime}\right)-1$. Therefore $\gamma_{c c}\left(G^{\prime}\right)>1=\gamma_{c c}(G)$ and hence $\operatorname{sd}_{\gamma_{c c}}(G)=1$.
(ii) Every doubly connected dominating set of the graph G^{\prime} obtained by subdividing the edge $a b$ by one vertex x contains at least one of a, b, say a, and either two vertices in $N(a) \cup N(b)$, or x and b. Hence $\gamma_{c c}\left(G^{\prime}\right) \geq 3>\gamma_{c c}(G)$. Note that this case includes the complete bipartite graph $K_{p, q}$ with $p, q \geq 2$, and the graph obtained from K_{4} by subdividing one edge once.

Observation 3. For any connected graph G with a cut-vertex, $s d_{\gamma_{c c}}(G) \leq 2$.
Proof. Let x be a cut vertex of G and let G_{1}, \cdots, G_{k} be the $\{x\}$-components of $G-x$. Let $e_{1} \in E\left(G_{1}\right)$ and $e_{2} \in E\left(G_{2}\right)$ and let G^{\prime} be obtained from G by subdividing the edges of e_{1}, e_{2} with subdivision vertices z_{1}, z_{2}. Assume D is a $\gamma_{c c}\left(G^{\prime}\right)$-set. Since the subgraph $G^{\prime}[D]$ is connected, we have $x \in D$. On the other hand, since the subgraph $G^{\prime}\left[V\left(G^{\prime}\right)-D\right]$ is connected, D contains all vertices of $V\left(G_{i}\right)$ except for one i, say $i=1$. Thus $z_{2} \in D$, and obviously $D-\left\{z_{1}, z_{2}\right\}$ is a DCDS of G smaller than $\gamma_{c c}\left(G^{\prime}\right)$. This completes the proof.

ObSERVATION 4. (i) If $\gamma_{c c}(G)=\gamma_{c}(G)$, then $s d_{\gamma_{c c}}(G) \leq \operatorname{sd}_{\gamma_{c}}(G)$.
(ii) For every connected graph G of order $n \geq 3$, if $\gamma_{c c}(G)=2$ then $1 \leq$ $\operatorname{sd}_{\gamma_{c c}}(G) \leq 2$.

Proof. (i) After having subdivided $\operatorname{sd}_{\gamma_{c}}(G)$ edges of G, the resulting graph G^{\prime} satisfies $\gamma_{c}\left(G^{\prime}\right)>\gamma_{c}(G)=\gamma_{c c}(G)$. Therefore $\gamma_{c c}\left(G^{\prime}\right) \geq \gamma_{c}\left(G^{\prime}\right)>\gamma_{c c}(G)$ and $\operatorname{sd}_{\gamma_{c c}}(G) \leq \operatorname{sd}_{\gamma_{c}}(G)$.
(ii) Let $\{u, v\}$ be a $\gamma_{c c}(G)$-set. Then obviously either $\min \{\operatorname{deg}(u), \operatorname{deg}(v)\}=1$ or each of u and v have external $\{u, v\}$-private neighbor, say u^{\prime}, v^{\prime}, respectively. If $\operatorname{deg}(u)=\min \{\operatorname{deg}(u), \operatorname{deg}(v)\}=1$, then v is cut vertex and the result follows by Observation 3. Let $\min \{\operatorname{deg}(u), \operatorname{deg}(v)\} \geq 2$ and let G^{\prime} be obtained from G by subdividing the edges $u u^{\prime}, v v^{\prime}$. It is easy to see that $\gamma_{c c}\left(G^{\prime}\right)>\gamma_{c c}(G)$ and the proof is complete.

2. Bounds on the doubly connected domination subdivision number

In this section we present some upper bounds on $\operatorname{sd}_{\gamma_{c c}}(G)$ in terms of the edge connectivity number, the minimum degree, the order or the doubly connected dominating number of G.

THEOREM 5. For any connected graph G of order $n \geq 2, \operatorname{sd}_{\gamma_{c c}}(G) \leq \kappa^{\prime}(G)$.
Proof. Let $[S, \bar{S}]$ be an edge cut of G of size κ^{\prime} and G_{1}, G_{2} are connected components of $G-[S, \bar{S}]$. Let G^{\prime} be obtained from G by subdividing the edges of [$S, \bar{S}]$ and let S^{\prime} be the set of all subdivision vertices. Let D be a $\gamma_{c c}$-set of G^{\prime} and $D_{i}=D \cap V\left(G_{i}\right)$ for $i=1,2$. If $D \cap S^{\prime}=\emptyset$ then $D=D_{1} \cup D_{2}$ and $D_{i} \neq \emptyset$ for each i since D_{i} must dominate G_{i}. But then D is not connected, a contradiction. Therefore $D \cap S^{\prime} \neq \emptyset$ and $D \backslash S^{\prime}$ is a doubly connected dominating set of G smaller than $\gamma_{c c}\left(G^{\prime}\right)$. This implies that $\operatorname{sd}_{\gamma_{c c}}(G) \leq \kappa^{\prime}(G)$.

Note that the previous bound is obviously attained if G has a cut-edge.
THEOREM 6. For any connected graph G of order $n \geq 2$,

$$
\operatorname{sd}_{\gamma_{c c}}(G) \leq \max \{1, \delta(G)-1\}
$$

Proof. If $\delta(G)=1$, then let u be an end-vertex of G and let $u v \in V(G)$. Then $u v$ is a cut edge of G and the statement is true by Theorem 5.

Now suppose $\delta(G) \geq 2$. Let $v \in V(G)$ be a vertex of minimum degree δ and let $N(v)=\left\{v_{1}, \ldots, v_{\delta}\right\}$. Let G^{\prime} be obtained from G by subdividing the edges $v v_{i}(2 \leq$ $i \leq \delta$), with $\delta-1$ new vertices $z_{2}, \ldots, z_{\delta}$, respectively. Assume $S=\left\{z_{2}, \ldots, z_{\delta}\right\}$ and let D be a $\gamma_{c c}$-set of G^{\prime}. If $D \cap S \neq \emptyset$, then clearly $D-S$ is a doubly connected dominating set of G smaller than $\gamma_{c c}\left(G^{\prime}\right)$. Let $D \cap S=\emptyset$.

First let $v \in D$. Since the subgraph $G[D]$ is connected and since $D \cap S=\emptyset$, we have $v_{1} \in D$. It is easy to see that $D-\{v\}$ is a doubly connected dominating set of G smaller than $\gamma_{c c}\left(G^{\prime}\right)$. Now let $v \notin D$. Then to dominate v and the subdivision vertices, we must have $N_{G}(v) \subseteq D$. Since $G\left[V\left(G^{\prime}\right)-D\right]$ is connected, we deduce that $D=V\left(G^{\prime}\right)-\left\{v, z_{2}, \ldots, z_{\delta}\right\}$. Then obviously D is a doubly connected dominating set of G. Assume to the contrary that $|D|=\gamma_{c c}(G)$. This implies that $\gamma_{c c}(G)=n-1$. It follows from Theorem 1 that $\delta(G)=1$ which is a contradiction. This completes the proof.

A consequence of Theorem 6 is that $\operatorname{sd}_{\gamma_{c c}}(G)$ is defined for every connected graph G of order $n \geq 2$.

Theorem 7. For any connected graph G of order $n \geq 2$,

$$
\operatorname{sd}_{\gamma_{c c}}(G) \leq \alpha^{\prime}(G)
$$

Proof. If $\alpha^{\prime}(G)=1$, then clearly $\delta(G) \leq 2$ and the statement is true by Theorem 6. Assume $\alpha^{\prime}(G) \geq 2$. Let $M=\left\{u_{1} v_{1}, \ldots, u_{\alpha^{\prime}} v_{\alpha^{\prime}}\right\}$ be a maximum matching of G, and let X be the independent set of M-unsaturated vertices. First let $|X| \geq 2$. If y and z are vertices of X and $y u_{i} \in E(G)$, then since the matching
M is maximum, $z v_{i} \notin E(G)$. Therefore, for all $i \in\left\{1,2, \ldots, \alpha^{\prime}\right\}$ there are at most two edges between the sets $\left\{u_{i}, v_{i}\right\}$ and $\{y, z\}$. So $\operatorname{deg}(y)+\operatorname{deg}(z) \leq 2 \alpha^{\prime}$ for every pair of distinct vertices y and z in X. Let $y, z \in X$. Then $\min \{\operatorname{deg}(y), \operatorname{deg}(z)\} \leq \alpha^{\prime}$. Thus $\delta(G) \leq \alpha^{\prime}(G)$ and the result follows from Theorem 6 .

Now let $|X| \leq 1$. If $\delta(G) \leq \alpha^{\prime}(G)+1$, then the result follows from Theorem 6. Thus we may assume $\delta(G) \geq \alpha^{\prime}(G)+2$. Let G^{\prime} be obtained from G by subdividing the edges of $u_{1} v_{1}, \ldots, u_{\alpha^{\prime}} v_{\alpha^{\prime}}$ and let S be the set of all subdivision vertices. Suppose D is a $\gamma_{c c}$-set of G^{\prime}. If $D \cap S \neq \emptyset$, then obviously $D \backslash S$ is a doubly connected dominating set of G smaller than $\gamma_{c c}\left(G^{\prime}\right)$. Let $D \cap S=\emptyset$. Since D is a dominating set of G^{\prime} and since $G^{\prime}\left[V\left(G^{\prime}\right)-D\right]$ is connected, we deduce that $\left|D \cap\left\{u_{i}, v_{i}\right\}\right|=1$ for each i. We may assume without loss of generality that $D \cap\left\{u_{1}, \ldots, u_{\alpha^{\prime}}\right\}=$ $\left\{u_{1}, \ldots, u_{s}\right\}$ and $D \cap\left\{v_{1}, \ldots, v_{\alpha^{\prime}}\right\}=\left\{v_{s+1}, \ldots, v_{\alpha^{\prime}}\right\}$ if $s<\alpha^{\prime}$. Assume T is a spanning tree of $G[D]$. Since T has at least two leaves, we may assume without loss of generality that u_{1} is a leaf of T. We claim that $D-\left\{u_{1}\right\}$ is a doubly connected dominating set of G. Obviously $G\left[D-\left\{u_{1}\right\}\right]$ is connected. Since $|V(G)|=$ $2 \alpha^{\prime}(G)+1, \alpha^{\prime}(G)-1 \leq\left|D-\left\{u_{1}\right\}\right| \leq \alpha^{\prime}(G)$ and $\operatorname{deg}(v) \geq \alpha^{\prime}(G)+2$ for each $v \in V(G)$, we deduce that $D-\left\{u_{1}\right\}$ is a dominating set of G. It remains to show that $G\left[V(G) \backslash\left(D-\left\{u_{1}\right\}\right)\right]$ is connected. Since D is a $\gamma_{c c}\left(G^{\prime}\right)$-set, the subgraph induced by $V\left(G^{\prime}\right)-D$ is connected. On the other hand, since each subdivision vertex has degree two and has neighbors in D and $V\left(G^{\prime}\right)-D$, the subdivision vertices are not end vertices of G^{\prime}. Since $u_{1} v_{1} \in E(G)$, we deduce that $G\left[V(G) \backslash\left(D-\left\{u_{1}\right\}\right)\right]$ is connected and the proof is complete.

THEOREM 8. If G contains a matching M such that $\gamma_{c c}(G)<|M|$, then $s d_{\gamma_{c c}}(G) \leq|M|$. In particular, if $\alpha^{\prime}(G)>\gamma_{c c}(G)$, then $s d_{\gamma_{c c}}(G) \leq \gamma_{c c}(G)+1$.

Proof. Let G^{\prime} be obtain by subdividing every edge of M. Each doubly connected dominating set of G^{\prime} has order at least $|M|$. Hence $\gamma_{c c}\left(G^{\prime}\right)>\gamma_{c c}(G)$ and thus $\operatorname{sd}_{\gamma_{c c}}(G) \leq|M|$. If $\alpha^{\prime}(G)>\gamma_{c c}(G)$, then G contains a matching M of size $\gamma_{c c}(G)+1$, which leads to the result.

Next result is an immediate consequence of Theorems 7 and 8.
Corollary 9. For every connected graph G of order $n \geq 2$,

$$
\operatorname{sd}_{\gamma_{c c}}(G) \leq \gamma_{c c}(G)+1
$$

Corollary 10. For any connected graph G of order $n \geq 3$, sd ${\gamma_{c c}}(G) \leq$ $\left\lceil\frac{n-1}{2}\right\rceil$.

Proof. The statement is true if $\delta \leq\left\lceil\frac{n+1}{2}\right\rceil$ by Theorem 6. Let $\delta \geq\left\lceil\frac{n+1}{2}\right\rceil+1$. It follows from Corollary 9 and Theorem 1 that

$$
\operatorname{sd}_{\gamma_{c c}}(G) \leq \gamma_{c c}(G)+1 \leq n-\delta(G)+1 \leq n-\left\lceil\frac{n+1}{2}\right\rceil \leq\left\lceil\frac{n-1}{2}\right\rceil
$$

as desired.
For a path or a cycle of order 3 , the previous bound is attained.

Theorem 11. Let G be a connected graph containing an odd cycle. Then

$$
\operatorname{sd}_{\gamma_{c c}}(G) \leq \min \{\ell \mid \text { there is an odd cycle in } G \text { of length } \ell\}
$$

Proof. Let $C=\left(v_{1} v_{2} \ldots v_{k}\right)$ be an odd cycle of G and let G^{\prime} be obtained from G by subdividing the edges $v_{1} v_{2}, \ldots, v_{k-1} v_{k}, v_{k} v_{1}$ with subdivision vertices z_{1}, \ldots, z_{k}, respectively. Assume D is a $\gamma_{c c}\left(G^{\prime}\right)$-set and S is the set of all subdivision vertices. We claim that $D \cap S \neq \emptyset$. In this case, obviously $D-S$ is a doubly connected dominating set of G smaller than $\gamma_{c c}\left(G^{\prime}\right)$. Suppose to the contrary that $D \cap S=\emptyset$. To dominate z_{1}, we may assume without loss of generality that $v_{1} \in D$. Since D is a DCDS of G^{\prime} and since $z_{1} \notin D$, we have $v_{2} \notin D$. Now to dominate z_{2} we must have $v_{3} \in D$. By repeating this process we deduce that $\left\{v_{1}, v_{3}, \ldots, v_{k}\right\} \in D$ which implies that z_{k} is an isolated vertex in $G^{\prime}\left[V\left(G^{\prime}\right)-D\right]$ which is a contradiction. This completes the proof.

Next two results are immediate consequences of Theorems A, B and 11.
Corollary 12. For any graph G of order $n \geq 2$ and size $m \geq \frac{n^{2}}{4}$, $\operatorname{sd}_{\gamma_{c c}}(G) \leq 3$.

Corollary 13. Let G be a connected planar graph of order $n \geq 2$. Then

$$
\operatorname{sd}_{\gamma_{c c}}(G) \leq 3
$$

Proof. If G contains a triangle, then the statement is true by Theorem 11. Let G be triangle-free graph. Then by Theorem A, $|E(G)| \leq 2 n-4$ which implies that $\delta(G) \leq 3$. Hence $\operatorname{sd}_{\gamma_{c c}}(G) \leq 2$ by Theorem 6 . This completes the proof.

Next result gives an upper bound on the sum $\operatorname{sd}_{\gamma_{c c}}(G)+\gamma_{c c}(G)$ and determines all the extremal graphs.

Theorem 14. Every connected graph G of order $n \geq 2$ satisfies $\gamma_{c c}(G)+$ $\operatorname{sd}_{\gamma_{c c}}(G) \leq n$. Moreover $\gamma_{c c}(G)+\operatorname{sd}_{\gamma_{c c}}(G)=n$ if and only if either $G=K_{2}$ or for each pair of adjacent non-cut vertices $u, v \in V(G), G[V(G)-\{u, v\}]$ is disconnected.

Proof. Let G be a connected graph of order $n \geq 2$. If $\delta(G)=1$, then it follows from Theorems 1 and 6 that

$$
\begin{equation*}
\gamma_{c c}(G)+\operatorname{sd}_{\gamma_{c c}}(G) \leq(n-1)+1=n \tag{1}
\end{equation*}
$$

Let $\delta(G) \geq 2$. It follows from Theorems 1 and 6 that

$$
\gamma_{c c}(G)+\operatorname{sd}_{\gamma_{c c}}(G) \leq(n-\delta(G))+(\delta(G)-1)=n-1
$$

If $\gamma_{c c}(G)+\operatorname{sd}_{\gamma_{c c}}(G)=n$, then the two inequalities occurring in (1) become equalities. Hence, $\gamma_{c c}(G)=n-1$ and the result follows by Theorem C.

If either $G=K_{2}$ or for each pair of adjacent non-cut vertices $u, v \in V(G)$, $G[V(G)-\{u, v\}]$ is disconnected, then $\gamma_{c c}(G)=n-1$ by Theorem C. It follows from Theorem 1 that $\delta(G)=1$ and hence $\operatorname{sd}_{\gamma_{c c}}(G)=1$ by Theorem 6 . Thus $\gamma_{c c}(G)+\operatorname{sd}_{\gamma_{c c}}(G)=n$. This completes the proof.

3. Graphs with doubly connected domination subdivision number 3

Our aim in this section is to demonstrate an infinite family of graphs with the doubly connected domination subdivision number three. The following graph was introduced by Haynes et al. in [4]. Let $X=\{1,2, \ldots, 3(k-1)\}$ and let $\mathcal{Y}=\{Y \subset$ $X||Y|=k\}$. Thus, \mathcal{Y} consists of all k-subsets of X, and so $|\mathcal{Y}|=\binom{3(k-1)}{k}$. Let H be the graph with vertex set $X \cup \mathcal{Y}$ and with edge set constructed as follows: add an edge joining every two distinct vertices of X and for each $x \in X$ and $Y \in \mathcal{Y}$, add an edge joining x and Y if and only if $x \in Y$. Then, H is a connected graph of order $n=\binom{3(k-1)}{k}+3(k-1)$. The set X induces a clique in H, while the set \mathcal{Y} is an independent set each vertex of which has degree k in H. Therefore $\delta=k$. Favaron et al. [3] proved the following results.

Theorem E. For any integer $k \geq 2, \gamma_{c}(H)=2(k-1)$ and $s d_{\gamma_{c}}(H)=k$.
Theorem 15. (1) For any integer $k \geq 2, \gamma_{c c}(H)=2(k-1)+\binom{2(k-1)}{k}$.
(2) For any integer $k \geq 4$, $s d_{\gamma_{c c}}(H)=3$.

Proof. (1) Let D be a $\gamma_{c c}(H)$-set. If $|D \cap X| \leq 2 k-3$, then let S be a k-subset of $X-D$. Then either S is an isolated vertex in $H[D]$ when $S \in D$ or S is not dominated by D when $S \notin D$ which is a contradiction. Thus $|D \cap X| \geq 2(k-1)$. If S^{\prime} be a k-subset of $D \cap X$, then $S^{\prime} \in D$, for otherwise S^{\prime} is an isolated vertex in $H[V(H)-D]$, a contradiction. Thus every k-subset of $D \cap X$ belongs to D. Hence $|D \cap \mathcal{Y}| \geq\binom{ 2(k-1)}{k}$. This implies that $\gamma_{c c}(H) \geq 2(k-1)+\binom{2(k-1)}{k}$. Now let X_{1} be a $2(k-1)$-subset of X and let \mathcal{Y}_{1} consist of all k-subsets of X_{1}. It is easy to see that $A=X_{1} \cup \mathcal{Y}_{1}$ is a DCDS of H and so $\gamma_{c c}(H)=2(k-1)+\binom{2(k-1)}{k}$.
(2) Since H has triangle, it follows from Theorem 11 that $\operatorname{sd}_{\gamma_{c c}}(H) \leq 3$. We show next that $\operatorname{sd}_{\gamma_{c c}}(G) \geq 3$. Let $F=\left\{e_{1}, e_{2}\right\}$ be an arbitrary subset of 2 edges of H. Let H^{\prime} be obtain from H by subdividing each edge in F. We show that $\gamma_{c c}(H)=\gamma_{c c}\left(H^{\prime}\right)$. Let $e_{i}=u_{i} v_{i}$ for each i. Since every edge of H is incident with at least one vertex of X, we may assume $u_{i} \in X$ for each i. If $v_{1}, v_{2} \in \mathcal{Y}$, then let $r_{i}, z_{i} \in v_{i}$ and let A_{1} be a $2(k-1)$-subset of $X-\left\{z_{1}, z_{2}\right\}$ containing $u_{1}, u_{2}, r_{1}, r_{2}$. If $v_{1}, v_{2} \in X$, then let A_{2} be a $2(k-1)$-subset of $X-\left\{v_{1}, v_{2}\right\}$ containing u_{1}, u_{2}. Finally, If $v_{1} \in X$ and $v_{2} \in \mathcal{Y}$, then let $r_{2}, z_{2} \in v_{2}$ and let A_{3} be a $2(k-1)$-subset of $X-\left\{v_{1}, z_{2}\right\}$ containing u_{1}, u_{2}, r_{1}. Assume $B_{i}=\left\{Y \subset A_{i}| | Y \mid=k\right\}$ and let $D_{i}=A_{i} \cup B_{i}$ for $1 \leq i \leq 3$. It is easy to see that D_{i} is a DCDS of H^{\prime} in each case. Thus $\gamma_{c c}(H)=\gamma_{c c}\left(H^{\prime}\right)$, whence $\operatorname{sd}_{\gamma_{c c}}(H) \geq 3$. Consequently, $\operatorname{sd}_{\gamma_{c c}}(H)=3$.

This completes the proof.
Note that since H contains triangle, H is an example of equality in Theorem 11. The following corollary is immediate consequences of Theorems E and 15.

Corollary 16. The difference of $\operatorname{sd}_{\gamma_{c}}(G)-\operatorname{sd}_{\gamma_{c c}}(G)$ can be arbitrarily large.
We conclude this paper with two open problems.

Problem 1. Prove or disprove: For any connected simple graph G of order $n \geq 2$,

$$
\operatorname{sd}_{\gamma_{c c}}(G) \leq \max \{1, \kappa(G)-1\}
$$

Conjecture 1. For any connected planar graph G of order $n \geq 2, \operatorname{sd}_{\gamma_{c c}}(G) \leq 2$.

REFERENCES

[1] M.H. Akhbari, R. Hasni, O. Favaron, H. Karami, S.M. Sheikholeslami, Nordhaus-Gaddum inequalities on the doubly connected domination number, Discrete Appl. Math. 158 (2010), 1465-1470.
[2] J. Cyman, M. Lemanska, J. Raczek, On the doubly connected domination number of a graph, Cent. Eur. J. Math. 4 (2006), 34-45.
[3] O. Favaron, H. Karami, S.M. Sheikholeslami, Connected domination subdivision numbers of graphs, Util. Math. 77 (2008), 101-111.
[4] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, J. Knisely, L.C. van der Merwe, Domination subdivision numbers, Discuss. Math. Graph Theory 21 (2001), 239-253.
[5] S. T. Hedetniemi, R. C. Laskar, Connected domination in graphs, in: B. Bollobás ed., Graph Theory and Combinatorics, pp. 209-218, Academic Press, London, 1984.
[6] W. Mantel, Problem 28, soln. by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W.A. Wythoff, Wiskundige Opgaven 10 (1907), 60-61.
[7] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
(received 04.01.2011; in revised form 12.06.2011; available online 10.09.2011)
Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, I.R. Iran E-mail: s.m.sheikholeslami@azaruniv.edu

[^0]: 2010 AMS Subject Classification: 05C69.
 Keywords and phrases: Doubly connected domination number; doubly connected domination subdivision number.

