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THE THEOREMS OF URQUHART AND STEINER-LEHMUS IN
THE POINCARÉ BALL MODEL OF HYPERBOLIC GEOMETRY

Oğuzhan Demirel and Emine Soytürk Seyrantepe

Abstract. In [Comput. Math. Appl. 41 (2001), 135–147], A.A. Ungar employs the Möbius
gyrovector spaces for the introduction of the hyperbolic trigonometry. This A.A. Ungar’s work,
plays a major role in translating some theorems in Euclidean geometry to corresponding theorems
in hyperbolic geometry. In this paper we present (i) the hyperbolic Breusch’s lemma, (ii) the
hyperbolic Urquhart’s theorem, and (iii) the hyperbolic Steiner-Lehmus theorem in the Poincaré
ball model of hyperbolic geometry by employing results from A.A. Ungar’s work.

1. Introduction

This paper is inspired by the beautiful papers [9, 15] by A.A. Ungar on hyper-
bolic trigonometry. A.A. Ungar showed that the hyperbolic sine and the hyperbolic
cosine rules are valid in the Poincaré ball model of hyperbolic geometry in a form
analogous to their Euclidean counterparts. In this paper we shall apply hyperbol-
ic trigonometry to the study of the hyperbolic Breusch’s Lemma, the hyperbolic
Urquhart’s theorem and the hyperbolic Steiner-Lehmus theorem in the Poincaré
ball model of hyperbolic geometry. In the Poincaré ball model, a gyroline (or, a
hyperbolic line) is an Euclidean semicircular arc that intersects the boundary of
the ball orthogonally.

2. Möbius transformations of the disc

In complex analysis Möbius transformations are well known and fundamen-
tal. The most general Möbius transformation of the complex open unit disc
D = {z ∈ C : |z| < 1} in the complex z-plane

z 7→ eiθ z0 + z

1 + z0z
= eiθ (z0 ⊕ z)
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defines the Möbiüs addition ⊕ in the disc, allowing the Möbius transformation of
the disc to be viewed as a Möbius left gyrotranslation

z 7→ z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ is a real number, z0 ∈ D, and z0 is the complex
conjugate of z0. Möbius substraction “ª” is given by a ª z = a ⊕ (−z), clearly
zªz = 0 and ªz = −z. Möbius addition ⊕ is a binary operation in the disc D, but
clearly it is neither commutative nor associative. Möbius addition ⊕ gives rise to
the groupoid (D,⊕) studied by A.A. Ungar in several books including [8, 10, 13, 15,
16]. Möbius addition is analogous to the common vector addition + in Euclidean
plane geometry. Since Möbius addition ⊕ is not associative, the groupoid (D,⊕) is
not a group. However, it has a group-like structure that we present below.

The breakdown of commutativity in Möbius addition is “repaired” by the
introduction of gyrator,

gyr : D× D→ Aut(D,⊕)

which gives rise to gyrations,

gyr [a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
(1)

where Aut(D,⊕) is the automorphism group of the groupoid (D,⊕). Therefore, the
gyrocommutative law of Möbius addition ⊕ follows from the definition of gyration
in (1),

a⊕ b = gyr [a, b] (b⊕ a) . (2)

Coincidentally, the gyration gyr[a, b] that repairs the breakdown of the commu-
tative law of ⊕ in (2), repairs the breakdown of the associative law of ⊕ as well,
giving rise to the respective left and right gyroassociative laws

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr [a, b] c

(a⊕ b)⊕ c = a⊕ (b⊕ gyr [b, a] c)

for all a, b, c ∈ D.

Definition 1. A groupoid (G,⊕) is a gyrogroup if its binary operation satis-
fies the following axioms

(G1) 0⊕ a = 0 left identity property

(G2) ª a⊕ a = 0 left inverse property

(G3) a⊕ (b⊕ c) = (a⊕ b)⊕ gyr [a, b] c left gyroassociative law

(G4) gyr [a, b] ∈ Aut(G,⊕) gyroautomorphism

(G5) gyr [a, b] = gyr [a⊕ b, b] left loop property

for all a, b, c ∈ G.
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Additionally, if the binary operation “⊕” obeys the gyrocommutative law

(G6) a⊕ b = gyr [a, b] (b⊕ a) gyrocommutative Law

for all a, b, c ∈ G, then (G,⊕) is called a gyrocommutative gyrogroup. It is easy to
see that −a = ªa for all elements a of G.

Clearly, with these properties, one can now readily check that the Möbius
complex disc groupoid (D,⊕) is a gyrocommutative gyrogroup.

The axioms in Definition 1 imply the right identity property, the right inverse
property, the right gyroassociative law and the right loop property. We refer readers
to [8, 10, 13, 15, 16] for more details about gyrogroups.

3. Möbius gyrogroups: From disc to the ball

Let us identify complex numbers of the complex plane C with vectors of the
Euclidean plane R2 in the usual way:

C 3 u = u1 + iu2 = (u1, u2) = u ∈R2.

Then the equations
u · v = Re(uv), ‖u‖ = |u| . (3)

give the inner product and the norm in R2, so that Möbius addition in the disc D
of C becomes Möbius addition in the disc R2

1 =
{
v ∈ R2 : ‖v‖ < 1

}
of R2. Indeed,

we get from (3) that

u⊕ v =
u + v

1 + uv
=

(1 + uv)(u + v)
(1 + uv)(1 + uv)

=
(1 + uv+uv + |v|2)u + (1− |u|2)v

1 + uv+uv + |u|2|v|2

=
(1 + 2u · v+‖v‖2)u+(1− ‖u‖2)v

1 + 2u · v+‖u‖2‖v‖2 = u⊕ v (4)

for all u, v ∈ D and all u,v ∈ R2
1.

4. Möbius addition in the ball

Let V be any real inner-product space and

Vs = {v ∈ V : ‖v‖ < s}
be the open ball of V with radius s > 0. Möbius addition in Vs is motivated by (4).
It is given by the equation

u⊕ v =
(1 + (2/s2)u · v + (1/s2)‖v‖2)u + (1− (1/s2)‖u‖2)v

1 + (2/s2)u · v + (1/s4)‖u‖2‖v‖2 (5)

where · and ‖·‖ are the inner product and norm that the ball Vs inherits from its
space V and where, ambiguously, + denotes both addition of real numbers on the
real line and addition of vectors in V.
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Without loss of generality, we may assume that s = 1 in (5). However we
prefer to keep s as a free positive parameter in order to exhibit the results that in
the limit as s →∞, when the ball Vs expands to the whole of its real inner product
space V, and Möbius addition ⊕ reduces to vector addition + in V, i.e.,

lim
s−→∞

u⊕ v = u + v and lim
s→∞

Vs = V.

Möbius scalar multiplication is given by the equation

r ⊗ v = s
(1 + ‖v‖ /s)r − (1− ‖v‖ /s)r

(1 + ‖v‖ /s)r + (1− ‖v‖ /s)r
v
‖v‖

= s tanh
(
r tanh−1 ‖v‖ /s

) v
‖v‖

where r ∈ R, u,v ∈Vc, v 6= 0 and r ⊗ 0 = 0.
Möbius scalar multiplication possesses the following properties:

n⊗ v = v ⊕ v ⊕ · · · ⊕ v n-terms

(r1 + r2)⊗ v = r1 ⊗ v ⊕ r2 ⊗ v scalar distribute law

(r1r2)⊗ v = r1 ⊗ (r2 ⊗ v) scalar associative law

r ⊗ (r1 ⊗ v ⊕ r2 ⊗ v) = r ⊗ (r1 ⊗ v)⊕ r ⊗ (r2 ⊗ v) monodistributive law

‖r ⊗ v‖ = |r| ⊗ ‖v‖ homogeneity property

|r| ⊗ v
‖r ⊗ v‖ =

v
‖v‖ scaling property

gyr [a,b] (r ⊗ v) = r ⊗ gyr [a,b]v gyroautomorphism property
1⊗ v = v multiplicative unit property

Definition 2 (Möbius gyrovector spaces). Let (Vs,⊕) be a Möbius
gyrogroup equipped with scalar multiplication ⊗. The triple (Vs,⊕,⊗) is called a
Möbius gyrovector space.

5. Möbius geodesics and angles

As it is well known from Euclidean geometry, the straight line passing though
two given points A and B of a vector space Rn can be represented by the expression

A + (−A + B) t

t ∈ R. Obviously it passes through A when t = 0, and through B when t = 1.
In full analogy with Euclidean geometry, the unique Möbius geodesic pass-

ing though two given points A and B of a Möbius gyrovector space (Vs,⊕,⊗) is
represented by the parametric gyrovector equation

LAB = A⊕ (ªA⊕B)⊗ t

with parameter t ∈ R. It passes through A when t = 0, and through B when t = 1.
The gyroline LAB turns out to be a circular arc that intersects the boundary of the
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ball Vs orthogonally. The gyromidpoint MAB of the points A and B corresponds
to the parameter t = 1/2 of the gyroline LAB , see [11],

MAB = A⊕ (ªA⊕B)⊗ 1
2
.

The measure of a Möbius angle between two intersecting geodesic rays equals the
measure of the Euclidean angle between corresponding intersecting tangent lines,
as shown in Fig. 1.

Fig 1. The unique 2-dimensional geodesics that passes through two given points and the

hyperbolic angle between two intersecting geodesics rays in a Möbius gyrovector plane
(
R2

s,⊕,⊗
)
.

For the non-zero gyrovectors ªA ⊕ B and ªA ⊕ C or equivalently ªA ⊕ E and ªA ⊕ D the

measure of the gyroangle α given by the equation cos α = ªA⊕B
‖ªA⊕B‖ · ªA⊕C

‖ªA⊕C‖ or equivalently by

the equation cos α = ªA⊕E
‖ªA⊕E‖ · ªA⊕D

‖ªA⊕D‖ .

The hyperbolic angle is invariant under left gyrotranslations and rotations,
see [7].

Definition 3. The hyperbolic distance function in Rn
s , given by the equation

d(A,B) = ‖A Ä B‖ .

for A,B ∈ Rn
s .

6. Gyrotriangles and gyrotrigonometry in Möbius gyrovector space

Definition 4. A gyrotriangle ∆ABC in a gyrovector space (Vs,⊕,⊗) is a
gyrovector space object formed by the three points A,B,C ∈ Vs, called the vertices
of the gyrotriangle, and the gyrovectors ªA⊕B, ªB⊕C and ªC⊕A, called the
sides of the gyrotriangle. These are respectively the sides opposite to the vertices
C,A and B. The gyrotriangle sides generate the three gyrotriangle gyroangles α, β
and γ at the respective vertices A,B and C, as shown in Fig. 2 below.

Theorem 5. [10] Let ∆ABC be a gyrotriangle in a Möbius gyrovector space
(Vs,⊕,⊗) with vertices A,B and C, corresponding gyroangles α, β, γ, 0 < α +
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Fig. 2. A gyrotriangle in a Möbius gyrovector plane
(
R2

s,⊕,⊗
)
.

β + γ < π, and side gyrolenghts ‖ªB⊕C‖ , ‖ªC⊕A‖ , ‖ªA⊕B‖. The side
gyrolengths of the gyrotriangle ∆ABC are determined by its gyroangles according
to the AAA to SSS conversion equations

(‖ªB⊕C‖
s

)2

=
cos α + cos (β + γ)
cos α + cos (β − γ)

(‖ªC⊕A‖
s

)2

=
cos β + cos (α + γ)
cos β + cos (α− γ)

(‖ªA⊕B‖
s

)2

=
cos γ + cos (α + β)
cos γ + cos (α− β)

.

The hyperbolic law of cosine and the hyperbolic law of sine can be recast in
a form fully analogous to the form of their Euclidean counterparts. Let us use the
notation ‖a‖M = γ2

a ‖a‖ where γa is the gamma factor

γa =
1√

1− ‖a‖2
s2

,

so that, conversely
‖a‖
s

=
2 (‖a‖M /s)

1 +
√

1 + 4 (‖a‖M /s)2
.

Theorem 6. [9] Let ∆ABC be a gyrotriangle in a Möbius gyrovector space
(Vs,⊕,⊗) with vertices A,B,C ∈ Vs and sides a = ªB⊕C , b = ªC⊕A and
c = ªA⊕B with hyperbolic angles α, β and γ at the vertices A,B and C. Then
we have the hyperbolic law of sine,

‖a‖M

sin α
=
‖b‖M

sin β
=
‖c‖M

sin γ
.

Theorem 7. [9] Let ∆ABC be a gyrotriangle in a Möbius gyrovector space
(Vs,⊕,⊗) with vertices A,B,C ∈ Vs and sides a = ªB⊕C , b = ªC⊕A and
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c = ªA⊕B with hyperbolic angles α, β and γ at the vertices A,B and C. Then
we have the hyperbolic law of cosine,

1
s
c2 =

1
s
a2 ⊕ 1

s
b2 ª 1

s

2ab cos γ(
1 + a2

s2

) (
1 + b2

s2

)− 2
s2 ab cos γ

.

where a = ‖a‖, b = ‖b‖, c = ‖c‖.
Theorem 8. [9] Let ∆ABC be a gyrotriangle in a Möbius gyrovector space

(Vs,⊕,⊗) with vertices A,B,C ∈ Vs and sides a = ªB⊕C, b = ªC⊕A and
c = ªA⊕B with hyperbolic angles α, β and γ at the vertices A,B and C. If
γ = π/2 then we have the hyperbolic Pythagorean identity,

1
s
c2 =

1
s
a2 ⊕ 1

s
b2

where a = ‖a‖, b = ‖b‖, c = ‖c‖.

7. The theorems of Urquhart and Steiner-Lehmus in
the Poincaré ball model of hyperbolic geometry

In literature, Urquhart’s theorem is also known as the most elementary theo-
rem of Euclidean geometry since it involves only the concept of straight line and
distance. Urquhart discovered this result when considering some of the fundamen-
tal concepts of the theory of special relativity. The origin and some history of this
theorem, we refer [5].

Many authors give the proof of this theorem in different ways. In [18], an
elementary synthetic proof of Urquhart’s theorem has been posted at Professor’s
Wu online forum at Berkeley. In [17], K.S. Williams and in [3], M. Hajja gave
the proofs which only involved the sine formula for triangles and a few simple
trigonometric identities.

In [15], A.A. Ungar proved the hyperbolic Breusch’s lemma, the hyperbolic
Urquhart’s theorem and hyperbolic Steiner-Lehmus theorem in the Einstein gy-
rovector plane

(
R2

s,⊕,⊗)
, but there is no attempt made for obtaining these results

in the Poincaré ball model of hyperbolic geometry. In this paper, we give affirmative
answer of the problem explained above.

Theorem 9. (Breusch’s Lemma in Euclidean Geometry) Let ∆ABCk , k =
1, 2, be two triangles in Euclidean plane R2 with common side AB, with sides
ak, bk, ck, and with angles αk, βk, γk, as shown in Fig. 3. Then

a1 + b1 = a2 + b2 ⇔ tan
α1

2
tan

β1

2
= tan

α2

2
tan

β2

2
.

For the proof, we refer to [15] or [6].
Theorem 10. (Urquhart’s Theorem in Euclidean geometry) Let ∆AD1BD2

be a concave quadrilateral in a Euclidean plane R2, and let AD1 meet D2B at C1,
and AD2 meet D1B at C2, as shown in Fig. 4. Then

|AC1|+ |C1B| = |AC2|+ |C2B| ⇐⇒ |AD1|+ |D1B| = |AD2|+ |D2B| .
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Fig. 3. The triangles ∆ABCk , k = 1, 2, Fig. 4. A concave quadrilateral AD1BD2

in Euclidean plane R2 with common in Euclidean plane R2 satisfying AD1 meet
side AB, with sides ak, bk, ck, and with D2B at C1, and AD2 meet D1B at C2.
angles αk, βk, γk.

For the proof, we refer to [15] or [3].

Let us give a trigonometric example which plays a major role in the proofs of
the hyperbolic Breusch’s lemma and hyperbolic Urquhart’s theorem in the Poincaré
ball model of hyperbolic geometry.

Example 11. Let ∆ABC be a gyrotriangle in a Möbius gyrovector space
(Rn

s ,⊕,⊗) with vertices A,B,C ∈ Rn
s and sides a = ªB⊕C , b = ªC⊕A and

c = ªA⊕B with hyperbolic angles α, β and γ at the vertices A,B and C. Then

sin α + sin β

sin (α + β)
=

1
cs

γ2
aas + γ2

b bs

γ2
aγ2

b (1− a2
sb

2
s)

where as = ‖a‖ /s, bs = ‖b‖ /s, cs = ‖c‖ /s.

Indeed, from the well known gyrotrigonometric functional identity sin (α + β) =
sin α cosβ+sin β cos α, and applying the following identities to gyrotriangle ∆ABC,
see [10], we easily get to desired result:

bscs

γ2
a

sin α =
ascs

γ2
b

sin β =
asbs

γ2
c

sin γ,

cosα =
−a2

s+b2
s+c2

s−a2
sb

2
sc

2
s

2bscs
γ2

a,

cosβ =
a2

s − b2
s + c2

s − a2
sb

2
sc

2
s

2ascs
γ2

b ,

cos γ =
a2

s + b2
s − c2

s − a2
sb

2
sc

2
s

2asbs
γ2

c .

Let us give the hyperbolic Breusch’s lemma, and the hyperbolic Urquhart’s
theorem in the Poincaré ball model of hyperbolic geometry.



The theorems of Urquhart and Steiner-Lehmus 271

Theorem 12. (Breusch’s Lemma in Hyperbolic geometry) Let ∆ABCk, k =
1, 2, be two gyrotriangles in a Möbius gyrovector space (Rn

s ,⊕,⊗) with common side
ªA⊕B, with side gyrolenghts ak, bk, ck, and with angles αk, βk, γk, as similar to
Fig. 3. Then

γ2
a1

a1s+γ2
b1

b1s

γ2
a1

γ2
b1

(
1− a2

1s
b2
1s

) =
γ2

a2
a2s

+γ2
b2

b2s

γ2
a2

γ2
b2

(
1− a2

2s
b2
2s

) ⇐⇒ tan
α1

2
tan

β1

2
= tan

α2

2
tan

β2

2
.

Proof. First of all, since any trigonometric identity is identical with a corre-
sponding gyrotrigonometric identity, the following identity is valid in trigonometry
when sin (α + γ) 6= 0, and hence in gyrotrigonometry as well:

sinα + sin γ

sin (α + γ)
= −1 +

2

1− tan
α

2
tan

γ

2

.

Therefore, we get

γ2
a1

a1s
+γ2

b1
b1s

γ2
a1

γ2
b1

(
1− a2

1s
b2
1s

) =
γ2

a2
a2s

+γ2
b2

b2s

γ2
a2

γ2
b2

(
1− a2

2s
b2
2s

) ⇔ sinα1 + sin β1

sin (α1 + β1)
=

sin α2 + sin β2

sin (α2 + β2)

⇔ tan
α1

2
tan

β1

2
= tan

α2

2
tan

β2

2
.

Theorem 13. (Urquhart’s Theorem in Hyperbolic geometry) Let ∆AD1BD2

be a concave gyroquadrilateral in a Möbius gyrovector space (Rn
s ,⊕,⊗) where αk =

∠BACk, βk = ∠ABCk, and γk = ∠ACkB, and let AD1 meet D2B at C1, and
AD2 meet D1B at C2, as shown in Fig. 5. Then

γ2
a1

a1s+γ2
b1

b1s

γ2
a1

γ2
b1

(
1− a2

1s
b2
1s

) =
γ2

a2
a2s+γ2

b2
b2s

γ2
a2

γ2
b2

(
1− a2

2s
b2
2s

) ⇔
γ2

ap1
ap1s

+γ2
bp1

bp1s

γ2
ap1

γ2
bp1

(
1− ap21s

bp21s

) =
γ2

ap2
ap2s

+γ2
bp2

bp2s

γ2
ap2

γ2
bp2

(
1− ap22s

bp22s

)

where ak = ‖ªCk⊕B‖, bk = ‖ªCk⊕A‖, apk = ‖ªDk⊕B‖, bpk = ‖ªDk⊕A‖.

Fig. 5. A concave gyroquadrilateral AD1BD2 in a Möbius gyrovector space
(
Rn

s ,⊕,⊗
)

with αk = ∠BACk, βk = ∠ABCk, and γk = ∠ACkB, satisfying AD1 meet D2B at C1, and

AD2 meet D1B at C2.
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Proof. Applying the hyperbolic Breusch’s lemma to each of the two gyrotrian-
gles ∆ABCk and ∆ABDk, k = 1, 2, we have

γ2
a1

a1s
+γ2

b1
b1s

γ2
a1

γ2
b1

(
1− a2

1s
b2
1s

) =
γ2

a2
a2s

+γ2
b2

b2s

γ2
a2

γ2
b2

(
1− a2

2s
b2
2s

) ⇔ tan
α1

2
tan

β1

2
= tan

α2

2
tan

β2

2

and

γ2
ap1

ap1s
+γ2

bp1
bp1s

γ2
ap1

γ2
bp1

(
1− ap21s

bp21s

) =
γ2

ap2
ap2s

+γ2
bp2

bp2s

γ2
ap2

γ2
bp2

(
1− ap22s

bp22s

)

⇔ tan
α1

2
tan

(
π

2
− β2

2

)
= tan

α2

2
tan

(
π

2
− β1

2

)
(6)

respectively. Clearly, the right-hand side of (6) implies the equality

tan
α1

2
tan

β1

2
= tan

α2

2
tan

β2

2

and so the proof is completed.

Theorem 14. (Steiner-Lehmus Theorem in Hyperbolic Geometry) Let ∆ABC
be a gyrotriangle in a Möbius gyrovector space (Rn

s ,⊕,⊗) having two equal internal
gyroangle bisectors (each measured from a vertex to the opposite side). Then the
gyrotriangle ∆ABC is isosceles.

Proof. Given a gyrotriangle ∆ABC, ‖ªB⊕E‖ and ‖ªC⊕D‖ are equal
bisectors of the gyroangles ∠ABC := 4α and ∠ACB := 4β, respectively. Clear-
ly, if we prove that the equality ‖ªB⊕D‖ = ‖ªE⊕C‖ holds true, this implies
the equality of the gyrolength ‖ªA⊕B‖ to the gyrolength ‖ªA⊕C‖. With-
out loss of generality, we may assume ‖ªB⊕D‖ ≥ ‖ªE⊕C‖. Now, to prove
‖ªB⊕D‖ = ‖ªE⊕C‖, suppose the contrary that ‖ªB⊕D‖ > ‖ªE⊕C‖. This
implies ‖ªB⊕D‖2 > ‖ªE⊕C‖2 and applying the hyperbolic cosine law to the gy-
rotriangles 4DBC and 4EBC we get cos 2α > cos 2β. Since 2α, 2β ∈ I = (0, π/2)
and cosine function is decreasing on I, we get β > α. Since the tangent function is
increasing on I, we get tan β > tan α and this implies

2
1− tan α tan 2β

>
2

1− tan 2α tan β
.

Applying the hyperbolic Breusch’s lemma to the gyrotriangles4EBC and4DBC,
we have

γ2
ªE⊕C ‖ªE⊕C‖s +γ2

ªB⊕E ‖ªB⊕E‖s

γ2
ªE⊕Cγ2

ªB⊕E

(
1− ‖ªE⊕C‖2s ‖ªB⊕E‖2s

)

>
γ2
ªB⊕D ‖ªB⊕D‖s +γ2

ªD⊕C ‖ªD⊕C‖s

γ2
ªB⊕Dγ2

ªD⊕C

(
1− ‖ªB⊕D‖2s ‖ªD⊕C‖2s

) .
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Now define a function f from [0, s) to R by the rule

f (x) =

xs

s2 − x2
+

ks

s2 − k2

s2

s2 − x2

s2

s2 − k2

(
1− x2

s2

k2

s2

) (7)

where k and s are fixed elements of R such that 0 ≤ k < s. A simple calculation
shows that f is an increasing function and therefore from (7), we get ‖ªE⊕C‖ >
‖ªB⊕D‖ which is the desired contradiction.

Finally, applying the hyperbolic cosine law to the gyrotriangles 4DBC and
4EBC, we get 2α = 2β, i.e. ‖ªA⊕B‖ = ‖ªA⊕C‖.
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