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THE QUASI-HADAMARD PRODUCTS OF UNIFORMLY CONVEX
FUNCTIONS DEFINED BY DZIOK-SRIVASTAVA OPERATOR

M. K. Aouf, A. Shamandy, A. O. Mostafa and E. A. Adwan

Abstract. The purpose of this paper is to obtain many interesting results about the quasi-
Hadamard products of uniformly convex functions defined by Dziok-Srivastava operator belonging
to the class Ty,s([oa]; @, B).

1. Introduction

Let T denote the class of functions of the form
(o]
f(z2)=2—=3 anz"™ (a, >0), (1.1)
n=2

which are analytic in the open unit disc U = {z : |z| < 1}. Let C(v) and T*(v)

denote the subclasses of T" which are, respectively, convex and starlike functions of

order v, 0 <« < 1. For convenience, we write C(0) = C and T*(0) = T (see [9]).

A function f € T is said to be in UST(3,7), the class of S-uniformly starlike
functions of order v, —1 < v < 1, if it satisfies the condition

! U
Re{Zf (2) 7} -3 2f'(2)
f(2) f(2)

Replacing f(z) in (1.2) by zf (z) we have the condition
() } o ()
ref i 5 o}

required for the function f to be in the subclass UCT(3,) of B-uniformly convex
functions of order v (see [2]).

Let fj(2) €T (j =1,...,t) be given by

-1

, (820). (1.2)

fi(z)=2—=3 an;z" (an; 20;5=1,2,...,1). (1.3)

n=2
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Then the quasi-Hadamard product (or convolution) of these functions is defined by

(fixfax-xfi)(2) =2~ f:(jtlan,j)zn- (1.4)

n=2
For positive real parameters oi,...,aq and Bi,...,0,, 8 € C\Z7; Z= =

{0,-1,-2,...}; i« = 1,2,...,s, the Dziok-Srivastava operator (see [3] and [4])
H,s(on): T — T is given by

H,s(an)f(2) =z ¢Fs(ar,...ag Br,...0s) * f(2) =z — § U, a,2", (1.5)

n=2

where

(a1)p—1--- (aq)n—l
(B1)n-1 (Bs)n-1 (n—=1)1"
_Tl+n) [ n=0
O ="F0 = { 0(0+1)--(0+n—1), neN.

and qu(al,---,Oéq; 617"'7ﬂs; Z) (q§5+1a Saqu():NU{O}a N:{LQ?}v
z € U) is the generalized hypergeometric function.

U, = (1.6)

.7BS7 ) n;o( 1)n(ﬂs)nn' .

For -1 <~y <1, >0, and for all z € U, Aouf and Murugusundaramoorthy
[1] defined the subclass Ty, ([a1]; 7y, ) of functions of T' which satisfy:

2(Hya(0)/(2)) 2(Hy (01 (2))
Re( Hyo(on) f(2) ”>>ﬂ Has(n)f(2)

oFs(a1, ... aq; B,..

’

—1/,z€U. (1.7)

They also proved [1] that the necessary and sufficient condition for functions f(z)
of the form (1.1) to be in the class Ty s([a1]; 7, B) is that:

18

(1 +06) = (v + B ¥nan <1—1. (1.8)

n=2

We note that for suitable choices of ¢, s,y and 3, we obtain the following subclasses
studied by various authors.

(1) For ¢ =2 and s = a1 = ay = 1 = 1 in (1.7), the class T51([1]; 7, 8)
reduces to the class S,T(7v,8) (—1 <y < 1,8 > 0) and the class S,T(7y,1) which
for 8 = 1 reduces to the class S,T'(7) (see [2]).

(2) Forg=2,s=1,a01 =a(a>0),as =1and 1 =c (¢ > 0)in (1.7), the
class T 1([a]; v, B) reduces to the class S,T(a, ¢;v,08) (-1 <y <1, 8> 0) (see [3]).

(B3)Forq=2,s=1, a1 =A+1(A>—-1), ap =1 and §; = 1 in (1.7), the
class To 1 (A + 1,1;1;, B) reduces to the class S,T'(A;7v,08) (-1 < v < 1,8 > 0)
(see [8]).
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(4) Forg=2, s=1, a1 =v+1(v>-1),as =1and f; =v+2in (1.7), the
class To 1 (v +1,1; v+ 2;7, 8) reduces to the class S,T(v;7y,6) (-1 <y <1, 5>0)
(see [1]).

(5)Forg=2,s=1,a1 =2, s =1land fy =2—p(pn#2,3,...) in (1.7), the
class T51(2,1;2 — p;y, §) reduces to the class S,T(u;7,5) (-1 < v <1, > 0)
(see [1]).

2. Main results

Unless otherwise mentioned, we shall assume in the remainder of this paper
that the parameters a1,..., a4 and 31, ..., 3s are positive real numbers, —1 <y <
1,8>0,2€U, 9, is defined by (1.6), ¥,, > 1 and j =1,2,...,¢.

THEOREM 1. Let the functions f;(z) defined by (1.3) be in the class
Ty.s([aal; v, B). Then we have (f1 *---x fi)(2) € Ty s([a1]; 0, ), where
1+ L1 —,
f=1- — (1+5) Hj;jl( 'th) . (2.1)
Hj=1<2 +B8 =)V — Hj:l(l - )

The result is sharp for the functions f;(z) given by

() = 5 — (1 =) 52
fi(z) PRI (2.2)

Proof. Employing the technique used earlier by Schild and Silverman [7] and
Owa [6], we prove Theorem 1 by using mathematical induction on ¢. For ¢t = 2,
(1.8) gives
& [n(1+8) — (v + B)]¥n

an; <1 (j=1,2). 2.3
P 2 <1 0G=12 (23
By the Cauchy-Schwarz inequality, we have
00 2
5 [ et <o, o
n= j=

To prove the case when ¢ = 2, we need to find the largest 6(—1 < ¢ < 1) such that

S [n(+6) = (6 +0)]¥

thus, it suffices to show that

Sanan2 <1, (2.5)

n+B) -~ O+, VI +8) — 0y + 8
1-9) T [T, - )

or, equivalently, to

Van,10n,2

(1= 8)\/TLoa (1 + B) = (75 + AT,
(1 + ) = (8 + B)]Tny/TL_s (1 = )

V0n,10n 2 S
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By noting that

511 =)
VvV an,10n, 2 = 5
VILZ [0+ 8) = (3 + B))w
consequently, we need only to prove that
[ (1—) § (1-0)
[yl +8) = (v + AL, — [n(1+8) = (5 +5)]

which is equivalent to

(n—=1)(1+8) [T, (1 - )

0<1—— 5 .
Hj:l[n(l +8) = (v + B)]¥n — Hj:l(l — )

Since

(n =11+ B) [, (1 - )
Hi_l[nu +0) = (3 + A — T (=)
is an increasing function of n (n > 2), then

(1+5) H?:1(1 =)
[+ 8= 7)¥ =TT, (1)

Therefore, the result is true for ¢t = 2.

B(n)=1-

§<B@2)=1-

Suppose that the result is true for any positive integer ¢ = k. Then we have

(fr* - frox fer1)(2) € Ty s(laa]; A, B),
where
(1+8)(1 —y41)(A = 9)
(248 = +1)2+ B = 0)¥2 — (1 = yp41)(1 = 0)’
and 4 is given by (2.2). After simple calculations, we have

k+1 _
NP () ) 06

Hk+l(2+5 'VJ)‘I’k Hkﬂ(l_%)

This shows that the result is true for ¢t = k + 1. Therefore, by mathematical
induction, the result is true for any positive integer ¢ (¢ > 2).

A=1-

Taking the functions f;(z) given by (2.2), we have

t

(fix-—x f)(z) = H m22 =z — Hy22, (2.7)

j=1

which shows that

o B -0+, @eF—0 t (—n)
Z, 15 =0 Herspw "
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Consequently, the result is sharp for functions f;(z) given by (2.2). This completes
the proof of Theorem 1. m

Letting v; =« in Theorem 1, we obtain the following corollary.

COROLLARY 1. Let the functions f;(z) defined by (1.3) be in the class
Tys([ea]; v, B). Then we have (fy - fi)(2) € Ty s([oa]; 6, B),

1+8)1-9)

6=1- . 2.8
@3- - (1) 2
The result is sharp for the functions f;(z) given by
N A=)
filz) == (2+5—7)‘1’2Z . (2.9)

Putting ¢t = 2 in Corollary 1, we obtain the following corollary.

COROLLARY 2. Let the functions f;j(z) (j = 1,2) defined by (1.3) be in the
class Ty s([oa]; v, B). Then we have (f1 * f2)(z) € Tqs([a1]; 6, 8), where

(1+p)1—v)?
(2+08—7)20s — (1 —7)%

0=1-—

The result is sharp.

Next, similarly by applying the method of proof of Theorem 1, we easily get
the following result.

THEOREM 2. Let the functions f;(z) defined by (1.3) be in the class
Ty.s([a1];7,¢j), ¢ > 0. Then we have (f1 % ---* fi)(2) € Ty s([a1];y, 1), where

L(24¢ —y)uht

The result is sharp for the functions f;(z) given by

(2 fz_&zz
fi(z) = PRI (2.11)

Let (; =0 (j =1,2,...,t) in Theorem 2, we obtain the following corollary.

COROLLARY 3. Let the functions f;j(z) defined by (1.3) be in the class
Ty.s([eal; v, B). Then we have (f1 % ---* f)(z) € Ty s([ea]; v, 1), where
_2+p-mieyt
T A

+9 -2

The result is sharp for the functions f;(z) given by (2.9).
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Putting ¢t = 2 in Corollary 3, we obtain the following corollary.

COROLLARY 4. Let the functions f;j(z) (j = 1,2) defined by (1.3) be in the
class Ty s([oa]; v, B). Then we have (f1 * f2)(2) € Ty s([a1]; v, 1), where
(2+8—7)20,

nN=-——""%+7—2.
(1-7)

The result is sharp.

THEOREM 3. Let the functions f;(z) defined by (1.3) be in the class
Ty.s([a1]; v, B). Then the function

F(z)=2z— niz(jilamj)z” (m>1) (2.12)

belongs to the class Ty s([o1]; 0, B), where

I (R L o
"=l (246 —y)mUPt — (1 —y)m (v = 22, b (2.13)

and (24 3 — )WL > ¢(2 4 B)(1 — )™. The result is sharp for the functions
fi(z) (4 =1,2,...,t) given by (2.2).

Proof. By virtue of (1.8), we have

5 (n(1+5) = (v + B)¥n

n=2 (1 77])

Qn,j S 1.

By the Cauchy-Schwarz inequality, we have

X (14 8) = (v + B)]¥u\™ . & [n(146) = (v + )P, m
2 ( (1 =) ) Ty = <n§2 (1 =) an’j) =t

It follows from (2.14) that

n=2

(2.14)

n=2 (]— - ’yj)

By setting v = min; << {7;}, the last inequality gives

= (1 ([n(1+5)—(7+ﬁ)]‘1’n (al)) jéa%) <1

n=2 t (1 - 7)
Therefore, to prove our result we need to fined the largest d; such that

X [n(1+8) = (6 + B)] ¥y (1)
nz::Q (1—0y) j

t
m
> g S L
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that is, that

[n(1+8) = (6 + B)|¥n
(1—10y)

<

I(MO+H%WW+BW%>M
t (I—=7)

which leads to

tn =11+ 31 —7)"

G<1— — .
(1 +8) = (v + 5™ (Un)™ " =41 =)™

Now let

R(n) -1— t(n_l)(l"’—ﬁ)(l_'y)m (n>2>.

(U 3) =~ O+ AW =t = T
Since R(n) is an increasing function of n (n > 2), then we have
td+p) (1 —y)"
2+ B =)y~ —t(1—y)™

W<R2)=1- )
and by noting that (2+3—~)™ W5~ > ¢(246)(1—7)™, we can see that 0 < &; < 1.

The result is sharp for the functions f;(z) (j =1,2,...,t) given by (2.2). This
completes the proof of Theorem 3. m

Puttingm =2and v; =~ (j = 1,...,t) in Theorem 3, we obtain the following
corollary.

COROLLARY 5. Let the functions fj(z) (j = 1,2,...,t) defined by (1.3) be in
the class Ty s([oun];y, B). Then the function

0 t
G(z) ==z — nz=:2 <g;1 afw-)z”, (2.15)
belongs to the class Ty s([e1]; 0r, B), where
tL+8)1-9)°
R P (e

and (2 + B — v)2Wy > (2 + B)(1 — v)2. The result is sharp for the functions
fi(z) (1 =1,2,...,t) given by (2.9).

5 =1-

(2.16)

Similarly by applying the method of proof of Theorem 3, we easily get the
following result.

THEOREM 4. Let the functions f;(z) defined by (1.3) be in the class
Ty.s([aa];7,¢), (G > 0. Then the function F(z) defined by (2.12) belongs to the
class Ty s([ea]; v, me), where

2+ 68—y o
(ot T2 (0= min {G),

ne =
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and (2+ B —4)™US 1 > (2 — ) (1 — )™~ L. The result is sharp for the functions
fi(z) (1 =1,2,...,t) given by (2.11).

Putting m = 2 and (; = 8 (j = 1,2,....,t) in Theorem 4, we obtain the
following corollary.

COROLLARY 6. Let the functions f;(z) ( = 1,2,...,t) defined by (1.3) be in
the class Ty s([a1];y,8). Then the function G(z) defined by (2.15) belongs to the
class Ty s([oa); v, me), where

(248 —7)*0,
t(1—1)

and (2 + B —7)?Wy > (2 — v)(1 — 7). The result is sharp for the functions f;(2)
given by (2.9).

Ne = +v-2

THEOREM 5. Let the functions f;(z) (j = 1,2,...,t) defined by (1.3) be in the
class Ty s([oa]; v, 8) (1 =1,2,...,t) and let the functions g,,(z) defined by

gm(2) =2— > bym2" (bnm =20; m=1,2,...,5), (2.17)
n=2

be in the class Ty s([ca]; Ym, B) (m=1,2,...,s), then

(fixfox-x fexgrrgax--xgs)(2) € Tys([on];Q, ),

where

t

(148 [t =) T (=)

Q=1-

t s t s !
[T+ 6= 11 (2 + B = ) U [T (=) T (1 =m)
j= m= j= m=
(2.18)
The result is sharp for the functions f;(z) given by (2.2) and the functions g,,(z)
given by
(1 —9m) 2
mz) =2 — ————"—2 m=1,2,...,5s). 2.19
mz) =2 = e ) (219)
Proof. From Theorem 1 we note that, if f(z) € T, ([a1];d,3) and g(z) €
Ty.s([aa]; 1, B), then (f * g)(2) € Ty s([ea]; 2, 3), where

0O=1- (14‘5)(1_5)(1—#) (220)

2+B8=0)2+8 - ¥ —(1-6)(1—p)
Since Theorem 1 leads to (f1 * fo % -- - fi)(2) € Ty s([oa]; 0, 8), where § is defined
by (2.1) and (g1 * g2 * - - - * g5)(2) € Ty s([oa]; p, B) with

Hin:l(2 +6 - Vm)q’gil - an:l(l - Ym)
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Then, we have (fy * fo* - % fr x g1 % go* -+ % g5)(2) € Ty 5([aa]; Q, B), where Q is
given by (2.18), this completes the proof of Theorem 5. m

Letting v, =v (j =1,2,...,t) and v, =y (m =1,2,...,s) in Theorem 5, we
obtain the following corollary.

COROLLARY 7. Let the functions f;(z) (j =1,2,...,t) defined by (1.3) and let
the functions g.,(z) defined by (2.17) be in the class T, s([a1]; 7, 8). Then we have

(fisfos--* fyxgr*gax....xg5)(2) € Ty s([on];Q, 5), where

(1+B)(1 =)+
(245 =) T = (L=

The result is sharp for the functions f;(z) given by (2.9) and the functions g,,(z)
given by

— (1-17) 2 (m = s
gm(2) = CE R (m=1,2,...,s).

Letting t = s = 2 in Corollary 7, we obtain the following corollary.

COROLLARY 8. Let the functions fj(z) (j = 1,2) defined by (1.3) and let the
functions g (2) (m = 1,2) defined by (2.17) be in the class Ty s([ca];, ). Then
we have (f1 * fa* g1 % g2)(2) € Ty s([0a]; Q, B), where

(1+5)(1 -
C+B-D - (-

The result is sharp.

Putting ¢ =2, s =1 and a; = as = 1 = 1 in Theorem 5, we obtain the
following corollary.

COROLLARY 9. Let fi(z) (j = 1,2,...,t) defined by (1.3) be in the class
SpT' (74, B8) and let the functions gm(z) (m =1,2,...,s) defined by (2.17) be in the
class SpT(Ym, B) (m=1,2,...,s), then

(fixfosk-* frxgrrga®--xg5)(2) € SyT(,[),
where
- (1+8) [T (1 = 9) TTea (1 = )
o124 8= 1) Loy @+ B —vm) = TTm1 (= ) [Ty (1 = Ym)
The result is sharp for the functions f;(z) given by
(1—7)

(2) =2 — ———2 22 =1,2,...,t
and the functions gm(2) given by
(1 —=vm) 2
m(z)=2— ——"2° (m=12,...,9).
9m(2) 24+ 8—vm) ( )
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Putting ¢ =2, s =1, a1 = a(a > 0), ag =1 and 31 = ¢ (¢ > 0) in Theorem 5,
we obtain the following corollary.

CoOROLLARY 10. Let fi(z) (j = 1,2,...,t) defined by (1.3) be in the class
SpT(a,c;7v;, B) and let the functions gm( ) (m=1,2,...,s) defined by (2.17) be in
the class SpT(a,¢;Ym, B) (m=1,2,...,s), then

(fr*fax-oox fixgrrgas - xg5)(2) € SpT(a, ¢;C, ),

where

1) [T (=) T (1= )

st T (246 ) 11246 —7m) — o [T =) T (1-7m)

j=1 m=1 j=1 m=1
The result is sharp for the functions f;(z) given by

(1 —)c 52

(2) = o M TA)e =1,2,...,t
f]() (2+5_7])a (] )
and the functions gm(z) given by
(1_7m>c 2
m2)=2— ——"—2"(m=1,2,...,5).
) = g e )

Putting g =2,s=1, a1 = A+ 1(A > —1), as = 1 and 8; = 1 in Theorem 5,
we obtain the following corollary.

COROLLARY 11. Let fij(2) (j = 1,2,...,t) defined by (1.3) be in the class
SpT(A;7v4,08) and let the functions gn(z) (m = 1,2,...,s) defined by (2.17) be in
the class ST (A;vYm,B8) (m=1,2,...,s), then

(fi*fox-xfrrgixgax---xgs)(2) € ST(A v, ),

where

(1+6) T =) T1 (1= m)
v=1- ] m=

()5t T4 8 =2) T4 8= 7m) = 110 -7 11 (=)

j=1 m=1 j=1 m

The result is sharp for the functions f;(z) given by

. (1—) 2 (i
fi(z) =2 (2+ﬁ_%)(A+1)2 (j=1,2,...,1)
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and the functions gm(z) given by

=z— (1= 7m) 22 (m= 5
S C v T R T A

Putting g =2,s=1, a1 =v+ 1(v > —1), ag =1 and §; = v + 2 in Theorem
5, we obtain the following corollary.

COROLLARY 12. Let fi(z) (j = 1,2,...,t) defined by (1.3) be in the class
SpT'(v;v;,B) and let the functions gn(z) (m = 1,2,...,s) defined by (2.17) be in
the class SpT(v;Ym, B) (m=1,2,...,s), then

(fix fox-x frxgrrgax--xgs)(2) € ST (v;0,0),

(04214 0) T (1= ) [T =)

t

(o4 4t 1@+ 0= ) T2+ 6 m) = (04254 [T =) TL 0= 2m)

The result is sharp for the functions f;(z) given by

P () (Ut ) TS
he =2 rg—wens UTh2e

and the functions gm(2) given by

— s (1_'7m)(v+2) 2 (m= s
A= G ey M)

Puttingg=2,s=1,a01 =2, ap =land 81 =2—pu (u # 2,3,...) in Theorem
5, we obtain the following corollary.

COROLLARY 13. Let fi(z) (j = 1,2,...,t) defined by (1.3) be in the class
SpT' (1575, B) and let the functions gm(z) (m = 1,2,...,s) defined by (2.17) be in
the class SpT (15 Ym, B) (m =1,2,...,s), then

(fr* fox-x frrgixgax---xgs)(2) € ST (u; K, B),

@ ) 1) [0 m)

2051 T2+ 8= 5) TT 2+~ 7m) — 2w+ TT0 — ) T (1)

t t
i=1 m=1 j=1 m=1
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The result is sharp for the functions f;(z) given by

fj(Z):Z_WZQ (j=1,2,...,1)

and the functions gm(z) given by

gm(z):z—mz2 (m=1,2,...,s).
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