RADIUS ESTIMATES OF A SUBCLASS OF UNIVALENT FUNCTIONS

Maslina Darus and Rabha W. Ibrahim

Abstract. For analytic functions f normalized by f(0) = f'(0) - 1 = 0 in the open unit disk U, a class $P_{\alpha}(\lambda)$ of f defined by $|D_{z}^{\alpha}(\frac{z}{f(z)})| \leq \lambda$, where D_{z}^{α} denotes the fractional derivative of order α , $m \leq \alpha < m + 1$, $m \in \mathbf{N}_{0}$, is introduced. In this article, we study the problem when $\frac{1}{r}f(rz) \in P_{\alpha}(\lambda), 3 \leq \alpha < 4$.

1. Introduction

Let \mathcal{H} be the class of functions analytic in $U := \{z \in \mathbb{C} : |z| < 1\}$ and $\mathcal{H}[a,n]$ be the subclass of \mathcal{H} consisting of functions of the form $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots$. Let \mathcal{A} be the subclass of \mathcal{H} consisting of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in U.$$
(1)

Let \mathcal{S} be the subclass of \mathcal{A} consisting of all univalent functions f(z) in U.

In [1], Srivastava and Owa, gave definitions for fractional operators (derivative and integral) in the complex z-plane \mathbf{C} as follows:

DEFINITION 1.1. The fractional derivative D_z^{α} of order α is defined, for a function f(z), by

$$D_z^{\alpha} f(z) = \begin{cases} \frac{1}{\Gamma(1-\alpha)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\alpha}} d\zeta, & 0 \le \alpha < 1, \\ (\frac{d}{dz})^{m+1} D_z^{\alpha-m} f(z), & m \le \alpha < m+1, \ m \in \mathbf{N}_0. \end{cases}$$

where the function f(z) is analytic in simply-connected region of the complex zplane **C** containing the origin and the multiplicity of $(z - \zeta)^{-\alpha}$ is removed by requiring $\log(z - \zeta)$ to be real when $(z - \zeta) > 0$.

²⁰¹⁰ AMS Subject Classification: 30C45.

 $Keywords\ and\ phrases:$ Analytic functions, univalent functions, Cauchy-Schwarz inequality, fractional differential operator.

The work presented here was supported by UKM-ST-06-FRGS0107-2009.

For $f(z) \in \mathcal{A}$, we define the class $P_{\alpha}(\lambda)$ of f(z) if f(z) satisfies $\frac{f(z)}{z} \neq 0$, $(z \in U)$ and

$$\left|D_{z}^{\alpha}\left(\frac{z}{f(z)}\right)\right| \leq \lambda, \quad z \in U,$$
(2)

for some real $\lambda > 0$ and $m \le \alpha < m + 1, m \in \mathbf{N}_0$.

Obradović and Ponnusamy [2] have studied the subclass $P_2(\lambda)$ for $f(z) \in \mathcal{A}$ satisfying $\frac{f(z)}{z} \neq 0$, $(z \in U)$ and $\left| \left(\frac{z}{f(z)} \right)'' \right| \leq \lambda$, $(z \in U)$ for some real $\lambda > 0$.

Recently, Kuroki et al. studied the subclass $P_3(\lambda)$ for $f(z) \in \mathcal{A}$ satisfying $\frac{f(z)}{z} \neq 0, (z \in U)$ and $\left| \left(\frac{z}{f(z)} \right)^{\prime\prime\prime} \right| \leq \lambda, (z \in U)$ for some real $\lambda > 0$ (see [3]).

In this work, we study the problem when $\frac{1}{r}f(rz) \in P_{\alpha}(\lambda)$, $3 \leq \alpha < 4$. For this purpose, we need the following result.

LEMMA 1.1. [4] If $f(z) \in S$ and

$$\frac{z}{f(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n,$$
(3)

then $\sum_{n=1}^{\infty} (n-1)|b_n|^2 \le 1.$

2. Results

First we derive the following result.

THEOREM 2.1. Let $f \in \mathcal{A}$ and $\frac{z}{f(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n \neq 0$, $(z \in U)$. If f(z) satisfies

$$\sum_{n=m+1}^{\infty} n(n-1)(n-2)\cdots(n-m)|b_n| \le \lambda,$$

 $(\lambda > 0, m \le \alpha < m + 1, m \in \mathbf{N}_0), \text{ then } f(z) \in P_{\alpha}(\lambda).$

Proof. By Definition 1.1, we observe

$$\begin{split} \left| D_z^{\alpha} \left(\frac{z}{f(z)} \right) \right| &\leq \frac{\sum_{n=m+1}^{\infty} n(n-1)(n-2)\cdots(n-m)|b_n|}{\Gamma(m+1-\alpha)} \int_0^z |(z-\zeta)|^{m-\alpha} d\zeta \\ &\leq \frac{\sum_{n=m+1}^{\infty} n(n-1)(n-2)\cdots(n-m)|b_n|}{\Gamma(m+2-\alpha)} \\ &< \sum_{n=m+1}^{\infty} n(n-1)(n-2)\cdots(n-m)|b_n| \leq \lambda. \end{split}$$

Hence, $f(z) \in P_{\alpha}(\lambda)$.

COROLLARY 2.2. Let $f \in \mathcal{A}$ and $\frac{z}{f(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n \neq 0$, $(z \in U)$. If f(z) satisfies

$$\sum_{n=4}^{\infty} n(n-1)(n-2)(n-3)|b_n| \le \lambda$$

 $(\lambda > 0, 3 \le \alpha < 4), \text{ then } f(z) \in P_{\alpha}(\lambda).$

56

Proof. By letting m = 3 in Theorem 2.1.

THEOREM 2.3. Let $f \in S$ and $\lambda > 0$. Then the function $\frac{1}{r}f(rz)$, $(r > 0, z \in U)$ belongs to the class $P_{\alpha}(\lambda)$ for $3 \leq \alpha < 4$ and $0 < r \leq r_0(\lambda)$, where $r_0(\lambda)$ is the smallest root of the equation

$$F(r) := r^2 (A_1(r) - 11(1 - r^2)A_2(r) + 47(1 - r^2)^2 A_3(r) - 97(1 - r^2)^3 A_4(r) + 96(1 - r^2)^4 A_5(r) - 36(1 - r^2)^5 A_6(r)) - \lambda^2 (1 - r^2)^8 = 0, \quad (4)$$

where

$$\begin{aligned} A_1(r) &:= 5 + 424r^2 + 2989r^4 + 3544r^6 + 989r^8 + 88r^{10}, \\ A_2(r) &:= 5 + 197r^2 + 668r^4 + 268r^6 + 14r^8 + 9r^{10}, \\ A_3(r) &:= 5 + 86r^2 + 108r^4 - 14r^6 + 9r^8, \\ A_4(r) &:= 5 + 23r^2 - r^4 - 3r^6, \\ A_5(r) &:= 1 + 4r^2 + r^4, \\ A_6(r) &:= 1 + r^2, \end{aligned}$$

in the interval (0, 1).

Proof. Let $f \in S$. Since $\frac{z}{f(z)} \neq 0$, $(z \in U)$, if we write $\frac{z}{f(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n$, then we have $z \qquad \infty$

$$\frac{z}{\frac{1}{r}f(rz)} = 1 + \sum_{n=1}^{\infty} (r^n b_n) z^n,$$

for 0 < r < 1. It follows from Lemma 1.1 that

$$\sum_{n=4}^{\infty} (n-1)|b_n|^2 \le \sum_{n=1}^{\infty} (n-1)|b_n|^2 \le 1.$$

To verify that $\frac{1}{r}f(rz) \in P_{\alpha}(\lambda)$ for $3 \leq \alpha < 4$, we have to show that

$$\sum_{n=4}^{\infty} n(n-1)(n-2)(n-3)|r^n b_n| \le \lambda, \qquad (\lambda > 0, \quad 3 \le \alpha < 4)$$
(5)

by mean of Corollary 2.2. Now by the Cauchy-Schwarz inequality for the left-hand side of (5), we have

$$\begin{split} \sum_{n=4}^{\infty} n(n-1)(n-2)(n-3)|r^n b_n| \\ &= \sum_{n=4}^{\infty} \left(n^2(n-1)(n-2)^2(n-3)^2|r^n|^2 \right)^{\frac{1}{2}} \left((n-1)|b_n|^2 \right)^{\frac{1}{2}} \\ &\leq \left(\sum_{n=4}^{\infty} n^2(n-1)(n-2)^2(n-3)^2|r^n|^2 \right)^{\frac{1}{2}} \left(\sum_{n=4}^{\infty} (n-1)|b_n|^2 \right)^{\frac{1}{2}} \\ &\leq \left(\sum_{n=4}^{\infty} n^2(n-1)(n-2)^2(n-3)^2r^{2n} \right)^{\frac{1}{2}} \end{split}$$

M. Darus, R. W. Ibrahim

$$= \frac{1}{(1-r^2)^4} \Big[r^2 \Big(A_1(r) - 11(1-r^2)A_2(r) + 47(1-r^2)^2 A_3(r) \\ - 97(1-r^2)^3 A_4(r) + 96(1-r^2)^4 A_5(r) - 36(1-r^2)^5 A_6(r) \Big) \Big]^{\frac{1}{2}}.$$

Consequently, $\frac{1}{r}f(rz) \in P_{\alpha}(\lambda)$ for $3 \leq \alpha < 4$ and $0 < r \leq r_0(\lambda)$, where $r_0(\lambda)$ is the positive solution for the equation (4), which satisfies that $F(0) = -\lambda^2 < 0$ and $F(1) = A_1(1) > 0$. Hence (4) has a solution $r_0(\lambda)$ in the interval (0, 1). This completes the proof of the theorem.

REFERENCES

- H.M. Srivastava, S. Owa, Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1989.
- M. Obradović, S. Ponnusamy, Radius properties for subclasses of univalent functions, Analysis 25 (2005), 183–188.
- [3] H. Kobashi, K. Kuroki, S. Owa, Notes on radius problems of certain univalent functions, General Mathematics 17 (2009), 5–12.
- [4] A.W. Goodman, Univalent Functions, Vols. I and II, Mariner, Tampa, Florida, 1983.

(received 10.01.2010; in revised form 13.10.2010)

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia

E-mail: maslina@ukm.my, rabhaibrahim@yahoo.com