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ON A UNIQUENESS THEOREM IN THE INVERSE
STURM-LIOUVILLE PROBLEM

T. N. Harutyunyan

Abstract. We introduce new supplementary data to the set of eigenvalues, to determine
uniquely the potential and boundary conditions of the Sturm-Liouville problem. As a corollary
we obtain extensions of some known uniqueness theorems in the inverse Sturm-Liouville problem.

1. Introduction and statement of the result

Let L(q,«,3) denote the Sturm-Liouville problem

ty=—y" +ql@)y=py, z€(0,m), necC, (1.1)
y(0)cosa+ 9/ (0)sina =0, « € (0,n], (1.2)
y(r)cos B+ o/ (m)sin =0, < [0,7), (13)

where ¢ is a real-valued, summable on [0, 7] function (we write ¢ € L{|[0,n]).
By L(q,«, 3) we also denote the self-adjoint operator, generated by the problem
(1.1)—(1.3). It is known, that the spectrum of L(q, «, 3) is discrete and consists
of simple eigenvalues (see [1], [2]), which we denote by un(g,a,5), n =0,1,2,...,
emphasizing the dependence of u, on ¢, a and (.

Let y = ¢(x, p, v, q) and y = ¢(x, u, B, q) be the solutions of (1.1) with initial
values

50(07%04,(1) = sina, cp’(O,,ma,q) = —cosa
w(ﬂ-’,uﬂﬂ7q):Sinﬁa w/(ﬂ-uuﬂﬁ7Q):_Cosﬁ'
The eigenvalues p,, of L(q, o, 3) are the solutions of the equation
def .
X(1) = ol ps ) cos B+ ¢/ (m, p, @) sin 3
— [0, . B) cos  + (0, 1, B) sin a] = 0. (1.4)
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It is casy to see, that pu(@) < (e (g B).anq) and w(z) X

¥ (z, pn(g, o, B), B,q), n =0,1,2,..., are the eigenfunctions, corresponding to the
eigenvalue i, (q, o, ). The squares of the L2-norm of these eigenfunctions:

an = an(q, . B) = /0 " 2 () da, (15)

are usually called the norming constants.

Since all eigenvalues are simple, there exist constants ¢, = ¢,(q,a, ), n =
0,1,2,..., such that

The main result of this paper is the following “uniqueness” theorem (in inverse
problem):

THEOREM 1. If for alln=0,1,2,...

pn(qrsan, Br) = pn(qe, a2, Ba), (A)
Cn(qlvahﬂl) :Cn(q25a2752)7 (B)

then oy = ag, B1 = B2 and q1(x) = q2(x) almost everywhere (a.e.) on [0, x].

The problem L(q, «, 3) is called “even” if a + = 7w and ¢(m — z) = ¢(x) a.e.
on [0,7].

COROLLARY. The problem L(q, «, 3) is even if and only if ¢, (g, a, ) = (—1)™.

The inverse Sturm-Liouville problems were stated and solved in different ver-
sions (see, for example, [3]-[18]). We will consider below the connections between
some of the known uniqueness theorems and our Theorem 1 and its corollary (see
§5, Theorems 1’, 2, 2/, 3).

2. Some preliminary results

LEMMA 1. Let (o, 3,q) € (0,7] x [0,7) x Lg[0,7]. Then, for n > 1 (except
/'[/O(a7ﬁaq))
pin(@, 3,0) = [+ n(ev, B)] + [g] + 7, B,0) (21)

fo7r q(z) dx,

3=

where [q] =

COos &

\/[n + n(av, B)) sin? a + cos? a

on(a, B) = % arccos

cos 3
— arccos ,

It 6l ) sin® B+ cos? 5
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and ry, = (o, B,q) = o(1), when n — oo, uniformly by a, 8 € [0,7], and g from
bounded subsets of L [0,m]. The well-known asymptotics

(e, 5,0) = n® + 2 (et — ctga) +[a] + Fue,f0), if sma#£0,sinB#0,

(2.2)
1 _ .
8.0 = (n+2) 4 Zetgs sl +7ulB0, s A0 (3€ (0.7,
(2.3)
1\? B L
tn(a, 0,q) ( +2) —fctga—&—[ |+ 7nla, q),if sina # 0, (a € (0,7)), o)
pn(7,0,9) = (n+1)* + [g] + 7 (q), (2.5)

where 7, = o(1) (but this estimate is not uniform in (o, §) € [0,7]), are the partic-
ular cases of (2.1). The sequence {6, (cv, B)},~ | has the limit

0, if a,p0¢€(0,m),
500(04,,6) = %a Zf a =T, 6 € (Oaﬂ—) or Oé(O,W), ﬂ =0, (26)
1, ifa=m =0.

For the proof and the details of Lemma 1 see paper [19].
Let y;(z, u,q), i = 1,2, be the solutions of (1.1) with initial values

yl(()nu,(J) = yé(oa/uﬁ(D = 17

Y10, 11, q) = y2(0, 1, q) = 0.
It is clear, that

gD(iL’, M, @, q) = (.’ﬂ, My q) sina — yQ(xv Hs Q) cos a. (27)
LEMMA 2. 1) Let g € L§[0,7]. Then

oo
Y1 (2, \2,q) = cos Az + ot / q(s) ds +
0

2\
1 T ) e|Irn)\|a:
+ oY q(s)sin A(z — 2s)ds + O e ) (2.8)
0
o _ sindz  cosAz (7
y2(2, 0%, 4) = —— — i /O q(s)ds +

1 z \ Y o €|Im Az
+ﬁ | q(s)cos A(x — 2s)ds + e
(2.9)
In particular (for real \)

inAr [T 1
y1(7r,)\2,q):cos)\7r+sn2l>\7r/ q(s)ds—i—o()\), A — +oo,
0 (2.10)

sin A\wm cos Aw

T 1
y2(”;)\2,4)=7—72/ Q(S)ds+0<2>, A — +o00.
A 222, A (2.11)
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Also
Y (z, A%, q) = —Asinmz + O (e“m’\l‘”) , (2.12)
e\ImMr
yh(x, A%, q) = cos \x + O ( o ) ) (2.13)

2) For p = —t* = (it)> — —oo (t — +00)
te;t [sina-sinB+O(1)], if sina#0, sin3+#0,
x(w) =x(=t*) = ¢ < [sinp+0(1)], if snB#£0, a=m  (214)
S +ob)], ifa=m B=0,

3) Let q € L [0, 7). Then

oo

o(m, 1, 0,0) = Y (T, pin 0, q) - H fom 1 (2.15)

n=0 m;ﬁn
m=0

Proof. 1) The asymptotic formulae (2.8)—(2.13) are proved in detail in [19], or
they are corollaries of the results of [19] (see also [8]). For ¢ € L?[0, 7] they can be
found in [10], [11] and other papers.

2) Relation (2.14) is the corollary of (1.4), (2.7) and (2.8)—(2.13).

3) For ¢ € L{[0,7] (2.15) is proved in [11] (more detailed proof is presented in
[17]). For ¢ € L{ [0, 7] the proof is the same. m

Now we establish some connections between spectral data. The following for-
mula is well known (see, e.g., [18], (2.8))

/0 cpi(ac) dx = 50/(7"7:“11)' 7T /~Ln ‘2 77 Nn : 7T ,Un)
(}(m,u) = ;Mf(x,,u)) which is equivalent to (see (1.4), (1.5, (1.6))

an(q, 0, B) = —cn(g; @, B) - X(tn)- (2.16)
By definition (1.6) we have, that (o € (0, 7))

cala.0,0) = EELARCDOD) g0 (520 )

and
Cn(qvaao) = _90/ (Waun(qvaao)va) . (218)
The normalized eigenfunctions h,, we define as

_ on()
hn(x) = lonll (2.19)
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Now we present the definitions of spectral data £, = £,(g,,3), which were in-
troduced in [10], [11] and [17] (as supplementary data to eigenvalues), and their
connection with our spectral data ¢,, = ¢, (q, «, 3), that follows from 1.6 and (2.17)—
(2.19).

én(qaavﬁ) = ]'Og _(_l)n : Zzgg))] :log [(—1)"cn(q7a,ﬂ) : ziig} 5

if sina # 0,sin 5 # 0, (2.20)
bolam,0) = log | (-1)" - 3218 <log (-1 a,7,6) -sin .

if sin8 #0,a =, (2.21)
gn(‘]7a70) = 10g _(71)n+1 : Z::((/g)):| :log |:(1)ncn(Q7a70) : Sil’la:| )

if sina £ 0, 8 =0, (2.22)
4, (q,m,0) =log _(—1)” . ZZ((S;] =log[(—1)"¢cn(q, 7, 0)],ifa =m, =0.

(2.23)

3. The proof of Theorem 1

We prove Theorem 1 in 4 steps. At first we consider the case a; = 7, 1 = 0.
From condition (A), (2.1) and (2.5) we obtain (n =0,1,2,...)

(n+1)% + [q1] + Falqr, 7,0) = (n+ dn(az, B2))? + [a2] + (g2, 02, B2).

It follows easily that J,(as2,32) — 1, when n — oco. According to (2.6), it is
possible only if ap = 7, f2 = 0. Then, from condition (B) and (2.23), we obtain
ln(q1,7,0) = £,(ga,m,0) forn =0,1,2,..., and we can repeat the proof of Theorem
5, chapter III, of [10], page 62, to obtain ¢;(z) = g2(x), a.e.

REMARK. The uniqueness theorems in [10], [11] and [17] are proved under
condition q1, g2 € L% [0, 7], but they are true also for g1, g2 € Ly [0, 7], because the
asymptotic formulae and estimates (see (2.8)—(2.13)) for solutions of (1.1) (which
are used particularly to prove that some contour integrals tend to zero) are true
also for ¢ € L'[0, 7], as it is proved in details in [20].

Secondly, we consider the case a3 = m, 8 € (0,7). Then condition (A) gives

(3.1)

y (2.1) and (2.3). It easy to prove from (3.1), that lim, n(ag,ﬂg) = 3, and
y (2.6) it is possible only if ag =, B2 € (0,7) or ag € (0,7), B2 =

In the case ag =7, B2 € (0,7) we have

us
2
(r )+ 2ot o]+ ralar,m 50) = -+ (o )+ ]+ 7,02, )
b :
b

2 2
—ctg f1 + [q1] = = ctg B2 + [q2]
™ ™
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by (3.1) and (2.3). Also

yz(ﬂ'“un, ql) _ y2(7T,MmQ2)

sin ,81 sin ﬂg

by condition (B) and (2.17). Together with (A) and (2.15) we obtain

ya(mo g 1) _ 2(ms 1y 42)

3.2
sin (1 sin Go (3:2)
for all 4 € C. Substituting = (n + %)2 in (3.2), by (2.11) we obtain
2
Y2 (7?7 (n+3) »ql) 1| (=) o(1) 1| (=) o(1)
. - l + 1 2 - . l + 1 2
sin 31 sin 3y n+ 3 (n—|—§) sin (o n+3 (n—|—§)
It follows that sin 3; — sin 8 = ;Z-(:i’ i.e. sin B = sin fBa. Then, by (2.21), we have
2

lo(q1,m,01) = ln(q2,m,B2), n =0,1,2..., and we can repeat the proof of Theorem
3 in [17] to obtain f; = B2 and ¢1(z) = ¢2(x), a.e.

In the case as € (0,7), B2 = 0 from condition (B), according to (2.17) and
(2.18) L2ted) — _/(7 1, 9, q2) and by (2.11), (2.7), (2.12) and (2.13) we
obtain

1 SIn\/lby ™ COS/fin T /7r o(1) }
- - qi(s)ds+ —=; =
S111 ﬁl { vV Hn 2,u/n 0 ! ( ) HUn

= (Vi sin i 7+ O(1)} sin g + {cos\/,m +0 (\/%) } cosa.

Since sin 81 # 0 and sin ay # 0, the last equality is impossible (the left-hand side
tends to zero, when n — oo, but the right-hand side does not). Thus in the case
ay =, B1 € (0,7), Theorem 1 is also proved.

The third case is aq € (0,7), 1 = 0. In this case from condition (A), (2.1)
and (2.4) we obtain

2
(e 5) = Zctean+ o]+ ra(01,00,0) = [0+ B )]+ ]+ 1o o)

From this equality it follows easily that lim,_ . 0, (2, 82) = %, and therefore,

either aig = m, O3 € (0,7) (as proved above, this case is impossible), or as € (0,7),
B2 = 0. Similarly to the second case, we prove that sin«; = sinas and by (2.16)
we obtain that £, (g1, a1,0) = £,(g2, a2,0). According to Theorem 4 of [17] we get
a1 = ag and q;(z) = go(x), a.e.

The fourth and the last case is sina; # 0 and sinf; # 0, i.e. «1,01 €
(0,7). The cases ag = m or S = 0 are impossible, since they reduce to cas-
es I, IT or III. Therefore as,B2 € (0,7). It follows from (A) and (2.2) that
limp, oo (fn(q1, a1, B1) —n?) = 2 (ctgoq — ctg B1) + = [ @i(t) dt =
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= lim, (,un(qg,ag,ﬁg) - n2) = %(ctg ag — ctg B2) + [g2]. Also we have by
(A), (B) and (217) QD(TF,,U/n,Oél,q1) — @(71-’/-1/7170427QQ)

. Then, by (2.15) we obtain

sin 3y sin (G
@(77%0&1,111) = <p(7r,%z,a2,q2) for all u € C. Now, by (2.7), (2.10) and (2.11) for
sin 34 sin By

i = n? we have

o(m,n? a1, q)  sino {(_1)n L0 1)}

sin 3y sin 3y n
sin av o(1 m,n%, o,
- 2 (—1)" + ) _ o : 2,q2)
sin (o n sin (o

sina;  sinag
sin3;  sin B3y
ln(q2, 2, 32), n =0,1,2,..., and by the uniqueness theorem of [11] we have that
a1 = ag, f1 = B2 and ¢1(x) = ¢2(x), a.e. The proof of Theorem 1 is complete. m

and it follows easily that . Thus, by (2.20) we obtain ¢,,(q1, a1, 81) =

4. Proof of the Corollary

Let ¢*(x) def q(m — z). Tt is easily verified that (see [11])

o(m =z, 1, 0,4") = (a, p, 7 — a,q) (4.1)
and
pn(q, @, B) = pn(q",m = B, —a),  n=0,1,2,.... (4.2)
LEMMA 3. For alln=0,1,2,..., a € (0,7] and 8 € [0, 7) the equality
(g, 0, B) - en (¢ m = B,m —a) =1 (4.3)
18 true.

Proof. By (4.1), (4.2) and (1.6)

(@, pn(q, @, 8),8,9) = o (m =z, pn(q, @, B), = B,47)
=p(m—a,pn ("7 = f,m—a), 7= B.q)
=c, (¢, m—p,r—a)Y(m—x,un (¢F,m— B, —a),m—a,q")
=cn (¢ m—f,m—a) @z, pn (g, 0),a,q)
=cu (¢, m—=0,m—a)-calg,a,B) ¥ (2,10 (¢, 3), B, q) -

It follows that (4.3) holds true.

To prove the sufficiency we note that if ¢, (g, a, 8) = (—1)", then
en (¢*,m— By —a) = (—=1)" by (4.3) and since un(q, a, 8) = pn(q¢*, 7 — 3,71 — @),
then ¢(z) = ¢*(x) and a = 7 — 8 by Theorem 1.

If problem L(q,a, ) is even, ie. g(m — z) = ¢(z) and a + 8 = =, then
(g, ) = 1 by (4.3). Since the roots s, of function x(u) are simple, then (s, )
and ;((/,Ln+1) have the different sign and since a,, > 0, it follows that ¢, and ¢, 1
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have the different sign by a, = —¢, - X(in) (see (2.16)). If we show that y(ug) < 0,
we will obtain that co(q, o, 3) = 1 = (=1)° and therefore ¢, (q, a, 3) = (—1)".

Really, it follows from (2.14) that when p changes from —oo to pg, x () changes
from 400 to 0, i.e. )OC(,uo) < 0. The proof of corollary is complete. m

5. Some extentions

Following reasons, very similar to the proof of Theorem 1, we see that the
following holds.

THEOREM 2. Let (o, Bi,q;) € (0,7 x [0,7) x Lg[0,7], i = 1,2. If
pn(qr, a1, B1) = pn(ge, az,B2) and €n(qi,a1,61) = ln(g2, a2, B2) for all n =
0,1,2,..., then a1 = e, B1 = P2 and ¢1(z) = g2(x), a.e.

If, following [11], we introduce the set
M (p, ao, Bo) = {(g,a, ) € L[0, 7] x (0, 7] x [0,7) :
,UO(Q7 aaﬂ) = :u‘ﬂ(pa a0760)7 n 2 0} 5

then we can formulate next theorem (in terms of [11]), which follows from Theorem
1 and its Corollary.

THEROEM 1°. (i) The mapping
(@, 8,9) € (0,7] x [0,7) x Lg[0,7] = (1n(q, @, B), en(q, @, ) n > 0)

is one to one. Equivalently, the mapping

(Qaa76) € M(pa O‘Oaﬂ()) = (Cn(Q7a,ﬁ) n 2 O)
s one to one.

(i) The mapping
(00, 8) € Ly [0, 7] x (0,7] x [0,7) = (tn(q, o, B); n > 0)

is one to one when restricted to the subset of even points (i.e. a+ 08 =7, q¢(m —x) =
q(z)) in L{[0,7] x (0,7] x [0, 7).

If in Theorem 1’ we change ¢, (g, a, 3) to £,(q,«, 3) we obtain a proposition
(call it Theorem 2’), which follows from Theorem 2 and its Corollary (see [11]:
L(q,a, ) even if and only if £,(q,«,3) = 0, n > 0), and which not only joins the
uniqueness theorems of [10], [11] and [17], but also extend them.

Also the connection (2.16) shows that Theorem 1 is equivalent to

THEOREM 3. Let (o, Bi,q:) € (0,7 x [0,7) x Ly[0,7], i = 1,2. If
pn(qr,on, ) = pn(qe,a2,B82) and an(qi,a1,01) = an(q2,az,B2) for all n =
0,1,2,..., then a1 = s, B1 = P2 and ¢1(z) = g2(x), a.e.

Of course, it is a variant of the Theorem of Marchenko [8] for finite inter-
vals, which is usually (][9], [16], [21]) formulated for «;, 3; € (0,7), with condition
an(gr, 01, 81) _ an(g2, a2, B2)

) = ) instead of @n(QhOKLﬁl) = an(QQ,OéQ,ﬁQ).
sin” o sin” a
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