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PROPERTIES OF SOME FAMILIES OF MEROMORPHIC
MULTIVALENT FUNCTIONS ASSOCIATED WITH
GENERALIZED HYPERGEOMETRIC FUNCTIONS

M. K. Aouf and A. O. Mostafa

Abstract. We introduce and study two subclasses Ω[α1](A, B, λ) and Ω+
[α1]

(A, B, λ) of

meromorphic p-valent functions defined by certain linear operator involving the generalized hy-
pergeometric function. The main object is to investigate the various important properties and
characteristics of these subclasses of meromorphically multivalent functions. We extend the fa-
miliar concept of neighborhoods of analytic functions to these subclasses. We also derive many
interesting results for the Hadamard products of functions belonging to the class Ω+

[α1]
(α, β, γ, λ).

1. Introduction

Let Σp denote the class of functions of the form:

f(z) = z−p +
∞∑

k=1

akzk−p (p ∈ N = {1, 2, . . . }), (1.1)

which are analytic and p-valent in the punctured unit disc U∗ = {z : z ∈ C and
0 < |z| < 1} = U\{0}. For functions f(z) ∈ Σp given by (1.1) and g(z) ∈ Σp given
by

g(z) = z−p +
∞∑

k=1

bkzk−p (p ∈ N),

the Hadamard product (or convolution) of f(z) and g(z) is given by

(f ∗ g)(z) = z−p +
∞∑

k=1

akbkzk−p = (g ∗ f)(z).

For complex parameters α1, . . . , αq and β1, . . . , βs (βj /∈ Z−0 = {0,−1,−2, . . . }; j =
1, 2, . . . , s), we now define the generalized hypergeometric function qFs(α1, . . . , αq;
β1, . . . , βs; z) by

qFs(α1, . . . , αq;β1, . . . , βs; z) =
∞∑

k=0

(α1)k . . . (αq)k

(β1)k . . . (βs)k

zk

k!
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(q ≤ s + 1; q, s ∈ N0 = N ∪ {0}; z ∈ U), where (θ)ν is the Pochhammer symbol
defined, in terms of the Gamma function Γ, by

(θ)ν =
Γ(θ + ν)

Γ(θ)
=

{
1 (ν = 0; θ ∈ C\{0}),
θ(θ + 1) · · · (θ + ν − 1) (ν ∈ N ; θ ∈ C).

Corresponding to the function hp(α1, . . . , αq; β1, . . . , βs; z) defined by

hp(α1, . . . , αq;β1, . . . , βs; z) = z−p
qFs(α1, . . . , αq; β1, . . . , βs; z),

we consider a linear operator Hp(α1, . . . , αq; β1, . . . , βs) : Σp → Σp, which is defined
by the following Hadamard product (or convolution):

Hp(α1, . . . , αq;β1, . . . , βs)f(z) = hp(α1, . . . , αq; β1, . . . , βs; z) ∗ f(z).

We observe that, for a function f(z) of the from (1.1), we have

Hp(α1, . . . , αq; β1, . . . , βs)f(z) = z−p +
∞∑

k=1

Γk(α1)akzk−p, (1.2)

where

Γm(α1) =
(α1)m . . . (αq)m

(β1)m . . . .(βs)m m!
(m ∈ N). (1.3)

If, for convenience, we write Hp,q,s(α1) = Hp(α1, . . . , αq;β1, . . . , βs), then one can
easily verify from (1.2) that

z(Hp,q,s(α1)f(z))
′
= α1Hp,q,s(α1 + 1)f(z)− (α1 + p)Hp,q,s(α1)f(z).

The linear operator Hp,q,s(α1) was investigated recently by Liu and Srivastava
[19], Aouf [7] and Aouf and Yassen [10]. In particular, for q = 2, s = 1 and
α2 = 1, we obtain the linear operator Hp(α1, 1;β1)f(z) = `p(α1, β1)f(z) which was
introduced and studied by Liu and Srivastava [18]. We also note, for any integer
n > −p and for f(z) ∈ Σp, that

Hp(n + p, 1; 1)f(z) = Dn+p−1f(z) =
1

zp(1− z)n+p
∗ f(z) (n > −p; f(z) ∈ Σp) ,

where Dn+p−1f(z) is the differential operator studied earlier by (among others)
Aouf [6] and Aouf and Srivastava [9].

Let

G[α1],λ(z) = Gp,q,s,(α1),λ = (1− λ)Hp,q,s(α1)f(z) +
λ

p
z(Hp,q,s(α1)f(z))

′

(f ∈ Σp; p ∈ N ; 0 ≤ λ < 1
2 ), so that, obviously,

G[α1],λ(z) =
1− 2λ

zp
+

∞∑
k=1

[
1− λ + λ

(
k − p

p

)]
Γk(α1)akzk−p (1.4)

(p ∈ N ; 0 ≤ λ < 1
2 ). From (1.4), it is easily verified that

zG
′
[α1],λ

(z) = α1G[α1+1],λ(z)− (α1 + p)G[α1],λ(z). (1.5)

For fixed parameters A,B, p and λ with −1 ≤ B < A ≤ 1, p ∈ N and 0 ≤ λ <
1
2 , we say that a function f(z) ∈ Σp is in the class Ω[α1](A,B, λ) of meromorphically
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p-valent functions in U∗, if the function G[α1],λ(z) defined by (1.14) satisfies the
following inequality:∣∣∣∣∣

zp+1G
′
[α1],λ

(z) + p(1− 2λ)

Bzp+1G
′
[α1],λ

(z) + Ap(1− 2λ)

∣∣∣∣∣ < 1 (z ∈ U∗). (1.6)

Let Σ∗p denote the class of functions of the form

f(z) = z−p +
∞∑

k=p

|ak| zk (p ∈ N), (1.7)

which are analytic and p-valent in U∗. Furthermore, we say that a function f(z) ∈
Ω+

[α1]
(A,B, λ) whenever f(z) is of the form (1.16) and satisfies (1.6).

We have the following interesting relationships with some of the special func-
tion classes which were investigated recently:

(i) For q = 2 (α1, α2 = 1), s = 1 (β1 = 1) and λ = 0, we have Ω[p,2,1,α1,β1](αA,
αB, 0) = Sα1,β1(A,B, α), and Ω+

[p,2,1,α1,β1]
(αA, αB, 0) = S∗α1,β1

(A,B, α) (α >

0, −1 ≤ B < A ≤ 1, −1 ≤ B ≤ 0 and |Bα| ≤ 1) (Liu [17]);
(ii) For q = 2 (α1, α2 = 1), s = 1 (β1 = 1) and λ = 0, we have Ω+

[p,2,1,α1]
(A,

B, 0) = H∗(p;A,B) (0 ≤ B ≤ 1;−B ≤ A < B) (Mogra [21]);
(iii) For p = 1, q = 2 (α1, α2 = 1), s = 1 (β1 = 1), A = (1 − 2γα)β, B =

(1−2γ)β and λ = 0, we have Ω+
[1,2,1,α1]

((1−2γα)β, (1−2γ)β, 0) = Σd(α, β, γ) (0 ≤
α < 1; 1

2 ≤ γ ≤ 1, 0 < β ≤ 1) (Cho et al. [12]);
(iv) For p = 1, q = 2 (α1, α2 = 1), s = 1(β1 = 1) and λ = 0, we have

Ω+
[1,2,1,α1]

(A,B, 0) = Σd(A,B) (−1 ≤ B < A ≤ 1,−1 ≤ B < 0) (Cho [11]).

Also we note that :

Ω+
[α1]

((1− 2γ
α

p
)β, (1− 2γ)β, λ) = Ω+

[α1]
(α, β, γ, λ)

=

{
f(z) ∈ Σ∗p :

∣∣∣∣∣
zp+1G

′
[α1],λ

(z) + p(1− 2λ)

(2γ − 1)zp+1G
′
[α1],λ

(z) + (2λα− p)(1− 2λ)

∣∣∣∣∣ < β ,

}

(z ∈ U∗; 0 ≤ α < p; p ∈ N ; 1
2 ≤ γ ≤ 1; 0 < β ≤ 1).

Meromorphically multivalent functions have been extensively studied by (for
example) Mogra ([20] and [21]), Uralegaddi and Ganigi [27], Uralegaddi and So-
manatha [28], Aouf ([4], [5] and [6]), Srivastava et al. [26], Owa et al. [22], Joshi
and Aouf [15], Joshi and Srivastava [16], Aouf et al. [8], Raina and Srivastava [23]
and Yang ([29] and [30]).

In this paper we investigate the various important properties and character-
istics of the classes Ω[α1](A, B, λ) and Ω+

[α1]
(A,B, λ). Following the recent investi-

gations by Altintas et al. [3, p. 1668], we extend the concept of neighborhoods of
analytic functions, which was considered earlier by (for example) Goodman [13] and
Ruscheweyh [24], to meromorphically multivalent functions belonging to the classes
Ω[α1](A,B, λ) and Ω+

[α1]
(A,B, λ). We also derive many results for the Hadamard

products of functions belonging to the class Ω+
[α1]

(α, β, γ, λ).
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2. Inclusion properties of the class Ω[α1](A, B, λ)

We begin by recalling the following result (Jack’s lemma), which we shall apply
in proving our first inclusion theorem (Theorem 1 below).

Lemma 1 [14]. Let the (nonconstant) function w(z) be analytic in U with
w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point
z0 ∈ U , then z0w

′
(z0) = ξw(z0), where ξ is a real number and ξ ≥ 1.

Theorem 1. The following inclusion property holds true for the class Ω[α1](A,
B, λ), α1 > 0:

Ω[α1+1](A,B, λ) ⊂ Ω[α1](A,B, λ).

Proof. Let f(z) ∈ Ω[α1+1](A,B, λ) and suppose that

zp+1G
′
[α1],λ

(z) = −p(1− 2λ)
1 + Aw(z)
1 + Bw(z)

, (2.1)

where the function w(z) is either analytic or meromorphic in U , with w(0) = 0.
Then by using (1.5) and (2.1), we have

zp+1G
′
[α1+1],λ(z) = −p(1− 2λ)

1 + Aw(z)
1 + Bw(z)

− p(1− 2λ)
α1

.
(A−B)zw

′
(z)

(1 + Bw(z))2
. (2.2)

We claim that |w(z)| < 1 for z ∈ U . Otherwise there exists a point z0 ∈ U such
that max|z|≤|z0| |w(z)| = |w(z0)| = 1. Applying Jack’s lemma, we have z0w

′
(z0) =

ξw(z0)(ξ ≥ 1). Writing w(z0) = eiθ(0 ≤ θ ≤ 2π) and putting z = z0 in (2.2), we
get

∣∣∣∣∣
zp+1
0 G

′
[α1+1],λ(z0) + p(1− 2λ)

Bzp+1
0 G

′
[α1+1],λ(z0) + Ap(1− 2λ)

∣∣∣∣∣

2

− 1

=

∣∣α1 + ξ + α1Beiθ
∣∣2 −

∣∣α1 + B(α1 − ξ)eiθ
∣∣2

|α1 + B(α1 − ξ)eiθ|2

=
ξ2(1−B2) + 2α1ξ(1 + B2 + 2B cos θ)

|α1 + B(α1 − ξ)eiθ|2
≥ 0,

which obviously contradicts our hypothesis that f(z) ∈ Ω[α1+1](A,B, λ). Thus
we must have |w(z)| < 1(z ∈ U), and so from (2.3), we conclude that f(z) ∈
Ω[α1](A,B, λ), which evidently completes the proof of Theorem 1.

Theorem 2. Let µ be a complex number such that Re(µ) > 0. If f(z) ∈
Ω[α1](A,B, λ), then the function

F[α1],λ(z) =
µ

zµ+p

∫ z

0

tµ+p−1G[α1],λ(t) dt (2.3)

is also in the same class Ω[α1](A,B, λ).
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Proof. From (2.3), we have
zF

′
[α1],λ

(z) = µG[α1],λ(z)− (µ + p)F[α1],λ(z). (2.4)
Put

zp+1F
′
[α1],λ

(z) = −p(1− 2λ)
1 + Aw(z)
1 + Bw(z)

, (2.5)

where w(z) is either analytic or meromorphic in U with w(0) = 0. Then, by using
(2.4) and (2.5), we have

zp+1G
′
[α1],λ

(z) = −p(1− 2λ)
1 + Aw(z)
1 + Bw(z)

− p(1− 2λ)(A−B)
µ

.
zw

′
(z)

(1 + Bw(z))2
.

The remaining part of the proof is similar to that of Theorem 1 and so is
omitted.

Theorem 3. f(z) ∈ Ω[α1](A,B, λ) if and only if

F[α1],λ(z) =
α1

zα1+p

∫ z

0

tα1+p−1f(t) dt ∈ Ω[α1+1](A,B, λ).

Proof. In view of the definition of F[α1],λ(z), we have

α1f(z) = (α1 + p)F[α1],λ(z) + zF
′
[α1],λ

(z). (2.6)
By using (1.5) and (2.6), we have

α1G[α1],λf(z) = (α1 + p)G[α1],λF[α1],λ(z) + z(G[α1],λF[α1],λ(z))
′

= α1G[α1+1],λF[α1+1],λ(z).
The desired result follows immediately.

3. Properties of the class Ω+
[α1](A, B,λ)

In the rest of the paper we assume further that αj > 0 (j = 1, . . . , q), βj > 0
(j = 1, . . . , s), −1 ≤ A < B ≤ 1, −1 ≤ B ≤ 0, 0 ≤ λ < 1

2 and p ∈ N .

Theorem 4. Let f(z) ∈ Σ∗p be given by (1.7). Then f(z) ∈ Ω+
[α1]

(A,B, λ) if
and only if

∞∑
k=p

k
[
1 + λ

(k − p

p

)]
(1−B)Γk+p(α1) |ak| ≤ (A−B)p(1− 2λ), (3.1)

where, Γm(α1) is given by (1.3).

Proof. Let f(z) ∈ Ω+
[α1]

(A,B, λ) be given by (1.7). Then, from (1.6) and (1.7),
we have∣∣∣∣∣

zp+1G
′
[α1],λ

(z) + p(1− 2λ)

Bzp+1G
′
[α1],λ

(z) + Ap(1− 2λ)

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

∞∑
k=p

k
[
1 + λ(k−p

p )
]
Γk+p(α1) |ak| zk+p

(A−B)p(1− 2λ) +
∞∑

k=p

Bk
[
1 + λ(k−p

p )
]
Γk+p(α1) |ak| zk+p

∣∣∣∣∣∣∣∣
< 1 (z ∈ U).
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Since Re(z) ≤ |z| (z ∈ C), we have

Re





∞∑
k=p

k
[
1 + λ(k−p

p )
]
Γk+p(α1) |ak|

(A−B)p(1− 2λ) +
∞∑

k=p

Bk
[
1 + λ(k−p

p )
]
Γk+p(α1) |ak|





< 1. (3.2)

Choose values of z on the real axis so that zp+1G
′
[α1],λ

(z) is real. Upon clearing
the denominator in (3.2) and letting z → 1− through real values we obtain (3.1).

In order to prove the converse, we assume that the inequality (3.1) holds true.
Then, if we let z ∈ ∂U , we find from (1.7) and (3.1) that

∣∣∣∣∣
zp+1G

′
[α1],λ

(z) + p(1− 2λ)

Bzp+1G
′
[α1],λ

(z) + Ap(1− 2λ)

∣∣∣∣∣

≤

∞∑
k=p

k
[
1 + λ(k−p

p )
]
Γk+p(α1) |ak|

(A−B)p(1− 2λ) +
∞∑

k=p

Bk
[
1 + λ(k−p

p )
]
Γk+p(α1) |ak|

< 1 (z ∈ ∂U = {z : z ∈ C and |z| = 1}).
Hence, by the maximum modulus theorem, we have f(z) ∈ Ω+

[α1]
(A, B, λ). This

completes the proof of Theorem 4.

Corollary 1. If the function f(z) defined by (1.7) is in the class Ω+
[α1]

(A,B, λ),
then

|ak| ≤ (A−B)p(1− 2λ)
k
[
1 + λ(k−p

p )
]
(1−B)Γk+p(α1)

(k ≥ p; p ∈ N)

with equality for the function

f(z) = z−p +
(A−B)p(1− 2λ)

k
[
1 + λ(k−p

p )
]
(1−B)Γk+p(α1)

zk (k ≥ p; p ∈ N). (3.3)

Putting A = (1− 2γ α
p )β and B = (1− 2γ)β (0 ≤ α < p, 0 < β ≤ 1, 1

2 ≤ γ ≤ 1
and p ∈ N) in Theorem 4, we obtain

Corollary 2. A function f(z) defined by (1.7) is in the class Ω+
[α1]

(α, β, γ, λ)
if and only if

∞∑
k=p

k
[
1 + λ

(k − p

p

)]
(1 + 2βγ − β)Γk+p(α1) |ak| ≤ 2βγ(p− α)(1− 2λ).

The following property is an easy consequence of Theorem 4.

Theorem 5. Let each of the functions fj(z) defined by

fj(z) = z−p +
∞∑

k=p

|ak,j | zk (j = 1, 2, . . . , m) (3.4)
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be in the class Ω+
[α1]

(A, B, λ). Then the function h(z) defined by

h(z) =
m∑

j=1

ζjfj(z) (ζj ≥ 0 and
m∑

j=1

ζj = 1)

is also in the class Ω+
[α1]

(A,B, λ).

Next we prove the following growth and distortion properties for the class
Ω+

[α1]
(A,B, λ).

Theorem 6. If a function f(z) defined by (1.7) is in the class Ω+
[α1]

(A,B, λ)

and the sequence {Ck} =
{
k
[
1 + λ(k−p

p )
]
Γk+p(α1)

}
(k ≥ p; p ∈ N ; 0 ≤ λ < 1

2 ) is
nondecreasing, then

{
(p + m− 1)!

(p− 1)!
− (A−B)(1− 2λ)

(1−B)Cp
· p!
(p−m)!

r2p

}
r−(p+m)

≤
∣∣∣f (m)(z)

∣∣∣ ≤
{

(p + m− 1)!
(p− 1)!

+
(A−B)(1− 2λ)

(1−B)Cp
· p!
(p−m)!

r2p

}
r−(p+m) (3.5)

(0 < |z| = r < 1; 0 ≤ λ < p; p ∈ N ; m ∈ N0 = N ∪ {0}; p > m), where Γm(α1) is
given by (1.3). The result is sharp for the functions f(z) given by

f(z) = z−p +
(A−B)(1− 2λ)
(1−B)Γ2p(α1)

zp (p ∈ N). (3.6)

Proof. In view of Theorem 4, we have

Γ2p(α1)
p

p!

∞∑
k=p

k!|ak| ≤
∞∑

k=p

k
[
1 + λ

(k − p

p

)]
Γk+p(α1) |ak| ≤ (A−B)p(1− 2λ)

(1−B)
,

which yields
∞∑

k=p

k!|ak| ≤ (A−B)(1− 2λ)p!
(1−B)Γ2p(α1)

(p ∈ N). (3.7)

Now, by differentiating both sides of (1.7) m times with respect to z, we have

f (m)(z) = (−1)m (p + m− 1)!
(p− 1)!

z−(p+m) +
∞∑

k=p

k!
(k −m)!

|ak|zk−m, (3.8)

(m ∈ N0; p ∈ N ; p > m) and Theorem 6 follows easily from (3.7) and (3.8).
Finally, it is easy to see that the bounds in (3.5) are attained for the function

f(z) given by (3.6).
Next we determine the radii of meromorphically p-valent starlikeness of order

δ and meromorphically p-valent convexity of order δ(0 ≤ δ < p) for functions in
the class Ω+

[α1]
(A,B, λ).

Theorem 7. Let the function f(z) defined by (1.7) be in the class Ω+
[α1]

(A,B, λ).
Then we have:
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(i) f(z) is meromorphically p-valent starlike of order δ (0 ≤ δ < p, p ∈ N) in
the disc |z| < r1, that is,

Re

{
−zf

′
(z)

f(z)

}
> δ (|z| < r1) ,

where

r1 = inf
k≥p





(p− δ)k
[
1 + λ(k−p

p )
]
(1−B)Γk+p(α1)

(k + δ)(A−B)p(1− 2λ)





1
k+p

. (3.9)

(ii) f(z) is meromorphically p-valent convex of order δ (0 ≤ δ < p, p ∈ N) in
the disc |z| < r2, that is,

Re

{
−(1 +

zf
′′
(z)

f ′(z)
)

}
> δ (|z| < r2) ,

where

r2 = inf
k≥p





(p− δ)
[
1 + λ(k−p

p )
]
(1−B)Γk+p(α1)

(k + δ)(A−B)(1− 2λ)





1
k+p

. (3.10)

Each of these results is sharp for the function f(z) given by (3.3).

Proof. (i) From the definition (1.7), we easily get

∣∣∣∣∣∣

zf
′
(z)

f(z) + p

zf ′ (z)
f(z) − p + 2δ

∣∣∣∣∣∣
≤

∞∑
k=p

(k + p)|ak||z|k+p

2(p− δ)−
∞∑

k=p

(k − p + 2δ)|ak||z|k+p

.

Thus, we have the desired inequality
∣∣∣∣∣∣

zf
′
(z)

f(z) + p

zf ′ (z)
f(z) − p + 2δ

∣∣∣∣∣∣
≤ 1 (0 ≤ δ < p; p ∈ N),

if
∞∑

k=p

(k + δ

p− δ

)
|ak| |z|k+p ≤ 1. (3.11)

By Theorem 4, (3.11) will be true if

(k + δ

p− δ

)
|z|k+p ≤





k
[
1 + λ

(
k−p

p

)]
(1−B)Γk+p(α1)

(A−B)p(1− 2λ)



 (k ≥ p; p ∈ N). (3.12)

The last inequality (3.12) leads us immediately to the disc |z| < r1, where r1 is
given by (3.9).
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(ii) In order to prove the second assertion of Theorem 7, we find from the
definition (1.7) that

∣∣∣∣∣∣∣

1 + zf
′′

(z)

f ′ (z)
+ p

1 + zf ′′ (z)

f ′ (z)
− p + 2δ

∣∣∣∣∣∣∣
≤

∞∑
k=p

k(k + p)|ak||z|k+p

2p(p− δ)−
∞∑

k=p

k(k − p + 2δ)|ak||z|k+p

.

Thus we have the desired inequality∣∣∣∣∣∣∣

1 + zf
′′

(z)

f ′ (z)
+ p

1 + zf ′′ (z)

f ′ (z)
− p + 2δ

∣∣∣∣∣∣∣
≤ 1 (0 ≤ δ < p; p ∈ N),

if ∞∑
k=p

k(k + δ)
p(p− δ)

|ak| |z|k+p ≤ 1. (3.13)

By Theorem 4, (3.13) will be true if

k(k + δ)
p(p− δ)

|z|k+p ≤
{

k
[
1 + λ(k−p

p )
]
(1−B)Γk+p(α1)

(A−B)p(1− 2λ)

}
(k ≥ p; p ∈ N). (3.14)

The last inequality (3.14) readily yields the disc |z| < r2, where r2 defined by (3.10),
and the proof of Theorem 7 is completed by merely verifying that each assertion is
sharp for the function f(z) given by (3.3).

4. Neighborhoods

Following the earlier works (based upon the familiar concept of neighborhoods
of analytic functions) by Goodman [13] and Ruscheweyh [24], and (more recently)
by Altintas et al. ([1], [2] and [3]), Liu [17], and Liu and Srivastava [18], we begin
by introducing here the δ-neighborhood of a function f(z) ∈ Σp of the form (1.1)
by means of the definition given below:

Nδ(f) =
{

g ∈ Σp : g(z) = z−p +
∞∑

k=1

bkzk−p and

∞∑
k=1

(1 + |B|)(k + p)
[
1− λ + λ(k−p

p )
]
Γk(α1)

(A−B)p(1− 2λ)
|bk − ak| ≤ δ

}
(4.1)

(−1 ≤ B < A ≤ 1; p ∈ N ; 0 ≤ λ < 1
2 ; δ > 0). Making use of the definition (4.1),

we now prove Theorem 8 below.

Theorem 8. Let the function f(z) defined by (1.1) be in the class Ω[α1](A,B, λ).
If f(z) satisfies the following condition:

f(z) + εz−p

1 + ε
∈ Ω[α1](A,B, λ) (ε ∈ C; |ε| < δ; δ > 0), (4.2)

then
Nδ(f) ⊂ Ω[α1](A,B, λ). (4.3)
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Proof. It is easily seen from (1.6) that g(z) ∈ Ω[α1](A,B, λ) if and only if for
any complex number σ with |σ| = 1,

zp+1G
′
[α1],λ

(z) + p(1− 2λ)

Bzp+1G
′
[α1],λ

(z) + Ap(1− 2λ)
6= σ (z ∈ U), (4.4)

which is equivalent to
(g ∗ h)(z)

z−p
6= 0 (z ∈ U), (4.5)

where, for convenience,

h(z) = z−p +
∞∑

k=1

ckzk−p

= z−p +
∞∑

k=1

(1− σB)(k − p)
[
1− λ + λ(k−p

p )
]
Γk(α1)

(B −A)p(1− 2λ)σ
zk−p. (4.6)

From (4.6), we have

|ck| =
∣∣∣∣∣∣
(1− σB)(k − p)

[
1− λ + λ

(
k−p

p

)]
Γk(α1)

(B −A)p(1− 2λ)σ

∣∣∣∣∣∣

≤
(1 + |B|)(k + p)

[
1− λ + λ

(
k−p

p

)]
Γk(α1)

(A−B)p(1− 2λ)
(k, p ∈ N ; 0 ≤ λ < 1

2 ). Now, if f(z) = z−p +
∑∞

k=1 akzk−p ∈ Σp satisfies the
condition (4.2), then (4.5) yields∣∣∣∣

(f ∗ h)(z)
z−p

∣∣∣∣ ≥ δ (z ∈ U ; δ > 0).

By letting g(z) = z−p +
∑∞

k=1 bkzk−p ∈ Nδ(f), we get that∣∣∣∣
[g(z)− f(z)] ∗ h(z)

z−p

∣∣∣∣ =
∣∣∣∣
∞∑

k=1

(bk − ak)ckzk

∣∣∣∣

≤ |z|
∞∑

k=1

(1 + |B|)(k + p)
[
1− λ + λ(k−p

p )
]
Γk(α1)

(A−B)p(1− 2λ)
|bk − ak| < δ

(z ∈ U ; δ > 0). Then we have (4.5), and hence also (4.4) for any σ ∈ C such
that |σ| = 1, which implies that g(z) ∈ Ω[α1](A,B, λ). This evidently proves the
assertion (4.3) of Theorem 8.

We now define the δ-neighborhood of a function f(z) ∈ Σ∗p of the form (1.7)
as follows

N+
δ (f) =

{
g ∈ Σ∗p : g(z) = z−p +

∞∑
k=p

|bk|zk and

∞∑
k=p

(1 + |B|)k
[
1 + λ

(
k−p

p

)]
Γk+p(α1)

(A−B)p(1− 2λ)
||bk| − |ak|| ≤ δ



 ,

(−1 ≤ B < A ≤ 1; p ∈ N ; 0 ≤ λ < 1
2 ; δ > 0).



Some families of meromorphic functions . . . 183

Theorem 9. Let the function f(z) defined by (1.7) be in the class Ω+
[α1+1](A,

B, λ), −1 ≤ B < A ≤ 1, −1 ≤ B ≤ 0, p ∈ N and 0 ≤ λ < 1
2 . Then

N+
δ (f) ⊂ Ω+

[α1]
(A,B, λ) (δ =

2p

α1 + 2p
).

The result is sharp in the sense that δ cannot be increased.

Proof. Making use the same method as in the proof of Theorem 8, we can
show that [cf. (4.6)]

h(z) = z−p +
∞∑

k=p

ckzk

= z−p +
∞∑

k=p

(1− σB)k
[
1 + λ(k−p

p )
]
Γk+p(α1)

(B −A)p(1− 2λ)σ
zk.

Thus, under the hypothesis −1 ≤ B < A ≤ 1, −1 ≤ B ≤ 0, p ∈ N and 0 ≤ λ < 1
2 ,

if f(z) ∈ Ω+
[α1+1](A,B, λ) is given by (1.7), we obtain

∣∣∣∣
(f ∗ h)(z)

z−p

∣∣∣∣ =

∣∣∣∣∣1 +
∞∑

k=p

ck|ak|zk+p

∣∣∣∣∣

≥ 1− α1

α1 + 2p

∞∑
k=p

(1−B)k
[
1 + λ(k−p

p )
]
Γk+p(α1 + 1)

(A−B)p(1− 2λ)
|ak|.

Also, from Theorem 4, we obtain∣∣∣∣
(f ∗ h)(z)

z−p

∣∣∣∣ ≥ 1− α1

α1 + 2p
=

2p

α1 + 2p
= δ.

The remaining part of the proof of Theorem 9 is similar to that of Theorem 8, and
we skip the details involved.

To show the sharpness, we consider the functions f(z) and g(z) given by

f(z) = z−p +
(A−B)(1− 2λ)

(1−B)Γ2p(α1 + 1)
zp ∈ Ω+

[α1+1](A, B, λ)

and

g(z) = z−p +

[
(A−B)(1− 2λ)

(1−B)Γ2p(α1 + 1)
+

(A−B)(1− 2λ)δ
′

(1−B)Γ2p(α1)

]
zp,

where δ
′
> δ = 2p

α1+2p . Clearly, the function g(z) belongs to N+
δ′

(f). On the other
hand, we find from Theorem 4 that g(z) is not in the class Ω+

[α1]
(A,B, λ). Thus the

proof of Theorem 9 is completed.

Theorem 10. Let f(z) ∈ Σp be given by (1.1) and define the partial sums
s1(z) and sn(z) as

s1(z) = z−p and sn(z) = z−p +
n−1∑
k=1

akzk−p (n ∈ N \ {1}).
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Suppose also that

∞∑
k=1

dk |ak| ≤ 1
(
dk =

(1 + |B|)(k + p)
[
1− λ + λ(k−p

p )
]
Γk(α1)

(A−B)p(1− 2λ)

)
. (4.7)

Then:
(i) f(z) ∈ Ω[α1](A,B, λ).
(ii) If {Γk(α1)} (k ∈ N) is nondecreasing and

Γ1(α1) >
(A−B)p(1− 2λ)

(1 + |B|)(1 + p)
[
1− λ + λ( 1−p

p )
] ,

then

Re
{

f(z)
sn(z)

}
> 1− 1

dn
(z ∈ U ; n ∈ N), (4.8)

and

Re
{

sn(z)
f(z)

}
>

dn

1 + dn
(z ∈ U ; n ∈ N). (4.9)

Each of the bounds in (4.8) and (4.9) is the best possible for each n ∈ N .

Proof. (i) It is not difficult to see that z−p ∈ Ω[α1](A,B, λ) (p ∈ N). Thus,
from Theorem 8 and the hypothesis (4.7), we have N1(z−p) ⊂ Ω[α1](A, B, λ) as
asserted by Theorem 8.

(ii) Under the hypothesis in Part (ii) of Theorem 10, we can see from (4.7)
that dk+1 > dk > 1 (k ∈ N). Therefore, we have

n−1∑
k=1

|ak|+ dn

∞∑
k=n

|ak| ≤
∞∑

k=1

dk|ak| ≤ 1, (4.10)

by using hypothesis (4.7) again. By setting

g1(z) = dn

[
f(z)
sn(z)

− (1− 1
dn

)
]

= 1 +
dn

∞∑
k=n

akzk

1 +
n−1∑
k=1

akzk

,

and applying (4.10), we find that

∣∣∣∣
g1(z)− 1
g1(z) + 1

∣∣∣∣ ≤
dn

∞∑
k=n

|ak|

2− 2
n−1∑
k=1

|ak| − dn

∞∑
k=n

|ak|
≤ 1 (z ∈ U),

which readily yields the assertion (4.8). If we take

f(z) = z−p − zn−p

dn
, (4.11)

then
f(z)
sn(z)

= 1− zn

dn
→ 1− 1

dn
(z → 1−)

which shows that the bound in (4.8) is the best possible for each n ∈ N .
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Similarly, if we put

g2(z) = (1 + dn)
(

sn(z)
f(z)

− dn

1 + dn

)
= 1−

(1 + dn)
∞∑

k=n

akzk

1 +
∞∑

k=1

akzk

and making use of (4.10), we can deduce that

∣∣∣∣
g2(z)− 1
g2(z) + 1

∣∣∣∣ ≤
(1 + dn)

∞∑
k=n

|ak|

2− 2
n−1∑
k=1

|ak|+ (1− dn)
∞∑

k=n

|ak|
≤ 1 (z ∈ U),

which leads us immediately to the assertion (4.11).
The bound in (4.9) is sharp for each n ∈ N , with the extremal function f(z)

given by (4.11). The proof of Theorem 10 is thus completed.

5. Convolution properties for the class Ω+
[α1](α,β, γ, λ)

For the functions fj(z) (j = 1, 2) defined by (3.4) we denote by (f1 ∗f2)(z) the
Hadamard product (or convolution) of the functions f1(z) and f2(z), that is,

(f1 ∗ f2)(z) = z−p +
∞∑

k=p

|ak,1||ak,2|zk.

Throughout this section, we assume further that the sequence
{k[1 + λ(k−p

p )]Γk+p(α1)} (k ≥ p; p ∈ N ; 0 ≤ λ < 1
2 ) is nondecreasing.

Theorem 11. Let the functions fj(z) (j = 1, 2) defined by (3.4) be in the class
Ω+

[α1]
(α, β, γ, λ). Then (f1 ∗ f2)(z) ∈ Ω+

[α1]
(ζ, β, γ, λ), where

ζ = p− 2βγ(p− α)2(1− 2λ)
p(1 + 2βγ − β)Γ2p(α1)

.

The result is sharp for the functions fj(z) (j = 1, 2) given by

fj(z) = z−p +
2βγ(p− α)(1− 2λ)

(1 + 2βγ − β)Γ2p(α1)
zp (j = 1, 2; p ∈ N). (5.1)

Proof. Employing the technique used earlier by Schild and Silverman [25], we
need to find the largest ζ such that

∞∑
k=p

k
[
1 + λ(k−p

p )
]
(1 + 2βγ − β)Γk+p(α1)

2βγ(p− ζ)(1− 2λ)
|ak,1||ak,2| ≤ 1

for fj(z) ∈ Ω+
[α1]

(α, β, γ, λ) (j = 1, 2). Since fj(z) ∈ Ω+
[α1]

(α, β, γ, λ) (j = 1, 2), we
readily see that

∞∑
k=p

k
[
1 + λ(k−p

p )
]
(1 + 2βγ − β)Γk+p(α1)

2βγ(p− α)(1− 2λ)
|ak,j | ≤ 1 (j = 1, 2).



186 M. K. Aouf, A. O. Mostafa

Therefore, by the Cauchy-Schwarz inequality, we obtain

∞∑
k=p

k
[
1 + λ(k−p

p )
]
(1 + 2βγ − β)Γk+p(α1)

2βγ(p− α)(1− 2λ)
√ |ak,1||ak,2| ≤ 1. (5.2)

This implies that we only need to show that

1
(p− ζ)

. |ak,1||ak,2| ≤ 1
(p− α)

√
|ak,1||ak,2| (k ≥ p)

or, equivalently, that
√ |ak,1||ak,2| ≤ (p− ζ)

(p− α)
(k ≥ p). Hence, by the inequality

(5.2), it is sufficient to prove that

2βγ(p− α)(1− 2λ)

k
[
1 + λ(k−p

p )
]
(1 + 2βγ − β)Γk+p(α1)

≤ (p− ζ)
(p− α)

(k ≥ p) . (5.3)

It follows from (5.3) that

ζ ≤ p− 2βγ(p− α)2(1− 2λ)
k
[
1 + λ(k−p

p )
]
(1 + 2βγ − β)Γk+p(α1)

(k ≥ p).

Now, defining the function Φ(k) by

Φ(k) = p− 2βγ(p− α)2(1− 2λ)

k
[
1 + λ(k−p

p )
]
(1 + 2βγ − β)Γk+p(α1)

(k ≥ p),

we have

Φ(k + 1)− Φ(k) =
2βγ(p− α)2(1− 2λ)

(1 + 2βγ − β)
Γk+p(α1)×

×




(k + 1)(a + k + p)
[
1 + λ

(
k+1−p

p

)]
− k(c + k + p)

[
1 + λ

(
k−p

p

)]

k(k + 1)(a + k + p)
[
1 + λ

(
k−p

p

)] [
1 + λ

(
k+1−p

p

)]


 > 0,

that is, that, Φ(k) is an increasing function of k (k ≥ p). Therefore, we conclude
that

ζ ≤ Φ(p) = p− 2βγ(p− α)2(1− 2λ)
p(1 + 2βγ − β)Γ2p(α1)

,

which evidently completes the proof of Theorem 11.
Using arguments similar to these in the proof of Theorem 11, we obtain the

following result.

Theorem 12. Let the function f1(z) defined by (3.4) be in the class Ω+
[α1]

(α, β,

γ, λ). Suppose also that the function f2(z) defined by (3.4) be in the class
Ω+

[α1]
(θ, β, γ, λ). Then (f1 ∗ f2)(z) ∈ Ω+

[α1]
(τ, β, γ, λ) where

τ = p− 2βγ(p− α)(p− θ)(1− 2λ)
p(1 + 2βγ − β)Γ2p(α1)

.
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The result is sharp for the functions fj(z) (j = 1, 2) given by

f1(z) = z−p +
2βγ(p− α)(1− 2λ)

p(1 + 2βγ − β)Γ2p(α1)
zp (p ∈ N)

and

f2(z) = z−p +
2βγ(p− θ)(1− 2λ)

p(1 + 2βγ − β)Γ2p(α1)
zp (p ∈ N).

Theorem 13. Let the functions fj(z) (j = 1, 2) defined by (3.4) be in the class
Ω+

[α1]
(α, β, γ, λ). Then the function h(z) defined by

h(z) = z−p +
∞∑

k=p

(|ak,1|2 + |ak,2|2)zk

belongs to the class Ω+
[α1]

(ϕ, β, γ, λ), where

ϕ = p− 4βγ(p− α)2(1− 2λ)
p(1 + 2βγ − β)Γ2p(α1)

.

This result is sharp for the functions fj(z) (j = 1, 2) defined by (5.1).

Proof. Noting that

∞∑
k=p

(
k
[
1 + λ(k−p

p )
]
(1 + 2βγ − β)Γk+p(α1)

2βγ(p− α)(1− 2λ)

)2

|ak,j |2

≤
(
∞∑

k=p

k
[
1 + λ(k−p

p )
]
(1 + 2βγ − β)Γk+p(α1)

2βγ(p− α)(1− 2λ)
|ak,j |

)2

≤ 1 (j = 1, 2),

for fj(z) ∈ Ω+
[α1]

(p, α, β, γ, λ)(j = 1, 2), we have

∞∑
k=p

1
2

[
k
[
1 + λ(k−p

p )
]
(1 + 2βγ − β)Γk+p(α1)

2βγ(p− α)(1− 2λ)

]2

(|ak,1|2 + |ak,2|2) ≤ 1.

Therefore, we have to find the largest ϕ such that

1
(p− ϕ)

≤
k
[
1 + λ(k−p

p )
]
(1 + 2βγ − β)Γk+p(α1)

4βγ(p− α)2(1− 2λ)
(k ≥ p),

that is, that

ϕ ≤ p− 4βγ(p− α)2(1− 2λ)

k
[
1 + λ(k−p

p )
]
(1 + 2βγ − β)Γk+p(α1)

(k ≥ p).

Now, defining a function Ψ(k) by

Ψ(k) = p− 4βγ(p− α)2(1− 2λ)
k
[
1 + λ(k−p

p )
]
(1 + 2βγ − β)Γk+p(α1)

(k ≥ p),
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we observe that Ψ(k) is an increasing function of k (k ≥ p). Thus, we conclude
that

ϕ ≤ Ψ(p) = p− 4βγ(p− α)2(1− 2λ)
p(1 + 2βγ − β)Γ2p(α1)

,

which completes the proof of Theorem 13.
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