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GRÜSS-TYPE INEQUALITIES FOR POSITIVE LINEAR
OPERATORS WITH SECOND ORDER MODULI

Heiner Gonska and Gancho Tachev

Abstract. We prove two Grüss-type inequalities for positive linear operator approximation,
i.e., inequalities explaining the non-multiplicativity of such mappings. Instead of the least concave
majorant of the first order modulus of continuity, we employ second order moduli of smoothness
and show in the case of the classical Bernstein operators that in certain cases this leads to better
results than those obtained earlier.

1. Introduction

In a recent paper Acu, Gonska and Rasa [1] studied the non-multiplicativity of
linear positive operators H : C[a, b] → C[a, b] which reproduce constant functions.
For fixed x ∈ [a, b] we consider the positive linear functionals L(f) = H(f ; x).
Below we study the differences

D(f, g; x) := H(fg;x)−H(f ; x) ·H(g;x).
We first cite an earlier inequality in which ω̃, the least concave majorant of the
first order modulus of continuity, appears in the upper bound. For the definition
of ω̃ see [1], for example. Throughout the paper we will use the function e1(t) := t,
t ∈ [a, b]. The following result was obtained in [1], see Theorem 4 there.

Theorem A. If f, g ∈ C[a, b] and x ∈ [a, b] is fixed, then

|D(f, g; x)| ≤ 1
4
· ω̃

(
f ; 2

√
2H((e1 − x)2; x)

)
· ω̃

(
g; 2

√
2H((e1 − x)2; x)

)
. (1.1)

We note here that the constant
√

2 in the arguments of ω̃(f) and ω̃(g) in
Theorem A can be removed.

If we choose H = Bn, the n-th Bernstein operator, then inequality (1.1) implies

|Bn(fg; x)−Bn(f ;x) ·Bn(g;x)|

≤ 1
4
· ω̃

(
f ; 2

√
2x(1− x)

n

)
· ω̃

(
g; 2

√
2x(1− x)

n

)
, (1.2)
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for f, g ∈ C[0, 1]. Our goal is to modify the result in Theorem A for linear positive
operators which reproduce linear functions. Instead of ω̃ we measure the non-
multiplicativity of H in terms of the second order modulus of continuity and the
second order Ditizian-Totik modulus of smoothness. For their properties see the
monograph [4]. The key for our new estimates are the following two general results.
The first one can be found in Păltănea’s book [2], see Corollary 2.2.1 there.

Theorem B. If L : C[a, b] → C[a, b] is a positive linear operator reproducing
linear functions then for f ∈ C[a, b], x ∈ [a, b] and each 0 < h the following holds:

|(Lf)(x)− f(x)| ≤
[
1 +

1
2h2

· (L(e1 − x)2; x)
]
· ω2(f ; h). (1.3)

The next result was proved by Gavrea et al. in [3].

Theorem C. Under the conditions of Theorem B, if [a, b] = [0, 1], x ∈
(0, 1), h ∈ (0, 1√

2
] and ϕ(x) =

√
x(1− x), then we have

|(Lf)(x)− f(x)| ≤
[3
2

+
3
2
· (L(e1 − x)2; x)

(hϕ(x))2
]
· ωϕ

2 (f ; h). (1.4)

In Section 2 we prove our new estimates. In Section 3 we give applications to
some classical linear positive operators and show the advantages of our estimates
if compared to Theorem A.

2. Main results

Our first main result states the following:

Theorem 1. If f, g ∈ C[a, b], x ∈ [a, b] is fixed and H : C[a, b] → C[a, b] is a
positive linear operator reproducing linear functions, then the following holds:

|D(f, g; x)| ≤ 3
2
M(f) ·M(g),

M(f) :=
√

ω2(f2;
√

H((e1 − x)2; x)) + 2‖f‖ · ω2(f ;
√

H((e1 − x)2;x)), (2.1)

and M(g) is defined analogously.

Proof. It was proved in [1]—see inequality (8) there—that

|D(f, g; x)| ≤
√

D(f, f ;x) ·
√

D(g, g; x).

We proceed as follows:

D(f, f ;x) = H(f2;x)− f2(x) + f2(x)− (H(f ; x))2

= H(f2;x)− f2(x) + [f(x)−H(f ;x)] · [f(x) + H(f ;x)].

Hence

|D(f, f ; x)| ≤ |H(f2; x)− f2(x)|+ |f(x)−H(f ; x)| · (‖f‖+ ‖Hf‖)
≤ |H(f2; x)− f2(x)|+ |f(x)−H(f ; x)| · ‖f‖(1 + ‖H‖).

Due to positivity and preservation of constant functions we have ‖H‖ = 1.
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If H((e1 − x)2;x) = 0, then H(f ; x) = f(x) for all f ∈ C[a, b]. Hence both
sides in (2.1) equal 0.

Otherwise we apply (1.3) with h :=
√

H((e1 − x)2; x) > 0 to get

|D(f, f ; x)| ≤ 3
2
· ω2(f2;

√
H((e1 − x)2; x)) +

3
2
· 2‖f‖ · ω2(f ;

√
H((e1 − x)2; x)).

(2.2)
The same holds for the function g(x). The proof of Theorem 1 is complete.

If x ∈ (0, 1), ϕ(x) =
√

x(1− x) we now set

h :=

√
H((e1 − x)2;x)√

2 · ϕ(x)
≥ 0.

Our next result is the following

Theorem 2. If f, g ∈ C[0, 1], x ∈ [0, 1] is fixed and H : C[0, 1] → C[0, 1] is a
positive linear operator reproducing linear functions, then the following holds

|D(f, g;x)| ≤ 9
2

√
A(f) ·

√
A(g), (2.3)

where A(f) := ωϕ
2 (f2; h) + 2‖f‖ · ωϕ

2 (f ;h), and h is defined as above.

Proof. Again, if H((e1 − x)2; x) = 0, then h = 0, and the statement of (2.3) is
trivial since H interpolates at x. Otherwise, we use the same decomposition as in
the proof of Theorem 1 and (1.4). Note that

H((e1 − x)2;x)
ϕ2(x)

≤ 1

due to the properties of H. Hence h ≤ 1√
2
, Theorem C is applicable, and this

concludes the proof.

3. Applications

3.1. Bernstein operator
If H := Bn where Bn is the Bernstein operator given by

Bn(f ; x) =
n∑

k=0

f(
k

n
)
(

n

k

)
xk(1− x)n−k, x ∈ [0, 1], n = 1, 2, . . . ,

then it is known that Bn((e1−x)2;x) = x(1−x)
n . From Theorem 1 we obtain, writing

Dn instead of D now,

Corollary 1. If f, g ∈ C[0, 1], then for all x ∈ [0, 1] and n ≥ 1 one has

|Dn(f, g; x)| ≤ 3
2
·
√

B(f ;x) ·
√

B(g; x), (3.1)

where

B(f ; x) := ω2(f2;

√
x(1− x)

n
) + 2‖f‖ · ω2(f ;

√
x(1− x)

n
).
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Analogously from Theorem 2 we arrive at

Corollary 2. If f, g ∈ C[0, 1], then for all x ∈ [0, 1] we have

|Dn(f, g; x)| ≤ 9
2
·
√

C(f) ·
√

C(g), (3.2)

where

C(f) := ωϕ
2 (f2;

1√
2n

) + 2‖f‖ · ωϕ
2 (f ;

1)√
2n

).

If one of the functions f or g is a constant, then in both sides of (2.1), (2.2),
(3.1) and (3.2) we have 0, so we have equality in non-trivial cases. The same is
fulfilled in Theorem A, too. This observation is important, because it is possible
to obtain upper bounds for |Dn(f, g; x)| in terms of ω2 or ωϕ

2 , different from those
in Theorems 1 and 2, which are not equal to 0 if one of the functions f or g is a
constant. For example, we may proceed as follows, suppressing x for the moment:

D(f, g) = H(fg)−H(f)H(g)

= H(fg)− fg + fg − fH(g) + fH(g)−H(f)H(g)

= [H(fg)− fg] + f [g −H(g)] + H(g)[f −H(f)].

If H = Bn is again the Bernstein operator, then

|Dn(f, g;x)| ≤ 3
2
· ω2(f · g;

√
x(1− x)

n
) + |f(x)| · 3

2
· ω2(g;

√
x(1− x)

n
)+

+ |Bn(g)(x)| · 3
2
· ω2(f ;

√
x(1− x)

n
). (3.3)

It is clear that, if f = const or g = const, then the left side is 0, but this is not
necessarily true for the right hand side.

Example 1. Let f(x) = x ln x, x ∈ (0, 1], f(0) = 0, and g(x) = x. We will
show that the estimate (3.2) is better than (1.1). Let x = 1

2 . It is easy to calculate
that

ω̃
(
f ;

√
x(1− x)

n

)
≈ ln n√

n
, and ω̃

(
g;

√
x(1− x)

n

)
=

1
2
√

n
.

Now from (1.2) it follows that |Dn(f, g; 1
2 )| = O( ln n

n ), n →∞. On the other hand,

ωϕ
2 (g;

1√
2n

) = 0, ωϕ
2 (g2;

1√
2n

) = O(
1
n

).

To calculate the second order modulus of smoothness of f we apply the following
estimate, valid for all functions f such that ‖ϕ2 · f ′′‖C[0,1] < ∞:

ωϕ
2 (f ;

1√
2n

) ≤ C · 1
2n

· ‖ϕ2 · f ′′‖C[0,1]

for some positive absolute constant C, independent of n and f . Therefore

ωϕ
2 (f ;

1√
2n

) ≤ C · 1
2n

.
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Also (f2(x))′′ = 2.[ln2 x + 3 lnx + 1]. Hence

ωϕ
2 (f2;

1√
2n

) ≤ C · 1
2n

· ‖ϕ2.(f2)′′‖C[0,1] = O(
1
n

).

We conclude that
|Dn(f, g;

1
2
)| = O(

1
n

), n →∞,

and the last bound is better than that obtained in terms of the least concave
majorant of ω1. If x is close to the ends, for example x = 1

n , then the estimate
with ω̃ is better than those involving ω2 and ωϕ

2 . In this case on the right side of
(1.2) we have O( ln n

n2 ), on the right side of (2.1) only

O
(√ln n

n
3
2

)
n →∞,

and in the right side of (2.2) only O( 1
n ). So when x = 1

n the better estimate is the
one with ω̃.

3.2 Schoenberg’s variation—diminishing spline operator

To find a Grüss-type inequality for Schoenberg operators we need an upper
bound for the second moment. For the case of equidistant knots we denote the
Schoenberg operator by Sn,k. Consider the knot sequence ∆n = {xi}n+k

−k , n ≥ 1,
k ≥ 1, with equidistant “interior knots”, namely

∆n : x−k = · · · = x0 = 0 < x1 < x2 < · · · < xn = · · · = xn+k = 1

and xi = i
n for 0 ≤ i ≤ n. For a bounded real-valued function f defined over

the interval [0, 1] the variation-diminishing spline operator of degree k w.r.t. ∆n is
given by

Sn,k(f, x) =
n−1∑

j=−k

f(ξj,k) ·Nj,k(x)

for 0 ≤ x < 1 and Sn,k(f, 1) = limy→1, y<1 Sn,k(f, y) with the nodes (Greville
abscissas)

ξj,k :=
xj+1 + · · ·+ xj+k

k
, −k ≤ j ≤ n− 1,

and the normalized B− splines as fundamental functions

Nj,k(x) := (xj+k+1 − xj)[̇xj , xj+1, . . . , xj+k+1](· − x)k
+.

A main result in [5] states that for n ≥ 1, k ≥ 1, x ∈ [0, 1] one has

Sn,k((e1 − x)2; x) ≤ 1 · min{2x(1− x), k
n}

n + k − 1
. (3.4)

We set

d(n, k, x) :=

√
min{2x(1− x), k

n}
n + k − 1

.

From Theorem A we obtain
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Corollary 3. If f, g ∈ C[0, 1] and x ∈ [0, 1] is fixed, then the following
inequality is true:

|D(f, g)| ≤ 1
4
· ω̃(f ; 2

√
2d(n, k, x)) · ω̃(g; 2

√
2d(n, k, x)), (3.5)

where D(f, g) = Sn,k(f · g; x)− Sn,k(f ; x) · Sn,k(g;x).

From Theorem 1 we get

Corollary 4. If f, g ∈ C[0, 1] and x ∈ [0, 1] is fixed, then the following
inequality holds:

|D(f, g)| ≤ 3
2
·
√

A1(f) ·
√

A1(g), (3.6)

where A1(f) := ω2(f2; d(n, k, x)) + 2‖f‖ · ω2(f ; d(n, k, x)).

If we set h(n, k) :=
√

1
n+k−1 , then Theorem 2 leads to

Corollary 5

|D(f, g)| ≤ 9
2

√
A2(f) ·

√
A2(g), (3.7)

where
A2(f) := ωϕ

2 (f2; h(n, k)) + 2‖f‖ · ωϕ
2 (f ; h(n, k)).

In the last three corollaries, for k = 1 and n ≥ 1, we obtain three different
upper bounds which show how non-multiplicative the piecewise linear interpolant
at equidistant points is.
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