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DOUBLY CONNECTED DOMINATION SUBDIVISION
NUMBERS OF GRAPHS

H. Karami, R. Khoeilar and S.M. Sheikholeslami

Abstract. A set S of vertices of a connected graph G is a doubly connected dominating set
(DCDS) if every vertex not in S is adjacent to some vertex in S and the subgraphs induced by S
and V − S are connected. The doubly connected domination number γcc(G) is the minimum size
of such a set. The doubly connected domination subdivision number sdγcc (G) is the minimum
number of edges that must be subdivided (each edge in G can be subdivided at most once) in
order to increase the doubly connected domination number. In this paper first we establish upper
bounds on the doubly connected domination subdivision number in terms of the order n of G or of
its edge connectivity number κ′(G). We also prove that γcc(G)+sdγcc (G) ≤ n with equality if and
only if either G = K2 or for each pair of adjacent non-cut vertices u, v ∈ V (G), G[V (G)− {u, v}]
is disconnected.

1. Introduction

In the whole paper, G is a simple connected graph with vertex set V (G) and
edge set E(G) (briefly V and E). We denote by n its order |V | and by m its
size |E|. For every vertex v ∈ V (G), the open neighborhood N(v) is the set {u ∈
V (G) | uv ∈ E(G)} and the closed neighborhood is the set N [v] = N(v) ∪ {v}.
The open neighborhood of a set S ⊆ V is the set N(S) =

⋃
v∈S N(v), and the

closed neighborhood of S is the set N [S] = N(S)∪S. The S-private neighbors of a
vertex v of S are the vertices of N [v] \N [S \ {v}]. The vertex v is its own private
neighbor if it is isolated in S. The other private neighbors are external, i.e., belong
to V \ S. The minimum and maximum degrees of G are respectively denoted by δ
and ∆. The edge connectivity number κ′(G) of G is the minimum number of edges
whose removal results in a disconnected graph. For every graph, κ′(G) ≤ δ. A
matching is a set of independent edges and the matching number α′(G) is the size
of a maximum matching.

A subset S of vertices of G is a dominating set if N [S] = V , is a connected
dominating set if the induced subgraph G[S] is connected and is a doubly connected
dominating set if the induced subgraphs G[S] and G[V (G) − S] are connected.
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The (connected, doubly connected) domination number γ(G) (γc(G), γcc(G)) is the
minimum cardinality of a (connected, doubly connected) dominating set of G, and a
(connected, doubly connected) dominating set of minimum cardinality is called a γ-
set (γc-set, γcc-set). Since any doubly connected dominating set is also a connected
dominating set, γc(G) ≤ γcc(G) for any connected graph G with ∆ < n − 1. The
doubly connected domination number was introduced by Cyman et al. in [2] and
has been studied by several authors (see for instance [1]).

The (connected, doubly connected) domination subdivision number sdγ(G)
(sdγc(G), sdγcc(G)) of a graph G is the minimum number of edges that must be sub-
divided (where each edge in G can be subdivided at most once) in order to increase
the (connected, doubly connected) domination number. (An edge uv ∈ E(G) is
subdivided if the edge uv is deleted, but a new vertex x is added, along with two
new edges ux and vx. The vertex x is called a subdivision vertex ).

The (connected) domination subdivision number have been studied by several
authors (see, for example, [3, 4]). The purpose of this paper is to initialize the
study of the doubly connected domination subdivision number sdγcc(G). Although
it may not be immediately obvious that it is defined for all connected graphs of
order n ≥ 2, we will show this shortly.

We make use of the following results in this paper.

Theorem A. If G is a simple planar triangle-free graph of order n ≥ 3 and
size m, then m ≤ 2n− 4.

Theorem B. (Mantel [6]) The maximum number of edges in an n-vertex
triangle-free graph is bn2

4 c.
Theorem C. (Cyman [2]) For every connected graph G on n ≥ 2 vertices

γcc(G) ≤ n− 1,

with equality if and only if either G = K2 or for each pair of adjacent non-cut
vertices u, v ∈ V (G), G[V (G)− {u, v}] is disconnected.

Theorem D. (Cyman [2]) Let G be connected graph with n ≥ 2 vertices and
let G′ be obtained from G by subdividing one edge of G. Then γcc(G) ≤ γcc(G′).

We finish this section with presenting an upper bound on γcc(G) and some
observations giving some sufficient conditions for a graph to have small sdγcc(G).

Theorem 1. For any connected graph G of order n ≥ 2, γcc(G) ≤ n− δ(G).

Proof. Let P : x1x2 . . . xr be the longest path in G. Obviously r ≥ δ(G) + 1.
Assume that G′ = G − {x1, . . . , xδ}. We claim that G′ is connected. Sup-
pose to the contrary that G′ is disconnected. Let C be the component of G′

such that xδ(G)+1 /∈ C and let y0y1 . . . ym be the longest path of C. Sup-
pose S1 = {x1, . . . , xδ}, S2 = {y0, . . . , ym} and let ` = d(S1, S2). Then we
may assume xkyj if ` = 1 and xkz1 . . . z`−1yj when ` ≥ 2 is the shortest
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(S1, S2)-path where 1 ≤ k ≤ δ and 0 ≤ j ≤ m. Let i be the largest pos-
itive integer such that yoyi ∈ E(G). If j ≥ i, then y0 . . . yjxkxk+1 . . . xr if
` = 1 and y0 . . . yjz`−1 . . . z1xkxk+1 . . . xr when ` ≥ 2 is a path of G longer
than P which is a contradiction. If j < i, then yj+1 . . . yiy0 . . . yjxkxk+1 . . . xr

if ` = 1 and yj+1 . . . yiy0 . . . yjz`− 1 . . . z1xkxk+1 . . . xr when ` ≥ 2 is a path of
G longer than P which is a contradiction again. Thus G′ is connected. Since
δ(G) > δ(G[x1, . . . , xδ]), we deduce that each xi (1 ≤ i ≤ δ) has at least one neigh-
bor in V (G)− {x1, . . . , xδ}, and hence V (G)− {x1, . . . , xδ} is a dominating set of
G. Since also G[x1, . . . , xδ] is connected, V (G)−{x1, . . . , xδ} is a doubly connected
dominating set of G. Thus γcc(G) ≤ n− δ(G) and the proof is complete.

The upper bound is attained for instance for cycles.
Observation 2. If a connected graph G of order n ≥ 2 satisfies one of the

following properties, then sdγcc
(G) = 1:

(i) γcc(G) = 1;
(ii) γcc(G) = 2 and G contains a γcc(G)-set {a, b} such that N(a) ∩N(b) = ∅.
Proof. (i) Obviously sdγcc(K2) = 1. Thus we may assume that n ≥ 3. Then

clearly the graph G′ obtained from G by subdividing any edge of G has no vertex
of degree n(G′)− 1. Therefore γcc(G′) > 1 = γcc(G) and hence sdγcc

(G) = 1.
(ii) Every doubly connected dominating set of the graph G′ obtained by sub-

dividing the edge ab by one vertex x contains at least one of a, b, say a, and either
two vertices in N(a) ∪ N(b), or x and b. Hence γcc(G′) ≥ 3 > γcc(G). Note that
this case includes the complete bipartite graph Kp,q with p, q ≥ 2, and the graph
obtained from K4 by subdividing one edge once.

Observation 3. For any connected graph G with a cut-vertex, sdγcc(G) ≤ 2.
Proof. Let x be a cut vertex of G and let G1, · · · , Gk be the {x}-components

of G − x. Let e1 ∈ E(G1) and e2 ∈ E(G2) and let G′ be obtained from G by
subdividing the edges of e1, e2 with subdivision vertices z1, z2. Assume D is a
γcc(G′)-set. Since the subgraph G′[D] is connected, we have x ∈ D. On the other
hand, since the subgraph G′[V (G′) − D] is connected, D contains all vertices of
V (Gi) except for one i, say i = 1. Thus z2 ∈ D, and obviously D − {z1, z2} is a
DCDS of G smaller than γcc(G′). This completes the proof.

Observation 4. (i) If γcc(G) = γc(G), then sdγcc(G) ≤ sdγc(G).
(ii) For every connected graph G of order n ≥ 3, if γcc(G) = 2 then 1 ≤

sdγcc(G) ≤ 2.
Proof. (i) After having subdivided sdγc(G) edges of G, the resulting graph

G′ satisfies γc(G′) > γc(G) = γcc(G). Therefore γcc(G′) ≥ γc(G′) > γcc(G) and
sdγcc(G) ≤ sdγc(G).

(ii) Let {u, v} be a γcc(G)-set. Then obviously either min{deg(u), deg(v)} = 1
or each of u and v have external {u, v}-private neighbor, say u′, v′, respectively.
If deg(u) = min{deg(u), deg(v)} = 1, then v is cut vertex and the result follows
by Observation 3. Let min{deg(u), deg(v)} ≥ 2 and let G′ be obtained from G by
subdividing the edges uu′, vv′. It is easy to see that γcc(G′) > γcc(G) and the proof
is complete.
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2. Bounds on the doubly connected domination subdivision number

In this section we present some upper bounds on sdγcc(G) in terms of the
edge connectivity number, the minimum degree, the order or the doubly connected
dominating number of G.

Theorem 5. For any connected graph G of order n ≥ 2, sdγcc
(G) ≤ κ′(G).

Proof. Let [S, S] be an edge cut of G of size κ′ and G1, G2 are connected
components of G− [S, S]. Let G′ be obtained from G by subdividing the edges of
[S, S] and let S′ be the set of all subdivision vertices. Let D be a γcc-set of G′ and
Di = D ∩ V (Gi) for i = 1, 2. If D ∩ S′ = ∅ then D = D1 ∪ D2 and Di 6= ∅ for
each i since Di must dominate Gi. But then D is not connected, a contradiction.
Therefore D∩S′ 6= ∅ and D \S′ is a doubly connected dominating set of G smaller
than γcc(G′). This implies that sdγcc

(G) ≤ κ′(G).
Note that the previous bound is obviously attained if G has a cut-edge.

Theorem 6. For any connected graph G of order n ≥ 2,

sdγcc(G) ≤ max{1, δ(G)− 1}.
Proof. If δ(G) = 1, then let u be an end-vertex of G and let uv ∈ V (G). Then

uv is a cut edge of G and the statement is true by Theorem 5.
Now suppose δ(G) ≥ 2. Let v ∈ V (G) be a vertex of minimum degree δ and let

N(v) = {v1, . . . , vδ}. Let G′ be obtained from G by subdividing the edges vvi (2 ≤
i ≤ δ), with δ − 1 new vertices z2, . . . , zδ, respectively. Assume S = {z2, . . . , zδ}
and let D be a γcc-set of G′. If D∩S 6= ∅, then clearly D−S is a doubly connected
dominating set of G smaller than γcc(G′). Let D ∩ S = ∅.

First let v ∈ D. Since the subgraph G[D] is connected and since D ∩ S = ∅,
we have v1 ∈ D. It is easy to see that D − {v} is a doubly connected dominating
set of G smaller than γcc(G′). Now let v /∈ D. Then to dominate v and the
subdivision vertices, we must have NG(v) ⊆ D. Since G[V (G′)−D] is connected, we
deduce that D = V (G′)−{v, z2, . . . , zδ}. Then obviously D is a doubly connected
dominating set of G. Assume to the contrary that |D| = γcc(G). This implies that
γcc(G) = n− 1. It follows from Theorem 1 that δ(G) = 1 which is a contradiction.
This completes the proof.

A consequence of Theorem 6 is that sdγcc(G) is defined for every connected
graph G of order n ≥ 2.

Theorem 7. For any connected graph G of order n ≥ 2,

sdγcc(G) ≤ α′(G).

Proof. If α′(G) = 1, then clearly δ(G) ≤ 2 and the statement is true by
Theorem 6. Assume α′(G) ≥ 2. Let M = {u1v1, . . . , uα′vα′} be a maximum
matching of G, and let X be the independent set of M -unsaturated vertices. First
let |X| ≥ 2. If y and z are vertices of X and yui ∈ E(G), then since the matching
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M is maximum, zvi /∈ E(G). Therefore, for all i ∈ {1, 2, . . . , α′} there are at most
two edges between the sets {ui, vi} and {y, z}. So deg(y) + deg(z) ≤ 2α′ for every
pair of distinct vertices y and z in X. Let y, z ∈ X. Then min{deg(y), deg(z)} ≤ α′.
Thus δ(G) ≤ α′(G) and the result follows from Theorem 6.

Now let |X| ≤ 1. If δ(G) ≤ α′(G)+1, then the result follows from Theorem 6.
Thus we may assume δ(G) ≥ α′(G)+2. Let G′ be obtained from G by subdividing
the edges of u1v1, . . . , uα′vα′ and let S be the set of all subdivision vertices. Suppose
D is a γcc-set of G′. If D ∩ S 6= ∅, then obviously D \ S is a doubly connected
dominating set of G smaller than γcc(G′). Let D ∩S = ∅. Since D is a dominating
set of G′ and since G′[V (G′) −D] is connected, we deduce that |D ∩ {ui, vi}| = 1
for each i. We may assume without loss of generality that D ∩ {u1, . . . , uα′} =
{u1, . . . , us} and D ∩ {v1, . . . , vα′} = {vs+1, . . . , vα′} if s < α′. Assume T is a
spanning tree of G[D]. Since T has at least two leaves, we may assume without
loss of generality that u1 is a leaf of T . We claim that D − {u1} is a doubly
connected dominating set of G. Obviously G[D−{u1}] is connected. Since |V (G)| =
2α′(G) + 1, α′(G) − 1 ≤ |D − {u1}| ≤ α′(G) and deg(v) ≥ α′(G) + 2 for each
v ∈ V (G), we deduce that D−{u1} is a dominating set of G. It remains to show that
G[V (G) \ (D−{u1})] is connected. Since D is a γcc(G′)-set, the subgraph induced
by V (G′)−D is connected. On the other hand, since each subdivision vertex has
degree two and has neighbors in D and V (G′)−D, the subdivision vertices are not
end vertices of G′. Since u1v1 ∈ E(G), we deduce that G[V (G) \ (D − {u1})] is
connected and the proof is complete.

Theorem 8. If G contains a matching M such that γcc(G) < |M |, then
sdγcc(G) ≤ |M |. In particular, if α′(G) > γcc(G), then sdγcc(G) ≤ γcc(G) + 1.

Proof. Let G′ be obtain by subdividing every edge of M . Each doubly con-
nected dominating set of G′ has order at least |M |. Hence γcc(G′) > γcc(G) and
thus sdγcc(G) ≤ |M |. If α′(G) > γcc(G), then G contains a matching M of size
γcc(G) + 1, which leads to the result.

Next result is an immediate consequence of Theorems 7 and 8.

Corollary 9. For every connected graph G of order n ≥ 2,

sdγcc(G) ≤ γcc(G) + 1.

Corollary 10. For any connected graph G of order n ≥ 3, sdγcc(G) ≤
dn−1

2 e.

Proof. The statement is true if δ ≤ dn+1
2 e by Theorem 6. Let δ ≥ dn+1

2 e+ 1.
It follows from Corollary 9 and Theorem 1 that

sdγcc(G) ≤ γcc(G) + 1 ≤ n− δ(G) + 1 ≤ n− dn + 1
2

e ≤ dn− 1
2

e,

as desired.
For a path or a cycle of order 3, the previous bound is attained.
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Theorem 11. Let G be a connected graph containing an odd cycle. Then

sdγcc
(G) ≤ min{` | there is an odd cycle in G of length `}.

Proof. Let C = (v1v2 . . . vk) be an odd cycle of G and let G′ be obtained
from G by subdividing the edges v1v2, . . . , vk−1vk, vkv1 with subdivision vertices
z1, . . . , zk, respectively. Assume D is a γcc(G′)-set and S is the set of all subdivision
vertices. We claim that D ∩ S 6= ∅. In this case, obviously D − S is a doubly
connected dominating set of G smaller than γcc(G′). Suppose to the contrary that
D∩S = ∅. To dominate z1, we may assume without loss of generality that v1 ∈ D.
Since D is a DCDS of G′ and since z1 /∈ D, we have v2 /∈ D. Now to dominate z2 we
must have v3 ∈ D. By repeating this process we deduce that {v1, v3, . . . , vk} ∈ D
which implies that zk is an isolated vertex in G′[V (G′)−D] which is a contradiction.
This completes the proof.

Next two results are immediate consequences of Theorems A, B and 11.

Corollary 12. For any graph G of order n ≥ 2 and size m ≥ n2

4 ,
sdγcc(G) ≤ 3.

Corollary 13. Let G be a connected planar graph of order n ≥ 2. Then

sdγcc(G) ≤ 3.

Proof. If G contains a triangle, then the statement is true by Theorem 11.
Let G be triangle-free graph. Then by Theorem A, |E(G)| ≤ 2n− 4 which implies
that δ(G) ≤ 3. Hence sdγcc(G) ≤ 2 by Theorem 6. This completes the proof.

Next result gives an upper bound on the sum sdγcc(G)+γcc(G) and determines
all the extremal graphs.

Theorem 14. Every connected graph G of order n ≥ 2 satisfies γcc(G) +
sdγcc(G) ≤ n. Moreover γcc(G) + sdγcc(G) = n if and only if either G = K2 or for
each pair of adjacent non-cut vertices u, v ∈ V (G), G[V (G)−{u, v}] is disconnected.

Proof. Let G be a connected graph of order n ≥ 2. If δ(G) = 1, then it follows
from Theorems 1 and 6 that

γcc(G) + sdγcc(G) ≤ (n− 1) + 1 = n. (1)

Let δ(G) ≥ 2. It follows from Theorems 1 and 6 that

γcc(G) + sdγcc(G) ≤ (n− δ(G)) + (δ(G)− 1) = n− 1.

If γcc(G) + sdγcc(G) = n, then the two inequalities occurring in (1) become equali-
ties. Hence, γcc(G) = n− 1 and the result follows by Theorem C.

If either G = K2 or for each pair of adjacent non-cut vertices u, v ∈ V (G),
G[V (G) − {u, v}] is disconnected, then γcc(G) = n − 1 by Theorem C. It follows
from Theorem 1 that δ(G) = 1 and hence sdγcc(G) = 1 by Theorem 6. Thus
γcc(G) + sdγcc(G) = n. This completes the proof.
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3. Graphs with doubly connected domination subdivision number 3

Our aim in this section is to demonstrate an infinite family of graphs with the
doubly connected domination subdivision number three. The following graph was
introduced by Haynes et al. in [4]. Let X = {1, 2, . . . , 3(k − 1)} and let Y = {Y ⊂
X | |Y | = k}. Thus, Y consists of all k-subsets of X, and so |Y| = (

3(k−1)
k

)
. Let H

be the graph with vertex set X ∪ Y and with edge set constructed as follows: add
an edge joining every two distinct vertices of X and for each x ∈ X and Y ∈ Y,
add an edge joining x and Y if and only if x ∈ Y . Then, H is a connected graph
of order n =

(
3(k−1)

k

)
+ 3(k − 1). The set X induces a clique in H, while the set

Y is an independent set each vertex of which has degree k in H. Therefore δ = k.
Favaron et al. [3] proved the following results.

Theorem E. For any integer k ≥ 2, γc(H) = 2(k − 1) and sdγc
(H) = k.

Theorem 15. (1) For any integer k ≥ 2, γcc(H) = 2(k − 1) +
(
2(k−1)

k

)
.

(2) For any integer k ≥ 4, sdγcc
(H) = 3.

Proof. (1) Let D be a γcc(H)-set. If |D∩X| ≤ 2k−3, then let S be a k-subset
of X − D. Then either S is an isolated vertex in H[D] when S ∈ D or S is not
dominated by D when S /∈ D which is a contradiction. Thus |D ∩X| ≥ 2(k − 1).
If S′ be a k-subset of D ∩X, then S′ ∈ D, for otherwise S′ is an isolated vertex in
H[V (H)−D], a contradiction. Thus every k-subset of D∩X belongs to D. Hence
|D ∩ Y| ≥ (

2(k−1)
k

)
. This implies that γcc(H) ≥ 2(k− 1) +

(
2(k−1)

k

)
. Now let X1 be

a 2(k − 1)-subset of X and let Y1 consist of all k-subsets of X1. It is easy to see
that A = X1 ∪ Y1 is a DCDS of H and so γcc(H) = 2(k − 1) +

(
2(k−1)

k

)
.

(2) Since H has triangle, it follows from Theorem 11 that sdγcc(H) ≤ 3. We
show next that sdγcc(G) ≥ 3. Let F = {e1, e2} be an arbitrary subset of 2 edges
of H. Let H ′ be obtain from H by subdividing each edge in F . We show that
γcc(H) = γcc(H ′). Let ei = uivi for each i. Since every edge of H is incident with
at least one vertex of X, we may assume ui ∈ X for each i. If v1, v2 ∈ Y, then let
ri, zi ∈ vi and let A1 be a 2(k − 1)-subset of X − {z1, z2} containing u1, u2, r1, r2.
If v1, v2 ∈ X, then let A2 be a 2(k − 1)-subset of X − {v1, v2} containing u1, u2.
Finally, If v1 ∈ X and v2 ∈ Y, then let r2, z2 ∈ v2 and let A3 be a 2(k − 1)-subset
of X − {v1, z2} containing u1, u2, r1. Assume Bi = {Y ⊂ Ai | |Y | = k} and let
Di = Ai ∪Bi for 1 ≤ i ≤ 3. It is easy to see that Di is a DCDS of H ′ in each case.
Thus γcc(H) = γcc(H ′), whence sdγcc(H) ≥ 3. Consequently, sdγcc(H) = 3.

This completes the proof.

Note that since H contains triangle, H is an example of equality in Theorem 11.
The following corollary is immediate consequences of Theorems E and 15.

Corollary 16. The difference of sdγc(G)− sdγcc(G) can be arbitrarily large.

We conclude this paper with two open problems.
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Problem 1. Prove or disprove: For any connected simple graph G of order
n ≥ 2,

sdγcc(G) ≤ max{1, κ(G)− 1}.
Conjecture 1. For any connected planar graph G of order n ≥ 2, sdγcc(G) ≤ 2.
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