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CERTAIN BOUNDED FUNCTIONS OF COMPLEX ORDER

M. K. Aouf and A. O. Mostafa

Abstract. In this paper we obtain sharp coefficient bounds for functions analytic in the
unit disc U and belonging to the class R(b, M), b 6= 0 is a complex number. Also, we maximize
|a3 − µa2

2| over the class R(b, M) and obtain distortion theorem for functions in this class.

1. Introduction

Let A denote the class of functions

f(z) = z +
∞∑

n=2
anzn (1.1)

which are analytic in the unit disc U . Also denote by S the subclass of A, consisting
of all univalent functions in U . Let Ω denote the class of bounded analytic functions
w in U satisfying the conditions w(0) = 0 and |w(z)| ≤ |z| for z ∈ U . For f ∈ A,
we say that f belongs to the class F (b,M) (b 6= 0 complex, M > 1

2 ), of bounded
starlike functions of complex order, if and only if f(z)

z 6= 0 in U and for fixed M ,
∣∣∣∣∣∣
b− 1 + zf

′
(z)

f(z)

b
−M

∣∣∣∣∣∣
< M, z ∈ U. (1.2)

The class F (b, M) was studied by Nasr and Aouf [13].
We note that:
(i) F (b,∞) = S(b), where S(b) is the class of starlike functions of complex

order, introduced and studied by Nasr and Aouf [14];
(ii) F (cos λe−iλ,M) = Fλ,M (|λ| < π

2 ,M > 1
2 ), where Fλ,M is the class of

bounded spiral-like functions, studied by Kulshrestha [9];
(iii) F ((1− α) cos λe−iλ, M) = FM (λ, α) (|λ| < π

2 , 0 ≤ α < 1, M > 1
2 ), where

FM (λ, α) is the class of bounded spiral-like functions of order α, studied by Aouf
[3, 4].
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In [1] Halim studied the class R(b) defined as follows:
A function f ∈ A belongs to the class R(b), if and only if, for z ∈ U

Re
{

1 +
1
b
(f ′(z)− 1)

}
> 0, z ∈ U, (1.3)

where b is a non-zero complex number. We note that R(1) = R (see MacGregor
[10]). Halim [1] proved that if Re{b} ≥ |b|2, then f ∈ R(b) is univalent.

In the present paper, we consider the class R(b,M) of functions f ∈ A, satis-
fying the condition:∣∣∣∣

b− 1 + f ′(z)
b

−M

∣∣∣∣ < M (M >
1
2
; z ∈ U), (1.4)

where b 6= 0, complex. We note that R (b,∞) = R(b) and R(1− α,∞) = Rα (0 ≤
α < 1) (Ahuja [2]).

Taking different values of b and M , the class R(b,M) reduces to the following
subclasses of R:

(1) R(1− α, 1
2(1−β) ) = R1(α, β) (Mogra [12])

=
{

f ∈ A :
∣∣∣ f ′(z)−1
2β(f ′(z)−α)−(f ′(z)−1)

∣∣∣ < 1, 0 ≤ α < 1, 0 < β ≤ 1, z ∈ U
}

;

(2) R((1− α) cos λe−iλ, 1
2(1−β) ) = Rλ

1 (α, β) (Ahuja [2])

=
{

f ∈ A :
∣∣∣ f ′(z)−1
2β(f ′(z)−1+(1−α) cos λe−iλ)−(f ′(z)−1)

∣∣∣ < 1, 0 ≤ α < 1, 0 < β ≤ 1, z ∈ U
}

;

(3) R((1− α) cos λe−iλ,∞) = Rλ
α (Ahuja [2])

=
{
f ∈ A : Re eiλf ′(z) > α sin λ, 0 ≤ α < 1, |λ| < π

2 , z ∈ U
}
;

(4) R(cosλe−iλ, 1
cos λ ) = R∗λ(Ahuja [2])

=
{
f ∈ A :

∣∣eiλf ′(z)− (1 + i sin λ)
∣∣ < 1, |λ| < π

2 , z ∈ U
}
;

(5) R(cosλe−iλ, 1
2ρ ) = R∗λ(ρ) (Ahuja [2])

=
{

f ∈ A :
∣∣∣ eiλf ′(z)−i sin λ

cos λ − 1
2ρ

∣∣∣ < 1
2ρ , |λ| < π

2 , 0 ≤ ρ < 1, z ∈ U
}

;

(6) R(cosλe−iλ,M) = R∗λM (Ahuja [2])

=
{

f ∈ A :
∣∣∣ eiλf ′(z)−i sin λ

cos λ −M
∣∣∣ < M, |λ| < π

2 ,M > 1
2 , z ∈ U

}
;

(7) R((1− α) cos λe−iλ, M) = R∗λM,α (Aouf and Owa [5])

=
{

f(z) ∈ A :
∣∣∣ eiλf ′(z)−α cos λ−i sin λ

(1−α) cos λ −M
∣∣∣ < M, 0 ≤ α < 1, |λ| < π

2 ,M > 1
2 , z ∈ U

}
;

(8) R(2β(1−α)
1+β , 1

1−β ) = R(α, β) (Juneja and Mogra [7])

=
{

f ∈ A :
∣∣∣ f ′(z)−1
f ′(z)+1−2α

∣∣∣ < β, 0 ≤ α < 1, 0 < β ≤ 1, z ∈ U
}

;

(9) R(2β(1−α) cos λe−iλ

1+β , 1
1−β ) = Rλ

α,β (Makowka [11])

=
{

f ∈ A :
∣∣∣ f ′(z)−1
f ′(z)−1+2(1−α) cos λe−iλ

∣∣∣ < β, 0 ≤ α < 1, |λ| < π
2 , 0 < β ≤ 1, z ∈ U

}
;

(10) R( 2β
1+β , 1

1−β ) = R(β) (Padmanabhan [16] and Caplinger and Causey [6])

=
{

f ∈ A :
∣∣∣ f ′(z)−1
f ′(z)+1

∣∣∣ < β, 0 < β ≤ 1, z ∈ U
}

.
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We further, observe that, by the special choice of M our class R(b,M) gives
rise the following new subclasses of R:

(1) R
(
b, 1

2(1−β)

)
= R(b, β)

=
{

f ∈ A :
∣∣∣ f ′(z)−1
2β[f ′(z)−1+b]−[f ′(z)−1]

∣∣∣ < 1, b 6= 0, complex, 0 < β ≤ 1, z ∈ U
}

;

(2) R
(
(1− α) cos λe−iλ, 1

2ρ

)
= R∗λ(ρ, α)

=
{

f ∈ A :
∣∣∣ eiλf ′(z)−α cos λ−i sin λ

(1−α) cos λ − 1
2ρ

∣∣∣ < 1
2ρ , |λ| < π

2 , 0 ≤ α < 1, 0 ≤ ρ < 1; z ∈ U
}

.

We can easily show that f ∈ R(b, M) if and only if there exists a function
w ∈ Ω such that [9]

1 +
1
b
(f ′(z)− 1) =

1 + w(z)
1−mw(z)

, m = 1− 1
M

. (1.5)

Thus, from (1.5) it follows that f ∈ R(b,M) if and only for z ∈ U

f ′(z) =
1 + [(1 + m)b−m]w(z)

1−mw(z)
, w(z) ∈ Ω, m = 1− 1

M
. (1.6)

2. Coefficient estimates

Theorem 1. Let the function f defined by (1.1) be in the class R(b, M),
M > 1

2 . Then

|an| ≤ (1 + m) |b|
n

(n ≥ 2,m = 1− 1
M

). (2.1)

The estimates are sharp.

Proof. Since f ∈ R(b,M), we have

f ′(z) =
1 + [(1 + m)b−m]w(z)

1−mw(z)
(w ∈ Ω,m = 1− 1

M
). (2.2)

By simplification, (2.2) yields

[(1 + m)b + m(f ′(z)− 1)]w(z) = f ′(z)− 1,

that is

[(1 + m)b + m
∞∑

n=2
nanzn−1][

∞∑
n=1

tnzn] =
∞∑

n=2
nanzn−1. (2.3)

Equating corresponding coefficients on both sides of (2.3), we find that the coef-
ficient an on the right hand side of (2.3) depends only on a2, a3, . . . , an−1, on the
left hand side of (2.3). Hence for n ≥ 2, it follows from (2.3) that

[(1 + m)b + m
k−1∑
n=2

nanzn−1]w(z) =
k∑

n=2
nanzn−1 +

∞∑
n=k+1

dnzn−1,
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where
∞∑

n=k+1

dnzn−1 converges in U . Then, since |w(z)| < 1, we get

∣∣∣(1 + m)b + m
k−1∑
n=2

nanzn−1
∣∣∣ ≥

∣∣∣
k∑

n=2
nanzn−1 +

∞∑
n=k+1

dnzn−1
∣∣∣. (2.4)

Writing z = reiθ, r < 1, squaring both sides of (2.4), and then integrating we obtain

(1 + m)2 |b|2 + m2
k−1∑
n=2

n2 |an|2 r2(n−1) ≥
k∑

n=2
n2 |an|2 r2(n−1) +

∞∑
n=k+1

|dn|2 r2(n−1).

Taking the limit as r approaches to 1, we have

n2 |an|2 ≤ (1 + m)2 |b|2 − (1−m2)
k−1∑
n=2

n2 |an|2 . (2.5)

Since m ≥ 1, it follows that

|an| ≤ (
1 + m

n
) |b| (n ≥ 2). (2.6)

The sharpness of the result follows for the function

f(z) =
∫ z

0

[
1 +

(1 + m)btn−1

1−mtn−1

]
dt (n ≥ 2,m = 1− 1

M
,M >

1
2
). (2.7)

Putting m = 1 (M = ∞) in Theorem 1, we get the following result obtained
by Halim [1].

Corollary 1. Let the function f defined by (1.1) be in the class R(b,∞) =
R(b). Then

|an| ≤ 2 |b|
n

(n ≥ 2).

The result is sharp for the function

f(z) =
∫ z

0

[1 +
2btn−1

1− tn−1
] dt (n ≥ 2, z ∈ U).

Putting b = (1− α) cos λe−iλ, 0 ≤ α < 1, |λ| < π
2 and m = 1− 1

M (M > 1
2 ) in

Theorem 1, we get the following result obtained by Aouf and Owa [5].

Corollary 2. Let the function f defined by (1.1) be in the class
R((1− α) cos λe−iλ,M) = R∗λM,α (|λ| < π

2 , 0 ≤ α < 1,M > 1
2 ). Then

|an| ≤ (
2M − 1

M
)
(1− α) cos λ

n
(n ≥ 2)

and the result is sharp.
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3. Maximization of
∣∣a3 − µa2

2

∣∣

We shall need the following lemmas in our investigation.

Lemma 1. [15]. Let the function w defined by

w(z) =
∞∑

k=1

ckzk, (3.1)

be in the class Ω. Then |c1| ≤ 1 and |c2| ≤ 1− |c1|2.
Lemma 2. [8]. Let the function w defined by (3.1) be in the class Ω. Then

∣∣c2 − µc2
1

∣∣ ≤ max{1, |µ|}, (3.2)

for any complex number µ. Equality in (3.2) may be attained with the functions
w(z) = z2 and w(z) = z for |µ| < 1 and |µ| ≥ 1, respectively.

Theorem 2. Let the function f defined by (1.1) be in the class R(b,M). Then
(a) for any real number µ we have

∣∣a3 − µa2
2

∣∣ ≤ (1 + m) |b|
12

|4m− 3µ(1 + m)b| ; (3.3)

(b) for any complex number µ we have

∣∣a3 − µa2
2

∣∣ ≤ (1 + m) |b|
3

max{1,
|4m− 3µ(1 + m)b|

4
}. (3.4)

The result is sharp for each µ either real or complex.

Proof. Since f ∈ R(b,M), we have from (2.2) that

f ′(z) =
1 + [(1 + m)b−m]w(z)

1−m w(z)
(m = 1− 1

M
), (3.5)

where w(z) =
∞∑

k=1

ckzk ∈ Ω. From (3.5), we have

w(z) =
f ′(z)− 1

m(f ′(z)− 1) + (1 + m)b
=

∞∑
n=2

nanzn−1

(1 + m)b

[
1− m

(1 + m)b

∞∑
n=2

nanzn−1 − · · ·
]

(3.6)
and then comparing the coefficients of z and z2 on both sides of (3.6), we have
c1 = 2a2

(1+m)b and c2 = 3a3
(1+m)b −mc2

1.

Thus a2 = (1+m)bc1
2 and a3 = (1+m)b

3

[
c2 + mc2

1

]
. Hence

a3 − µa2
2 =

(1 + m)b
3

[
c2 − 3µ(1 + m)b− 4m

4
c2
1

]
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and therefore
∣∣a3 − µa2

2

∣∣ =
(1 + m) |b|

3

∣∣∣∣c2 − 3µ(1 + m)b− 4m

4
c2
1

∣∣∣∣ . (3.7)

(a) When µ is real, (3.7) becomes
∣∣a3 − µa2

2

∣∣ ≤ (1 + m) |b|
12

[
4 |c2|+ |4m− 3µ(1 + m)b| |c1|2

]
. (3.8)

Now, applying Lemma 1 for |c2| in (3.8), we have
∣∣a3 − µa2

2

∣∣ ≤ (1 + m) |b|
12

[
4 + {|4m− 3µ(1 + m)b| − 4} |c1|2

]
. (3.9)

Again, using Lemma 1 for |c1| in (3.9), we obtain
∣∣a3 − µa2

2

∣∣ ≤ (1 + m) |b|
12

|4m− 3µ(1 + m)b| .
The equality in (3.3) is attained for the function

f ′(z) =
[m− (1−m)b]

m
+

(1 + m)b
m

1
1−mz

. (3.10)

(b) When µ is a complex number, applying Lemma 2 in (3.7), we get
∣∣a3 − µa2

2

∣∣ ≤ (1 + m) |b|
3

max
{

1,
|4m− 3µ(1 + m)b|

4

}
, (3.11)

which is (3.4) of Theorem 2.

When
|4m− 3µ(1 + m)b|

4
≥ 1, we choose the function

f(z) =
[m− (1 + m)b]

m
z − (1 + m)b

m2
log(1−mz) (3.12)

and when
|4m− 3µ(1 + m)b|

4
< 1, we have the function

f(z) =
[m− (1 + m)b]

m
z +

(1 + m)b
m

∫ z

0

dt

1−mt2
, (3.13)

for attaining the equality in (3.4). Thus the result is sharp.
Putting b = (1−α) cos λe−iλ, 0 ≤ α < 1 and |λ| < π

2 in Theorem 2, we get the
following corollary.

Corollary 3. Let the function f defined by (1.1) be in the class
R((1− α) cos λe−iλ,M) = R∗λM,α. Then

(a) for any real µ, we have
∣∣a3 − µa2

2

∣∣ ≤ (1 + m)(1− α) cos λ

12

∣∣4meiλ − 3µ(1 + m)(1− α) cos λ
∣∣ , (3.14)

(b) for any complex number µ, we have

∣∣a3 − µa2
2

∣∣ ≤ (1 + m)(1− α) cos λ

3
max

{
1,

∣∣4meiλ − 3µ(1 + m)(1− α) cos λ
∣∣

4

}
.

(3.15)
The result is sharp for each µ either real or complex.
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4. Distortion theorem

Theorem 3. Let the function f defined by (1.1) be in the class R(b,M). Then
for |z| < r < 1 we have

Re f ′(z) > 1− (1 + m) |b| r + m[(1 + m) Re{b} −m]r2

1−m2r2
(z ∈ U) (4.1)

and

Re f ′(z) ≤ 1 + (1 + m) |b| r + m[(1 + m)Re{b} −m]r2

1−m2r2
(z ∈ U). (4.2)

The result is sharp.

Proof. Since f ∈ R(b,M), we observe that the condition (1.6) doubled with
an application of Schwarz’s lemma [15], implies |f ′(z)− ζ| < R, where

ζ =
1 + m[(1 + m)b−m]r2

1−m2r2
, and R =

(1 + m) |b| r
1−m2r2

.

Hence we have (4.1) and (4.2). By considering the function f defined by

f(z) =
[m− (1 + m)b]

m
z − (1 + m)b

m2eiγ
log(1−mzeiγ),

where

eiγ =
|b|+ mzb

b + mz |b| ,

we find that the bounds in (4.1) and (4.2) are sharp at z = ±r, respectively.
Putting b = (1− α) cos λe−iλ (0 ≤ α < 1 and |λ| < π

2 ) in Theorem 3, we get

Corollary 4. Let the function f defined by (1.1) be in the class
R((1− α) cos λe−iλ,M) = R∗λM,α. Then for |z| = r < 1 we have

Re f ′(z) > 1− (1 + m)(1− α) cos λ.r + m[(1 + m)(1− α) cos2 λ−m]r2

1−m2r2
(4.3)

and

Re f ′(z) ≤ 1 + (1 + m)(1− α) cos λ.r + m[(1 + m)(1− α) cos2 λ−m]r2

1−m2r2
. (4.4)

The equalities in (4.3) and (4.4) are attained, respectively at z = ±r, for the func-
tion f defined by

f(z) =
[m− (1 + m)(1− α) cos λe−iλ]

m
z − (1 + m)(1− α) cos λ

m2ei(γ+λ)
log(1−mzeiγ),

where

eiγ =
eiλ + mz

1 + mzeiλ
.

The bounds in (4.3) and (4.4) are sharp at z = ±r, respectively.
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