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CAUCHY OPERATOR ON BERGMAN SPACE
OF HARMONIC FUNCTIONS ON UNIT DISC

Milutin R. Dostanić

Abstract. We find the exact asymptotic behaviour of singular values of the operator CPh,
where C is the integral Cauchy’s operator and Ph integral operator with the kernel

K (z, ζ) =

(
1− |z|2|ζ|2

)2

π|1− zζ|4
− 2

π

|z|2|ζ|2
|1− zζ|2

.

1. Introduction

Let D be the unit disc in C and let dA denote Lebesgue measure on D. By
L2

a (D)
(
L2

h (D)
)

we denote the space of all analytic (harmonic) functions f on D
with finite norm (∫

D

|f |2 dA

)1/2

= ‖f‖ < ∞.

It is well known that L2
a (D) and L2

h (D) are closed subspaces of L2 (D). By P (Ph)
we denote the orthogonal projection of L2 (D) onto L2

a (D)
(
L2

h (D)
)
. With 〈·, ·〉

we denote the inner product on L2 (D).
It is known that Ph is an integral operator on L2 (D) with the kernel

K (z, ζ) =

(
1− |z|2|ζ|2)2

π|1− zζ|4 − 2
π

|z|2|ζ|2
|1− zζ|2 .

By C we denote the operator acting on L2(D) in the following way:

Cf(z) = − 1
π

∫

D

f(ζ)
ζ − z

dA(ζ) (Cauchy’s operator).

For a compact operator T , let sn(T ) denote the eigenvalues of the operator
(T ∗T )1/2 arranged in non-decreasing order ([5]).
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By Nt (T ) =
∑

sn(T )≥t 1, t > 0 we denote the singular values distribution
function of T . The notation an ∼ bn (an ³ bn) means

lim
n→∞

an

bn
= 1 (0 < c1 ≤ an

bn
≤ c2 < ∞),

where c1, c2 do not depend on n.
The authors of [1] and [2] have determined the norm and singular values of C

on the space L2(D). It is known, [4], that sn(C) ∼ 1√
n

(n → ∞). It was proved
in [3] that the restriction of C on L2

a(D) accelerates the descending of its singular
values, i.e.,

sn

(
C|L2

a(D)

)
= sn(CP ) ³ 1

n
.

The exact asymptotic behaviour of the singular values of operator PC was given
in [4] (for an arbitrary domain), implying

sn(CP ) ∼ 1
n

.

In this paper we find the exact asymptotic behaviour of singular values of the
operator CPh.

2. Result

Theorem. The following asymptotic formula

sn

(
C|L2

h
(D)

)
= sn(CPh) ∼

√
2 + 1
n

, n →∞,

holds.

Proof. The kernel H0(·, ·) of the operator CPh is given by

H0(z, ζ) = − 1
π

∫

D

K(t, ζ)
t− z

dA(t),

i.e.,

CPhf(z) =
∫

D

H0(z, ζ)f(ζ) dA(ζ).

The kernel H0 can be represented as

H0(z, ζ) = − 1
π2

A(z, ζ) +
2
π2

B(z, ζ), (1)

where

A(z, ζ) =
∫

D

(1− |t|2|ζ|2)2
(t− z)(1− tζ)2(1− tζ)2

dA(t),

B(z, ζ) =
∫

D

|t|2|ζ|2
(t− z)(1− tζ)(1− tζ)

dA(t).



Cauchy operator on Bergman space of harmonic functions on unit disc 65

The functions A and B can be determined explicitly using Cauchy-Green formula
([6], p. 42):

− 1
π

∫

D

∂f

∂ζ

dA(ζ)
ζ − z

= f(z)− 1
2πi

∫

∂D

f(ζ)
ζ − z

dζ.

Since

A(z, ζ) =
∫

D

(
1− tζ + tζ(1− tζ)

)2

(t− z)(1− tζ)2(1− tζ)2
dA(t)

=
∫

D

dA(t)
(t− z)(1− tζ)2

+
∫

D

t2ζ
2

(t− z)(1− tζ)2
dA(t)

+
∫

D

2tζ

(t− z)(1− tζ)(1− tζ)
dA(t),

we obtain

− 1
π

A(z, ζ) = − 1
π

∫

D

dA(t)
(t− z)(1− tζ)2

− 1
π

∫

D

t2 dA(t)
(t− z)(1− tζ)2

· ζ2
+ 2ζ

(
− 1

π

∫

D

t dA(t)
(t− z)(1− tζ)(1− tζ)

)
. (2)

From Cauchy-Green formula, it follows

− 1
π

∫

D

dA(t)
(t− z)(1− tζ)2

=
1
ζ
(1− zζ)−1 − 1

ζ
,

− 1
π

∫

D

dA(t)
(t− z)(1− tζ)2

=
z

(1− zζ)2
(|z|2 − 1).

Hence, from (2), we get

− 1
π

A(z, ζ) =
1
ζ
(1− zζ)−1 − 1

ζ
+

zζ
2

(1− zζ)2
(|z|2 − 1)

+ 2ζ

(
− 1

π

∫

D

t dA(t)
(t− z)(1− tζ)(1− tζ)

)
. (3)

Since, − 1
π B(z, ζ) = − 1

π

∫
D

tζ(tζ−1+1) dA(t)

(t−z)(1−tζ)(1−tζ)
, we get

− 1
π

B(z, ζ) = −ζ

(
− 1

π

∫

D

t dA(t)
(t− z)(1− tζ)

)

+ ζ

(
− 1

π

∫

D

t dA(t)
(t− z)(1− tζ)(1− tζ)

)
. (4)

It follows from (1), (3) and (4) that

H0(z, ζ) =
1
π

(
1
ζ
(1− zζ)−1 − 1

ζ

)
+

1
π

zζ
2

(1− zζ)
(|z|2 − 1)

+
2ζ

π

(
− 1

π

∫

D

t dA(t)
(t− z)(1− tζ)

)
.
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Applying Cauchy-Green formula again, we obtain

H0(z, ζ) =
1
π

(
1
ζ
(1− zζ)−1 − 1

ζ

)
+

1
π

zζ
2

(1− zζ)
(|z|2 − 1) +

2ζ

π

|z|2 − 1
1− zζ

. (5)

Let P,Q, R : L2(D) → L2(D) be linear operators defined by

Pf(z) =
1
π

∫

D

(
∞∑

n=1
znζn−1)f(ζ) dA(ζ),

Qf(z) =
1
π

∫

D

(
∞∑

n=1
(n + 2)(|z|2 − 1)znζ

n+1
)f(ζ) dA(ζ),

Rf(z) =
2
π

∫

D

ζf(ζ) dA(ζ) · (|z|2 − 1).

Then, it follows from (5) that CPh = P + Q + R. Since P ∗Q = Q∗P = 0 and
QP ∗ = PQ∗ = 0, we obtain

Nt(P + Q) = Nt(P ) +Nt(Q). (6)

Since

Pf =
∞∑

n=1

〈f, en−1〉en(z) · 1√
n(n + 1)

,

where en(z) =
√

n+1
π zn, n = 0, 1, . . . , we obtain

sn(P ) =
1√

n(n + 1)
∼ 1

n
,

and so
lim

t→0+
tNt(P ) = 1. (7)

Consider the sequence fn(z) = 1√
2π

(|z|2− 1)zn
√

(n + 1)(n + 2)(n + 3), n ≥ 1.
The system (fn)∞n=1 is orthogonal on L2(D).

Notice that

Qf(z) =
∞∑

n=1

√
2√

(n + 1)(n + 3)
〈f, en+1〉fn(z);

hence we have

sn(Q) =
√

2√
(n + 1)(n + 3)

∼
√

2
n

and so
lim

t→0+
tNt(Q) =

√
2. (8)

It follows from (6), (7) and (8) that

lim
t→0+

tNt(P + Q) =
√

2 + 1.
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Putting t = sn(P + Q) in the previous equality, we obtain

sn(P + Q) ∼
√

2 + 1
n

, n →∞. (9)

Since the rank of R is one, according to Ky-Fan theorem ([5], p. 52), it follows from
(9) that

sn(CPh) ∼ 1 +
√

2
n

, n →∞.

Conjecture. For arbitrary bounded, simple connected domain Ω ⊂ C having
analytic boundary,

lim
n→∞

nsn(CPΩ
h ) = d

holds.
Here, PΩ

h denotes Bergman projection on L2
h(Ω) (L2

h(Ω) is the space of harmon-
ic functions on Ω), and the constant d depends on Ω. There are some indications
that d = 1+

√
2

2π |∂Ω|, where |∂Ω| denotes the length of the boundary of Ω.
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