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RegG-STRONGLY SOLID VARIETIES
OF COMMUTATIVE SEMIGROUPS

Sarawut Phuapong and Sorasak Leeratanavalee

Abstract. Generalized hypersubstitutions are mappings from the set of all fundamental
operations into the set of all terms of the same language, which do not necessarily preserve the
arities. Strong hyperidentities are identities which are closed under generalized hypersubstitutions
and a strongly solid variety is a variety for which each of its identities is a strong hyperidentity.
In this paper we determine the greatest RegG-strongly solid variety of commutative semigroups.

1. Introduction

Let X := {x1, x2, . . . } be a countably infinite set of symbols called variables.
We refer to these variables as letters, to X as an alphabet, and refer to the set
Xn =: {x1, x2, . . . , xn} as an n-element alphabet. Let (fi)i∈I be an indexed set
which is disjoint from X. Each fi is called an ni-ary operation symbol, where
ni ≥ 1 is a natural number. Let τ be a function which assigns to every fi the
number ni as its arity. The function τ , on the values of τ written as (ni)i∈I is
called a type.

An n-ary term of type τ is defined inductively as follows :

(i) The variables x1, . . . , xn are n-ary terms.

(ii) If t1, . . . , tni are n-ary terms then fi(t1, . . . , tni) is an n-ary term.

We denote by Wτ (Xn) the smallest set which contains x1, . . . , xn and is closed
under finite number of applications of (ii). Then the set Wτ (X) :=

⋃∞
n=1 Wτ (Xn)

is the set of all terms of type τ . An equation of type τ is a pair (s, t) where s and
t are from Wτ (X); such pairs are commonly written as s ≈ t. An equation s ≈ t
is an identity of an algebra A, denoted by A |= s ≈ t if sA = tA where sA and
tA are the corresponding term functions on A. A generalized hypersubstitution
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of type τ is a mapping σ : {fi | i ∈ I} −→ Wτ (X) which does not necessarily
preserve arities. We denote the set of all generalized hypersubstitutions of type τ
by HypG(τ). We define first the concept of a generalized superposition of terms
Sm : Wτ (X)m+1 −→ Wτ (X) by the following steps:

for any term t ∈ Wτ (X),
(i) if t = xj , 1 ≤ j ≤ m, then Sm(xj , t1, . . . , tm) := tj ,
(ii) if t = xj ,m < j ∈ N, then Sm(xj , t1, . . . , tm) := xj ,
(iii) if t = fi(s1, . . . , sni

), then
Sm(t, t1, . . . , tm) := fi(Sm(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm)).
Then the generalized hypersubstitution σ can be extended to a mapping σ̂ :

Wτ (X) −→ Wτ (X) by the following steps:
(i) σ̂[x] := x ∈ X,
(ii) σ̂[fi(t1, . . . , tni

)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni
]), for any ni-ary operation sym-

bol fi where σ̂[tj ], 1 ≤ j ≤ ni are already defined.
We define a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦ σ2 where

◦ denotes the usual composition of mappings and σ1, σ2 ∈ HypG(τ). Let σid be
the hypersubstitution mapping which maps each ni-ary operation symbol fi to the
term fi(x1, . . . , xni

). It turns out that (HypG(τ); ◦G, σid) is a monoid and the
monoid (Hyp(τ); ◦h, σid) of all arity preserving hypersubstitutions of type τ forms
a submonoid of (HypG(τ); ◦G, σid).

If M is a submonoid of HypG(τ) and V is a variety, then an identity s ≈ t

of V is called an M-strong hyperidentity of V if σ̂[s] ≈ σ̂[t] is an identity of V for
every σ ∈ M . A variety V is called M-strongly solid if every identity satisfies an
M-strong hyperidentity. In case of M = HypG(τ) we will call strong hyperidentity
and strongly solid respectively.

2. V -proper generalized hypersubstitutions and normal forms

Let V be a variety of algebras of type τ then to test whether an identity s ≈ t
of V is a strong hyperidentity of V , our definition requires that we check, for each
generalized hypersubstitution σ ∈ HypG(τ) that σ̂[s] ≈ σ̂[t] is an identity of V . In
practice we restrict our testing to certain special generalized hypersubstitutions σ,
those which correspond to V -normal form generalized hypersubstitutions.

Definition 2.1. [4] Let V be a variety of algebras of type τ . Two generalized
hypersubstitutions σ1 and σ2 of type τ are called V-generalized equivalent if σ1(fi) ≈
σ2(fi) are identities in V for all i ∈ I. In this case we write σ1 ∼V G σ2.

Theorem 2.2. [4] Let V be a variety of algebras of type τ , and let σ1, σ2 ∈
HypG(τ). Then the following statements are equivalent:
(i) σ1 ∼V G σ2.

(ii) For all t ∈ Wτ (X), the equations σ̂1[t] ≈ σ̂2[t] are identities in V .
(iii) For all A ∈ V , σ1[A] = σ2[A] where σk[A] = (A; (σk(fi)A)i∈I), for k = 1, 2.
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Proposition 2.3. [4] Let V be a variety of algebras of type τ . Then the
following statements hold:
(i) For all σ1, σ2 ∈ HypG(τ), if σ1 ∼V G σ2 then σ1 is a V-proper generalized

hypersubstitution iff σ2 is a V- proper generalized hypersubstitution.
(ii) For all s, t ∈ Wτ (X) and for all σ1, σ2 ∈ HypG(τ), if σ1 ∼V G σ2 then σ̂1[s] ≈

σ̂1[t] is an identity in V iff σ̂2[s] ≈ σ̂2[t] is an identity in V .

The relation ∼V G is an equivalence relation on HypG(τ), but it is not neces-
sarily a congruence relation. Since ∼V G is not always a congruence, the structure
obtained by factoring HypG(τ) by this relation is not necessarily going to be a
monoid. Recall that the quotient set gives a monoid if and only if the equivalence
relation used to factor it is a congruence. We factorize HypG(τ) by ∼V G and con-
sider the submonoid PG(V ) of HypG(τ) is the union of equivalence classes of the
relation ∼V G. This may also be done for a submonoid M of HypG(τ) and the
relation ∼V G|M

.

Lemma 2.4. [4] Let M be a submonoid of HypG(τ) and let V be a variety
of type τ . Then the monoid PG ∩M is the union of all equivalence classes of the
restricted relation ∼V G|M

.

Definition 2.5. [4] Let M be a monoid of generalized hypersubstitutions
of type τ , and let V be a variety of type τ . Let φ be a choice function which
chooses from M one generalized hypersubstitution from each equivalence class of the
relation ∼V G|M

, and let NM
φ (V ) be the set of generalized hypersubstitutions which

are chosen. Thus NM
φ (V ) is a set of distinguished generalized hypersubstitutions

from M , which we might call V-normal form generalized hypersubstitutions. We
will say that the variety V is NM

φ (V )-strongly solid if for every identity s ≈ t ∈ IdV

and for every generalized hypersubstitution σ ∈ NM
φ (V ), σ̂[s] ≈ σ̂[t] ∈ IdV .

Theorem 2.6. [4] Let M be a monoid of generalized hypersubstitutions of type
τ and let V be a variety of type τ . For any choice function φ, V is M -strongly solid
if and only if V is NM

φ (V )-strongly solid.

3. RegG-strongly solid varieties of commutative semigroups

In this section we determine the greatest RegG-strongly solid varieties of com-
mutative semigroups. We recall first the definition of a regular generalized hyper-
substitution.

Definition 3.1. A generalized hypersubstitution σ ∈ HypG(τ) is called
a regular generalized hypersubstitution if for every i ∈ I, each of the variables
x1, x2, . . . , xni occur in σ̂[fi(x1, . . . , xni)]. (The other variables may also occur in
σ̂[fi(x1, . . . , xni)] too.)

Let RegG(τ) be the set of all regular generalized hypersubstitutions of type τ .
RegG(τ) is also forms a submonoid of (HypG(τ); ◦G, σid) [2].
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For a class K of algebras of type τ and for a set Σ of identities of this type we
fix the following notations:

IdK - the set of all identities of K,
HIdK - the set of all hyperidenties of K,
HRegG

IdK - the set of all regular-strong hyperidenties of K,
ModΣ = {A ∈ Alg(τ)|A satisfiesΣ} - the variety defined by Σ,
HModΣ = {A ∈ Alg(τ)|A hypersatisfiesΣ} - the hyperequational class defined

by Σ,
HRegG

ModΣ = {A ∈ Alg(τ)|A regular-strong hypersatisfiesΣ} - the regular-
strong hyperequational class defined by Σ.

Definition 3.2. Let A be an algebra of type τ and let M be a submonoid of
the monoid RegG(τ). Then, we define

χA
M : P(Alg(τ)) −→ P(Alg(τ)), χE

M : P(Wτ (X)2) −→ P(Wτ (X)2)

by

χA
M (A) := {σ[A] | σ ∈ M}

χE
M [s ≈ t] := {σ̂[s] ≈ σ̂[t] | σ ∈ M}.

For K ⊆ Alg(τ) and Σ ⊆ Wτ (X)2 we define χA
M (K) :=

⋃
A∈K χA

M (A) and
χE

M [Σ] :=
⋃

s≈t∈Σ χE
M [s ≈ t].

Since we are henceforth considering only type (2) varieties of commutative
semigroups, we can denote the binary operation of our variety simply by juxtapo-
sition, and omit brackets where convenient due to associativity.

Lemma 3.3. Let V ⊆ Mod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1, x
2
1x2 ≈ x1x

2
2}.

Then
(i) x3

1x2 ≈ x4
1x2 ∈ IdV (and thus x4

1 ≈ x5
1 ∈ IdV ),

(ii) x2
1x2x3 ≈ x1x

2
2x

2
3 ∈ IdV (and thus x2

1x2x3 ≈ x3
1x2x3 ∈ IdV ),

(iii) x4
1x

2
2x3 ≈ x2

1x
2
2x3 ∈ IdV ,

(iv) x9
1x

3
2x3 ≈ x3

1x
3
2x3 ∈ IdV ,

(v) x4
1x

2
2x3x

3
4 ≈ x2

1x
2
2x3x

2
4 ∈ IdV ,

(vi) x6
1x2x

3
3 ≈ x2

1x
3
2x

2
3 ∈ IdV ,

(vii) x3
1x

6
2x3 ≈ x2

1x
2
2x

3
3 ∈ IdV ,

(viii) x4
1x

9
2x

3
3x4 ≈ x2

1x
3
2x

3
3x4 ∈ IdV ,

(ix) x4
1x

12
2 x3 ≈ x2

1x
3
2x

4
3 ∈ IdV .

Proof. (i) Using x2
1x2 ≈ x1x

2
2 ∈ IdV we get

x4
1x2 ≈ (x2

1)
2x2 ≈ x2

1x
2
2 ≈ x1x1x

2
2 ≈ x1x

2
1x2 ≈ x3

1x2,
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i.e. x3
1x2 ≈ x4

1x2 ∈ IdV . Finally, x3
1x2 ≈ x4

1x2 ∈ IdV provides x4
1 ≈ x5

1 ∈ IdV .
(ii) We substitute x2 by x2x3 in x2

1x2 ≈ x1x
2
2. Using the commutative law we

get x2
1x2x3 ≈ x1x

2
2x

2
3 where x1x

2
2x

2
3 ≈ x3

1x2x3 because x2
1x2 ≈ x1x

2
2.

(iii) Using x2
1x2 ≈ x1x

2
2 ∈ IdV , the associative law and the commutative law

we get x4
1x

2
2x3 ≈ x2

2(x
2
1x

2
2)x3 ≈ x2

1(x1x2)2x3 ≈ x2
1(x1x2)x2

3 ≈ x3
1x2x

2
3 ≈ x3

1x
2
2x3 ≈

x1(x2
1x

2
2)x3 ≈ x1(x1x2)2x3 ≈ x1(x1x2)x2

3 ≈ x2
1x2x

2
3 ≈ x2

1x
2
2x3.

(iv) Using x2
1x2 ≈ x1x

2
2 ∈ IdV , the associative law and the commutative law

we get x9
1x

3
2x3 ≈ x3

1(x
2
1x2)(x2

1x2)(x2
1x2)x3 ≈ x3

1(x1x
2
2)(x1x

2
2)(x1x

2
2)x3 ≈ x6

1x
6
2x3 ≈

(x3
1x

3
2)

2x3 ≈ x3
1x

3
2x

2
3 ≈ (x1x2)2x1x2x

2
3 ≈ (x1x2)x2

1x2x
2
3 ≈ x3

1x
2
2x

2
3 ≈ x3

1x2(x2x
2
3) ≈

x3
1x2(x2

2x3) ≈ x3
1x

3
2x3.

(v) Using x2
1x2 ≈ x1x

2
2 ∈ IdV , the associative law and the commutative

law we get x2
1x

2
2x3x

2
4 ≈ x2

1x3x
2
2x

2
4 ≈ x2

1x3x2x
4
4 ≈ x3x2x

2
1x

4
4 ≈ x3x2x1x

8
4 ≈

(x1x
2
4)(x2x

2
4)x3x

4
4 ≈ (x2

1x4)(x2
2x4)x3x

4
4 ≈ x2

1x
2
2x3x

6
4 ≈ x2

1(x
3
4)

2x2
2x3 ≈ x4

1x
3
4x

2
2x3 ≈

x4
1x

2
2x3x

3
4.

(vi) Using x2
1x2 ≈ x1x

2
2 ∈ IdV , the associative law and the commutative law

we get x2
1x

3
2x

2
3 ≈ x2

1x2x
2
2x

2
3 ≈ x2

1x
2
2x

4
3 ≈ (x1x2)2x4

3 ≈ x1x2x
8
3 ≈ x1x

2
3x2x

2
3x

4
3 ≈

x2
1x3x

2
2x3x

4
3 ≈ x2

1x
2
2x

6
3 ≈ x2

2x
2
1(x

3
3)

2 ≈ x2
2x

4
1x

3
3 ≈ x2

1x
2
1x

2
2x

3
3 ≈ x2

1x
4
1x2x

3
3 ≈ x6

1x2x
3
3.

(vii) Using x2
1x2 ≈ x1x

2
2 ∈ IdV , the associative law and the commutative

law we get x2
1x

2
2x

3
3 ≈ (x1x2)2x3

3 ≈ x1x2x
6
3 ≈ x2x1(x3

3)
2 ≈ x2x

2
1x

3
3 ≈ x2

1x2x
2
3x3 ≈

x2
1x

2
3x2x3 ≈ x4

1x2x
2
3 ≈ x4

1x
2
3x2 ≈ x8

1x2x3 ≈ x4
1x

2
1x2x

2
1x3 ≈ x4

1x1x
2
2x1x

2
3 ≈ x6

1x
2
2x

2
3 ≈

(x3
1)

2x2x2x
2
3 ≈ x3

1x
2
2x2x

2
3 ≈ x3

1x
3
2x

2
3 ≈ x3

1x
6
2x3.

(viii) Using x2
1x2 ≈ x1x

2
2 ∈ IdV , the associative law and the commutative law

we get x2
1x

3
2x

3
3x4 ≈ x2

1(x2x3)2(x2x3)x4 ≈ x4
1x

2
2x

2
3x4 ≈ x4

1x
4
2x3x4 ≈ x4

1x
2
2x

2
2x3x4 ≈

x4
1x

2
2x2x

2
3x4 ≈ x4

1x
3
2x

2
3x4 ≈ x4

1x
6
2x3x4 ≈ x4

1x
4
2x

2
2x3x4 ≈ x4

1x
4
2x2x

2
3x4 ≈ x4

1x
5
2x

2
3x4 ≈

x4
1x

10
2 x3x4 ≈ x4

1x
8
2x

2
2x3x4 ≈ x4

1x
8
2x2x

2
3x4 ≈ x4

1x
9
2x

2
3x4 ≈ x4

1x
7
2x

2
2x

2
3x4 ≈ x4

1x
8
2x

4
3x4 ≈

x4
1x

7
2x2x

2
3x

2
3x4 ≈ x4

1x
9
2x

3
3x4.

(ix) Using x2
1x2 ≈ x1x

2
2 ∈ IdV , the associative law and the commutative

law we get x2
1x

3
2x

4
3 ≈ x2

1(x
2
3)

2x3
2 ≈ x4

1x
3
2x

2
3 ≈ x4

1x
6
2x3 ≈ x4

1(x
3
2)

2x3 ≈ x8
1x

3
2x3 ≈

(x4
1)

2(x3
2x3) ≈ x4

1(x
3
2x3)2 ≈ x4

1x
6
2x

2
3 ≈ x4

1x
12
2 x3.

Let VRC be the variety of commutative semigroups defined by the identity
x2

1x2 ≈ x1x
2
2, i.e. VRC = Mod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1, x

2
1x2 ≈ x1x

2
2}.

Theorem 3.4. VRC is the greatest RegG- solid variety of commutative semi-
groups.

Proof. We have

HRegG
Mod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1}

= ModχE
RegG

{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1}.

The application of σx2
1x2

to the commutative law provides x2
1x2 ≈ x1x

2
2, i.e. x2

1x2 ≈
x1x

2
2 ∈ χE

RegG
[(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1]. This shows

ModχE
RegG

{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1} ⊆ VRC .
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To prove the converse inclusion we have to check the associative law, the commu-
tative law and x2

1x2 ≈ x1x
2
2 using all regular generalized hypersubstitutions.

From now on, the generalized hypersubstitution σ which maps f to the term
t is denoted by σt.

By using Theorem 2.6 together with the identities of VRC , we can restrict
our checking to the following regular generalized hypersubstitutions σt where
t ∈ {xixj | i, j ∈ N} ∪ {xixjxk| i, j, k ∈ N} ∪ {xixjxkxl| i, j, k, l ∈ N} ∪
{xi1xi2 . . . xik

| k, i1, . . . , ik ∈ N, k > 4, and all of i1, . . . , ik are distinct}.
If we apply σxixj

; i, j ∈ N on both sides of the associative law, the commutative
law and x2

1x2 ≈ x1x
2
2 we have the following table.

i, j ∈ N σ̂xixj [(x1x2)x3] = σ̂xixj [x1(x2x3)] =

S2(xixj , S2(xixj , x1, x2), x3) S2(xixj , x1, S2(xixj , x2, x3))

i = 1, j = 2 x1x2x3 x1x2x3

i, j ∈ N σ̂xixj [x1x2] = S2(xixj , x1, x2) σ̂xixj [x2x1] = S2(xixj , x2, x1)

i = 1, j = 2 x1x2 x2x1

i, j ∈ N σ̂xixj [(x1x1)x2] = σ̂xixj [x1(x2x2)] =

S2(xixj , S2(xixj , x1, x1), x2) S2(xixj , x1, S2(xixj , x2, x2))

i = 1, j = 2 x1x1x2 x1x2x2

Using the associative law, the commutative law and the identity x2
1x2 ≈ x1x

2
2 we

have both sides are equal.
If we apply σxixjxk

; i, j, k ∈ N on both sides of the associative law, the com-
mutative law and x2

1x2 ≈ x1x
2
2 we have the following table.

i, j, k ∈ N σ̂xixjxk [(x1x2)x3] = σ̂xixjxk [x1(x2x3)] =

S2(xixjxk, S2(xixjxk, x1, x2), x3) S2(xixjxk, x1, S2(xixjxk, x2, x3))

i = j = 1, k = 2 x1x1x2x1x1x2x3 x1x1x2x2x3

i = 1, j = 2, k > 2 x1x2xkx3xk x1x2x3xkxk

i, j, k ∈ N σ̂xixjxk [x1x2] = S2(xixjxk, x1, x2) σ̂xixjxk [x2x1] = S2(xixjxk, x2, x1)

i = j = 1, k = 2 x1x1x2 x2x2x1

i = 1, j = 2, k > 2 x1x2xk x2x1xk

i, j, k ∈ N σ̂xixjxk [(x1x1)x2] = σ̂xixjxk [x1(x2x2)] =

S2(xixjxk, S2(xixjxk, x1, x1), x2) S2(xixjxk, x1, S2(xixjxk, x2, x2))

i = j = 1, k = 2 x1x1x1x1x1x1x2 x1x1x2x2x2

i = 1, j = 2, k > 2 x1x1xkx2xk x1x2x2xkxk
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Using the associative law, the commutative law and the identity x2
1x2 ≈ x1x

2
2 we

have both sides are equal.
If we apply σxixjxkxl

; i, j, k, l ∈ N on both sides of the associative law, the
commutative law and x2

1x2 ≈ x1x
2
2 we have the following table.

i, j, k ∈ N σ̂xixjxkxl [(x1x2)x3] = σ̂xixjxkxl [x1(x2x3)] =

S2(xixjxkxl, S2(xixjxkxl, x1,

S2(xixjxkxl, x1, x2), x3) S2(xixjxkxl, x2, x3))

i = j = k = 1, l = 2 x1x1x1x2x1x1x1x2x1x1x1x2x3 x1x1x1x2x2x2x3

i = j = 1, k = 2, l > 2 x1x1x2xlx1x1x2xlx3xl x1x1x2x2x3xlxl

i = 1, j = 2, k, l > 2 x1x2xkxlx3xkxl x1x2x3xkxlxkxl

i, j, k ∈ N σ̂xixjxkxl [x1x2] = σ̂xixjxkxl [x2x1] =

S2(xixjxkxl, x1, x2) S2(xixjxkxl, x2, x1)

i = j = k = 1, l = 2 x1x1x1x2 x2x2x2x1

i = j = 1, k = 2, l > 2 x1x1x2xl x2x2x1xl

i = 1, j = 2, k, l > 2 x1x2xkxl x2x1xkxl

i, j, k ∈ N σ̂xixjxk [(x1x1)x2] = σ̂xixjxk [x1(x2x2)] =

S2(xixjxk, S2(xixjxk, x1,

S2(xixjxk, x1, x1), x2) S2(xixjxk, x2, x2))

i = j = k = 1, l = 2 x1x1x1x1x1x1x1x1x1x1x1x1x2 x1x1x1x2x2x2

i = j = 1, k = 2, l > 2 x1x1x1xlx1x1x1xlx2xl x1x1x2x2x2xlxl

i = 1, j = 2, k, l > 2 x1x1xkxlx2xkxl x1x2x2xkxlxkxl

Using the associative law, the commutative law and the identity x2
1x2 ≈ x1x

2
2 we

have both sides are equal.
If we apply σt where t = xi1xi2 . . . xik

and k, i1, . . . , ik ∈ N, k > 4 on both
sides of the associative law we have σ̂t[(x1x2)x3] = S2(t, S2(t, x1, x2), x3) and
σ̂t[x1(x2x3)] = S2(t, x1, S

2(t, x2, x3)).
(i) If there exists a unique n ∈ {1, . . . , k} such that in = 1 , there exists a

unique l ∈ {1, . . . , k} such that il = 2 and im > 2 for all m 6= n 6= l with n < l,
then

σ̂t[(x1x2)x3] = xi1 . . . xin−1(xi1 . . . xin−1x1xin+1 . . . xil−1x2xil+1 . . . xik
)

xin+1 . . . xil−1x3xil+1 . . . xik
,

σ̂t[x1(x2x3)] = xi1 . . . xin−1x1xin+1 . . . xil−1(xi1 . . . xin−1x2

xin+1 . . . xil−1x3xil+1 . . . xik
)xil+1 . . . xik

.

(ii) If there exists j, n ∈ {1, . . . , k} such that ij = 1 = in , there exist a unique
l ∈ {1, . . . , k} such that il = 2 and im > 2 for all j 6= n 6= l 6= m with j < n < l,
then

σ̂t[(x1x2)x3] = xi1 . . . xij−1(xi1 . . . xij−1x1xij+1 . . . xin−1x1xin+1 . . . xil−1x2
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xil+1 . . . xik
)xij+1 . . . xin−1(xi1 . . . xij−1x1xij+1 . . . xin−1x1

xin+1 . . . xil−1x2xil+1 . . . xik
)xin+1 . . . xil−1x3xil+1 . . . xik

,

σ̂t[x1(x2x3)] = xi1 . . . xij−1x1xij+1 . . . xin−1x1xin+1 . . . xil−1(xi1 . . . xij−1x2

xij+1 . . . xin−1x2xin+1 . . . xil−1x3xil+1 . . . xik
)xil+1 . . . xik

.

(iii) If there exist h, j, n ∈ {1, . . . , k} such that ih = ij = in = 1 , there exists
a unique l ∈ {1, . . . , k} such that il = 2 and im > 2 for all h 6= j 6= n 6= l 6= m with
h < j < n < l, then

σ̂t[(x1x2)x3] = xi1 . . . xih−1(xi1 . . . xih−1x1xih+1 . . . xij−1x1xij+1 . . . xin−1x1

xin+1 . . . xil−1x2xil+1 . . . xik
)xih+1 . . . xij−1(xi1 . . . xih−1x1

xih+1 . . . xij−1x1xij+1 . . . xin−1x1xin+1 . . . xil−1x2xil+1 . . . xik
)

xij+1 . . . xin−1(xi1 . . . xih−1x1xih+1 . . . xij−1x1xij+1 . . . xin−1x1xin+1

. . . xil−1x2xil+1 . . . xik
)xin+1 . . . xil−1x3xil+1 . . . xik

,

σ̂t[x1(x2x3)] = xi1 . . . xih−1x1xih+1 . . . xij−1x1xij+1 . . . xin−1x1xin+1 . . . xil−1

(xi1 . . . xih−1x2xih+1 . . . xij−1x2xij+1 . . . xin−1x2

xin+1 . . . xil−1x3xil+1 . . . xik
)xil+1 . . . xik

.

Using the associative law, the commutative law and the identity x2
1x2 ≈ x1x

2
2 we

have both sides are equal.
If we apply σt where t = xi1xi2 . . . xik

and k, i1, . . . , ik ∈ N, k > 4 on both
sides of the commutative law we have σ̂t[x1x2] = S2(t, x1, x2) and σ̂t[x2x1] =
S2(t, x2, x1).

(i) If there exists a unique n ∈ {1, . . . , k} such that in = 1 , there exists a
unique l ∈ {1, . . . , k} such that il = 2 and im > 2 for all m 6= n 6= l with n < l,
then

σ̂t[x1x2] = xi1 . . . xin−1x1xii+1 . . . xil−1x2xil+2 . . . xik
,

σ̂t[x2x1] = xi1 . . . xin−1x2xii+1 . . . xil−1x1xil+2 . . . xik
.

(ii) If there exist j, n ∈ {1, . . . , k} such that ij = 1 = in , there exists a unique
l ∈ {1, . . . , k} such that il = 2 and im > 2 for all j 6= n 6= l 6= m with j < n < l,
then

σ̂t[x1x2] = xi1 . . . xij−1x1xij+1 . . . xin−1x1xii+1 . . . xil−1x2xil+2 . . . xik
,

σ̂t[x2x1] = xi1 . . . xij−1x2xij+1 . . . xin−1x2xii+1 . . . xil−1x1xil+2 . . . xik
.

(iii) If there exist h, j, n ∈ {1, . . . , k} such that ih = ij = in = 1 , there exists
a unique l ∈ {1, . . . , k} such that il = 2 and im > 2 for all h 6= j 6= n 6= l 6= m with
h < j < n < l, then

σ̂t[x1x2] = xi1 . . . xih−1x1xih+1 . . . xij−1x1xij+1 . . . xin−1x1

xii+1 . . . xil−1x2xil+2 . . . xik
,

σ̂t[x2x1] = xi1 . . . xih−1x2xih+1 . . . xij−1x2xij+1 . . . xin−1x2

xii+1 . . . xil−1x1xil+2 . . . xik
.
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Using the associative law, the commutative law and the identity x2
1x2 ≈ x1x

2
2 we

have both sides are equal.

If we apply σt where t = xi1xi2 . . . xik
and k, i1, . . . , ik ∈ N, k > 4 on both

sides of the identity x2
1x2 ≈ x1x

2
2 we have σ̂t[(x1x1)x2] = S2(t, S2(t, x1, x1), x2) and

σ̂t[x1(x2x2)] = S2(t, x1, S
2(t, x2, x2)).

(i) If there exists a unique n ∈ {1, . . . , k} such that in = 1 , there exists a
unique l ∈ {1, . . . , k} such that il = 2 and im > 2 for all m 6= n 6= l with n < l,
then

σ̂t[(x1x1)x2] = xi1 . . . xin−1(xi1 . . . xin−1x1xin+1 . . . xil−1x1xil+1 . . . xik
)

xin+1 . . . xil−1x2xil+1 . . . xik
,

σ̂t[x1(x2x2)] = xi1 . . . xin−1x1xin+1 . . . xil−1(xi1 . . . xin−1x2xin+1 . . . xil−1

x2xil+1 . . . xik
)xil+1 . . . xik

.

(ii) If there exist j, n ∈ {1, . . . , k} such that ij = 1 = in , there exists a unique
l ∈ {1, . . . , k} such that il = 2 and im > 2 for all j 6= n 6= l 6= m with j < n < l,
then

σ̂t[(x1x1)x2] = xi1 . . . xij−1(xi1 . . . xij−1x1xij+1 . . . xin−1x1xin+1 . . . xil−1

x1xil+1 . . . xik
)xij+1 . . . xin−1(xi1 . . . xij−1x1xij+1 . . . xin−1x1

xin+1 . . . xil−1x1xil+1 . . . xik
)xin+1 . . . xil−1x2xil+1 . . . xik

,

σ̂t[x1(x2x2)] = xi1 . . . xij−1x1xij+1 . . . xin−1x1xin+1 . . . xil−1(xi1 . . . xij−1x2

xij+1 . . . xin−1x2xin+1 . . . xil−1x2xil+1 . . . xik
)xil+1 . . . xik

.

(iii) If there exist h, j, n ∈ {1, . . . , k} such that ih = ij = in = 1 , there exists
a unique l ∈ {1, . . . , k} such that il = 2 and im > 2 for all h 6= j 6= n 6= l 6= m with
h < j < n < l, then

σ̂t[(x1x1)x2] = xi1 . . . xih−1(xi1 . . . xih−1x1xih+1 . . . xij−1x1xij+1 . . . xin−1x1

xin+1 . . . xil−1x1xil+1 . . . xik
)xih+1 . . . xij−1(xi1 . . . xih−1x1

xih+1 . . . xij−1x1xij+1 . . . xin−1x1xin+1 . . . xil−1x1xil+1 . . . xik
)

xij+1 . . . xin−1(xi1 . . . xih−1x1xih+1 . . . xij−1x1xij+1 . . . xin−1x1

xin+1 . . . xil−1x1xil+1 . . . xik
)xin+1 . . . xil−1x2xil+1 . . . xik

,

σ̂t[x1(x2x2)] = xi1 . . . xih−1x1xih+1 . . . xij−1x1xij+1 . . . xin−1x1xin+1 . . . xil−1

(xi1 . . . xih−1x2xih+1 . . . xij−1x2xij+1 . . . xin−1x2xin+1 . . . xil−1x2

xil+1 . . . xik
)xil+1 . . . xik

.

Using the associative law, the commutative law and the identity x2
1x2 ≈ x1x

2
2 we

have both sides are equal.
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