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ON A UNIQUENESS THEOREM IN THE INVERSE
STURM-LIOUVILLE PROBLEM

T. N. Harutyunyan

Abstract. We introduce new supplementary data to the set of eigenvalues, to determine
uniquely the potential and boundary conditions of the Sturm-Liouville problem. As a corollary
we obtain extensions of some known uniqueness theorems in the inverse Sturm-Liouville problem.

1. Introduction and statement of the result

Let L(q, α, β) denote the Sturm-Liouville problem

`y ≡ −y′′ + q(x)y = µy, x ∈ (0, π), µ ∈ C, (1.1)

y(0) cos α + y′(0) sin α = 0, α ∈ (0, π], (1.2)

y(π) cos β + y′(π) sin β = 0, β ∈ [0, π), (1.3)

where q is a real-valued, summable on [0, π] function (we write q ∈ L1
R[0, π]).

By L(q, α, β) we also denote the self-adjoint operator, generated by the problem
(1.1)–(1.3). It is known, that the spectrum of L(q, α, β) is discrete and consists
of simple eigenvalues (see [1], [2]), which we denote by µn(q, α, β), n = 0, 1, 2, . . . ,
emphasizing the dependence of µn on q, α and β.

Let y = ϕ(x, µ, α, q) and y = ψ(x, µ, β, q) be the solutions of (1.1) with initial
values

ϕ(0, µ, α, q) = sin α, ϕ′(0, µ, α, q) = − cosα

ψ(π, µ, β, q) = sin β, ψ′(π, µ, β, q) = − cosβ.

The eigenvalues µn of L(q, α, β) are the solutions of the equation

χ(µ) def= ϕ(π, µ, α) cos β + ϕ′(π, µ, α) sin β

= − [ψ(0, µ, β) cos α + ψ′(0, µ, β) sin α] = 0. (1.4)
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It is easy to see, that ϕn(x) def= ϕ (x, µn(q, α, β), α, q) and ψn(x) def=
ψ (x, µn(q, α, β), β, q), n = 0, 1, 2, . . . , are the eigenfunctions, corresponding to the
eigenvalue µn(q, α, β). The squares of the L2-norm of these eigenfunctions:

an = an(q, α, β) =
∫ π

0

ϕ2
n(x) dx, (1.5)

are usually called the norming constants.

Since all eigenvalues are simple, there exist constants cn = cn(q, α, β), n =
0, 1, 2, . . . , such that

ϕn(x) = cn · ψn(x). (1.6)

The main result of this paper is the following “uniqueness” theorem (in inverse
problem):

Theorem 1. If for all n = 0, 1, 2, . . .

µn(q1, α1, β1) = µn(q2, α2, β2), (A)

cn(q1, α1, β1) = cn(q2, α2, β2), (B)

then α1 = α2, β1 = β2 and q1(x) = q2(x) almost everywhere (a.e.) on [0, π].

The problem L(q, α, β) is called “even” if α + β = π and q(π − x) = q(x) a.e.
on [0, π].

Corollary. The problem L(q, α, β) is even if and only if cn(q, α, β) = (−1)n.

The inverse Sturm-Liouville problems were stated and solved in different ver-
sions (see, for example, [3]–[18]). We will consider below the connections between
some of the known uniqueness theorems and our Theorem 1 and its corollary (see
§5, Theorems 1′, 2, 2′, 3).

2. Some preliminary results

Lemma 1. Let (α, β, q) ∈ (0, π] × [0, π) × L1
R[0, π]. Then, for n > 1 (except

µ0(α, β, q))
µn(α, β, q) = [n + δn(α, β)]2 + [q] + rn(α, β, q) (2.1)

where [q] = 1
π

∫ π

0
q(x) dx,

δn(α, β) =
1
π


arccos

cos α√
[n + δn(α, β)]2 sin2 α + cos2 α

− arccos
cosβ√

[n + δn(α, β)]2 sin2 β + cos2 β


 ,
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and rn = rn(α, β, q) = o(1), when n → ∞, uniformly by α, β ∈ [0, π], and q from
bounded subsets of L1

R[0, π]. The well-known asymptotics

µn(α, β, q) = n2 +
2
π

(ctg β − ctg α) + [q] + r̃n(α, β, q), if sin α 6= 0, sin β 6= 0,
(2.2)

µn(π, β, q) =
(

n +
1
2

)2

+
2
π

ctg β + [q] + r̃n(β, q), if sin β 6= 0 (β ∈ (0, π)),
(2.3)

µn(α, 0, q) =
(

n +
1
2

)2

− 2
π

ctg α + [q] + r̃n(α, q), if sin α 6= 0, (α ∈ (0, π)),
(2.4)

µn(π, 0, q) = (n + 1)2 + [q] + r̃n(q), (2.5)

where r̃n = o(1) (but this estimate is not uniform in (α, β) ∈ [0, π]), are the partic-
ular cases of (2.1). The sequence {δn(α, β)}∞n=1 has the limit

δ∞(α, β) =





0, if α, β ∈ (0, π),
1
2 , if α = π, β ∈ (0, π) or α(0, π), β = 0,

1, if α = π, β = 0.

(2.6)

For the proof and the details of Lemma 1 see paper [19].
Let yi(x, µ, q), i = 1, 2, be the solutions of (1.1) with initial values

y1(0, µ, q) = y′2(0, µ, q) = 1,

y′1(0, µ, q) = y2(0, µ, q) = 0.

It is clear, that
ϕ(x, µ, α, q) ≡ y1(x, µ, q) sin α− y2(x, µ, q) cos α. (2.7)

Lemma 2. 1) Let q ∈ L1
C[0, π]. Then

y1(x, λ2, q) = cos λx +
sin λx

2λ

∫ x

0

q(s) ds +

+
1
2λ

∫ x

0

q(s) sin λ(x− 2s) ds + O

(
e|Im λ|x

|λ|2
)

, (2.8)

y2(x, λ2, q) =
sin λx

λ
− cos λx

2λ2

∫ x

0

q(s) ds +

+
1

2λ2

∫ x

0

q(s) cos λ(x− 2s) ds + O

(
e|Im λ|x

|λ|3
)

.
(2.9)

In particular (for real λ)

y1(π, λ2, q) = cos λπ +
sin λπ

2λ

∫ π

0

q(s) ds + o

(
1
λ

)
, λ → +∞,

(2.10)

y2(π, λ2, q) =
sin λπ

λ
− cosλπ

2λ2

∫ π

0

q(s) ds + o

(
1
λ2

)
, λ → +∞.

(2.11)



142 T. N. Harutyunyan

Also

y′1(x, λ2, q) = −λ sin πx + O
(
e|Im λ|x

)
, (2.12)

y′2(x, λ2, q) = cosλx + O

(
e|Im λ|x

|λ|
)

. (2.13)

2) For µ = −t2 = (it)2 → −∞ (t → +∞)

χ(µ) = χ(−t2) =





teπt

2

[
sinα · sinβ + O( 1

t )
]
, if sinα 6= 0, sinβ 6= 0,

eπt

2

[
sinβ + O( 1

t )
]
, if sinβ 6= 0, α = π,

eπt

2t

[
1 + O( 1

t )
]
, if α = π, β = 0,

(2.14)

3) Let q ∈ L1
R[0, π]. Then

ϕ(π, µ, α, q) =
∞∑

n=0

ϕ(π, µn, α, q) ·
∞∏

m 6=n
m=0

µm − µ

µm − µn
. (2.15)

Proof. 1) The asymptotic formulae (2.8)–(2.13) are proved in detail in [19], or
they are corollaries of the results of [19] (see also [8]). For q ∈ L2[0, π] they can be
found in [10], [11] and other papers.

2) Relation (2.14) is the corollary of (1.4), (2.7) and (2.8)–(2.13).
3) For q ∈ L2

R[0, π] (2.15) is proved in [11] (more detailed proof is presented in
[17]). For q ∈ L1

R[0, π] the proof is the same.
Now we establish some connections between spectral data. The following for-

mula is well known (see, e.g., [18], (2.8))
∫ π

0

ϕ2
n(x) dx = ϕ′(π, µn) · ◦ϕ(π, µn)− ◦

ϕ′(π, µn) · ϕ(π, µn)

(
◦
f(x, µ) =

∂

∂µ
f(x, µ)) which is equivalent to (see (1.4), (1.5, (1.6))

an(q, α, β) = −cn(q, α, β) · ◦χ(µn). (2.16)

By definition (1.6) we have, that (α ∈ (0, π])

cn(q, α, β) =
ϕ(π, µn(q, α, β), α, q)

sin β
, sin β 6= 0 (β 6= 0) (2.17)

and
cn(q, α, 0) = −ϕ′ (π, µn(q, α, 0), α) . (2.18)

The normalized eigenfunctions hn we define as

hn(x) =
ϕn(x)
‖ϕn‖ . (2.19)
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Now we present the definitions of spectral data `n = `n(q, α, β), which were in-
troduced in [10], [11] and [17] (as supplementary data to eigenvalues), and their
connection with our spectral data cn = cn(q, α, β), that follows from 1.6 and (2.17)–
(2.19).

`n(q, α, β) = log
[
(−1)n · hn(π)

hn(0)

]
= log

[
(−1)ncn(q, α, β) · sin β

sin α

]
,

if sin α 6= 0, sin β 6= 0, (2.20)

`n(q, π, β) = log
[
(−1)n · hn(π)

h′n(0)

]
= log [(−1)ncn(q, π, β) · sin β] ,

if sin β 6= 0, α = π, (2.21)

`n(q, α, 0) = log
[
(−1)n+1 · h′n(π)

hn(0)

]
= log

[
(−1)ncn(q, α, 0) · 1

sin α

]
,

if sin α 6= 0, β = 0, (2.22)

`n(q, π, 0) = log
[
(−1)n · h′n(π)

h′n(0)

]
= log [(−1)ncn(q, π, 0)] , if α = π, β = 0.

(2.23)

3. The proof of Theorem 1

We prove Theorem 1 in 4 steps. At first we consider the case α1 = π, β1 = 0.
From condition (A), (2.1) and (2.5) we obtain (n = 0, 1, 2, . . . )

(n + 1)2 + [q1] + r̃n(q1, π, 0) = (n + δn(α2, β2))
2 + [q2] + rn(q2, α2, β2).

It follows easily that δn(α2, β2) → 1, when n → ∞. According to (2.6), it is
possible only if α2 = π, β2 = 0. Then, from condition (B) and (2.23), we obtain
`n(q1, π, 0) = `n(q2, π, 0) for n = 0, 1, 2, . . . , and we can repeat the proof of Theorem
5, chapter III, of [10], page 62, to obtain q1(x) = q2(x), a.e.

Remark. The uniqueness theorems in [10], [11] and [17] are proved under
condition q1, q2 ∈ L2

R[0, π], but they are true also for q1, q2 ∈ L1
R[0, π], because the

asymptotic formulae and estimates (see (2.8)–(2.13)) for solutions of (1.1) (which
are used particularly to prove that some contour integrals tend to zero) are true
also for q ∈ L1[0, π], as it is proved in details in [20].

Secondly, we consider the case α1 = π, β ∈ (0, π). Then condition (A) gives
us
(

n +
1
2

)2

+
2
π

ctg β1 + [q1] + rn(q1, π, β1) = [n + δn(α2, β2)]
2 + [q2] + rn(q2, α2, β2)

(3.1)
by (2.1) and (2.3). It easy to prove from (3.1), that limn→∞ δn(α2, β2) = 1

2 , and
by (2.6) it is possible only if α2 = π, β2 ∈ (0, π) or α2 ∈ (0, π), β2 = 0.

In the case α2 = π, β2 ∈ (0, π) we have

2
π

ctg β1 + [q1] =
2
π

ctg β2 + [q2]
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by (3.1) and (2.3). Also

y2(π, µn, q1)
sin β1

=
y2(π, µn, q2)

sin β2

by condition (B) and (2.17). Together with (A) and (2.15) we obtain

y2(π, µ, q1)
sin β1

=
y2(π, µ, q2)

sin β2
(3.2)

for all µ ∈ C. Substituting µ =
(
n + 1

2

)2 in (3.2), by (2.11) we obtain

y2

(
π,

(
n + 1

2

)2
, q1

)

sin β1
=

1
sinβ1

[
(−1)n

n + 1
2

+
o(1)(

n + 1
2

)2

]
=

1
sin β2

[
(−1)n

n + 1
2

+
o(1)(

n + 1
2

)2

]
.

It follows that sin β1 − sin β2 = o(1)

n+ 1
2
, i.e. sin β1 = sin β2. Then, by (2.21), we have

`n(q1, π, β1) = `n(q2, π, β2), n = 0, 1, 2 . . . , and we can repeat the proof of Theorem
3 in [17] to obtain β1 = β2 and q1(x) = q2(x), a.e.

In the case α2 ∈ (0, π), β2 = 0 from condition (B), according to (2.17) and
(2.18) y2(π,µn,q1)

sin β1
= −ϕ′(π, µn, α2, q2) and by (2.11), (2.7), (2.12) and (2.13) we

obtain

1
sinβ1

{
sin
√

µn π√
µn

− cos
√

µn π

2µn

∫ π

0

q1(s) ds +
o(1)
µn

}
=

= {−√µn sin
√

µn π + O(1)} sin α2 +
{

cos
√

µn π + O

(
1√
µn

)}
cosα2.

Since sin β1 6= 0 and sin α2 6= 0, the last equality is impossible (the left-hand side
tends to zero, when n → ∞, but the right-hand side does not). Thus in the case
α1 = π, β1 ∈ (0, π), Theorem 1 is also proved.

The third case is α1 ∈ (0, π), β1 = 0. In this case from condition (A), (2.1)
and (2.4) we obtain
(

n +
1
2

)2

− 2
π

ctg α1 + [q1] + rn(q1, α1, 0) = [n + δn(α2, β2)]
2 + [q2] + rn(q2, α2, β2)

From this equality it follows easily that limn→∞ δn(α2, β2) = 1
2 , and therefore,

either α2 = π, β2 ∈ (0, π) (as proved above, this case is impossible), or α2 ∈ (0, π),
β2 = 0. Similarly to the second case, we prove that sinα1 = sin α2 and by (2.16)
we obtain that `n(q1, α1, 0) = `n(q2, α2, 0). According to Theorem 4 of [17] we get
α1 = α2 and q1(x) = q2(x), a.e.

The fourth and the last case is sin α1 6= 0 and sin β1 6= 0, i.e. α1, β1 ∈
(0, π). The cases α2 = π or β2 = 0 are impossible, since they reduce to cas-
es I, II or III. Therefore α2, β2 ∈ (0, π). It follows from (A) and (2.2) that
limn→∞

(
µn(q1, α1, β1)− n2

)
= 2

π (ctg α1 − ctg β1) + 1
π

∫ π

0
qi(t) dt =
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= limn→∞
(
µn(q2, α2, β2)− n2

)
= 2

π (ctg α2 − ctg β2) + [q2]. Also we have by

(A), (B) and (2.17)
ϕ(π, µn, α1, q1)

sin β1
=

ϕ(π, µn, α2, q2)
sin β2

. Then, by (2.15) we obtain

ϕ(π, µ, α1, q1)
sinβ1

=
ϕ(π, µ, α2, q2)

sin β2
for all µ ∈ C. Now, by (2.7), (2.10) and (2.11) for

µ = n2 we have

ϕ(π, n2, α1, q1)
sin β1

=
sin α1

sin β1

{
(−1)n +

o(1)
n

}

=
sin α2

sin β2

{
(−1)n +

o(1)
n

}
=

ϕ(π, n2, α2, q2)
sin β2

and it follows easily that
sin α1

sin β1
=

sin α2

sinβ2
. Thus, by (2.20) we obtain `n(q1, α1, β1) =

`n(q2, α2, β2), n = 0, 1, 2, . . . , and by the uniqueness theorem of [11] we have that
α1 = α2, β1 = β2 and q1(x) = q2(x), a.e. The proof of Theorem 1 is complete.

4. Proof of the Corollary

Let q∗(x) def= q(π − x). It is easily verified that (see [11])

ϕ(π − x, µ, α, q∗) ≡ ψ(x, µ, π − α, q) (4.1)

and
µn(q, α, β) = µn(q∗, π − β, π − α), n = 0, 1, 2, . . . . (4.2)

Lemma 3. For all n = 0, 1, 2, . . . , α ∈ (0, π] and β ∈ [0, π) the equality

cn(q, α, β) · cn (q∗, π − β, π − α) = 1 (4.3)

is true.
Proof. By (4.1), (4.2) and (1.6)

ψ(x, µn(q, α, β), β, q) ≡ ϕ (π − x, µn(q, α, β), π − β, q∗)

≡ ϕ (π − x, µn (q∗, π − β, π − α) , π − β, q∗)

≡ cn (q∗, π − β, π − α)ψ (π − x, µn (q∗, π − β, π − α) , π − α, q∗)

≡ cn (q∗, π − β, π − α) · ϕ (x, µn (q, α, β) , α, q)

≡ cn (q∗, π − β, π − α) · cn(q, α, β) · ψ (x, µn (q, α, β) , β, q) .

It follows that (4.3) holds true.
To prove the sufficiency we note that if cn(q, α, β) = (−1)n, then

cn (q∗, π − β, π − α) = (−1)n by (4.3) and since µn(q, α, β) = µn(q∗, π − β, π − α),
then q(x) = q∗(x) and α = π − β by Theorem 1.

If problem L(q, α, β) is even, i.e. q(π − x) = q(x) and α + β = π, then
c2
n(q, α, β) = 1 by (4.3). Since the roots µn of function χ(µ) are simple, then

◦
χ(µn)

and
◦
χ(µn+1) have the different sign and since an > 0, it follows that cn and cn+1
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have the different sign by an = −cn · ◦χ(µn) (see (2.16)). If we show that
◦
χ(µ0) < 0,

we will obtain that c0(q, α, β) = 1 = (−1)0 and therefore cn(q, α, β) = (−1)n.
Really, it follows from (2.14) that when µ changes from −∞ to µ0, χ(µ) changes

from +∞ to 0, i.e.
◦
χ(µ0) < 0. The proof of corollary is complete.

5. Some extentions

Following reasons, very similar to the proof of Theorem 1, we see that the
following holds.

Theorem 2. Let (αi, βi, qi) ∈ (0, π] × [0, π) × L1
R[0, π], i = 1, 2. If

µn(q1, α1, β1) = µn(q2, α2, β2) and `n(q1, α1, β1) = `n(q2, α2, β2) for all n =
0, 1, 2, . . . , then α1 = α2, β1 = β2 and q1(x) = q2(x), a.e.

If, following [11], we introduce the set

M(p, α0, β0) =
{
(q, α, β) ∈ L1

R[0, π]× (0, π]× [0, π) :

µ0(q, α, β) = µn(p, α0, β0), n > 0} ,

then we can formulate next theorem (in terms of [11]), which follows from Theorem
1 and its Corollary.

Theroem 1’. (i) The mapping

(α, β, q) ∈ (0, π]× [0, π)× L1
R[0, π] 7→ (µn(q, α, β), cn(q, α, β) n > 0)

is one to one. Equivalently, the mapping

(q, α, β) ∈ M(p, α0, β0) 7→ (cn(q, α, β) n > 0)

is one to one.
(ii) The mapping

(q, α, β) ∈ L1
R[0, π]× (0, π]× [0, π) 7→ (µn(q, α, β); n > 0) ,

is one to one when restricted to the subset of even points (i.e. α+β = π, q(π−x) =
q(x)) in L1

R[0, π]× (0, π]× [0, π).

If in Theorem 1’ we change cn(q, α, β) to `n(q, α, β) we obtain a proposition
(call it Theorem 2’), which follows from Theorem 2 and its Corollary (see [11]:
L(q, α, β) even if and only if `n(q, α, β) = 0, n > 0), and which not only joins the
uniqueness theorems of [10], [11] and [17], but also extend them.

Also the connection (2.16) shows that Theorem 1 is equivalent to

Theorem 3. Let (αi, βi, qi) ∈ (0, π] × [0, π) × L1
R[0, π], i = 1, 2. If

µn(q1, α1, β1) = µn(q2, α2, β2) and an(q1, α1, β1) = an(q2, α2, β2) for all n =
0, 1, 2, . . . , then α1 = α2, β1 = β2 and q1(x) = q2(x), a.e.

Of course, it is a variant of the Theorem of Marchenko [8] for finite inter-
vals, which is usually ([9], [16], [21]) formulated for αi, βi ∈ (0, π), with condition
an(q1, α1, β1)

sin2 α1

=
an(q2, α2, β2)

sin2 α2

instead of an(q1, α1, β1) = an(q2, α2, β2).
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