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MULTIPLICITIES OF COMPACT LIE GROUP REPRESENTATIONS
VIA BEREZIN QUANTIZATION

Benjamin Cahen

Abstract. Let G be a compact Lie group and π be a unitary representation of G on a
reproducing kernel Hilbert space. We study some applications of Berezin quantization to the
description of the irreducible decomposition of π.

1. Introduction

A general theory of quantization on Kähler manifolds was developed by F.A.
Berezin in [9], [10] and [11]. Berezin quantization has various applications to the
representation theory of Lie groups and Lie algebras. Let us mention some of them :
constructions of realizations of semisimple Lie algebras by holomorphic differential
operators [4], [8]; constructions of generalized Fourier transforms for compact Lie
groups [2], [23]; contractions of unitary irreducible representations of SU(n) to
unitary irreducible representations of an Heisenberg group [13], [14].

Here we are concerned with applications of Berezin quantization to the irre-
ducible decomposition of unitary representations of compact Lie groups. In [1],
Berezin quantization was used to study the restriction of a unitary irreducible
representation of a compact Lie group to a closed subgroup. Similarly, a new cri-
terion for Gel’fand pairs was obtained in [12] by means of Berezin quantization.
Furthermore, a method for weight multiplicity computation in representations of
semisimple compact Lie groups was introduced in [3]. This method is based on a
straightforward application of the Berezin quantization theory on flag manifolds.

The purpose of the present paper is to provide a general setting in which the
preceding applications fit naturally. To this aim, we consider a compact Lie group
G and a unitary representation of G on a Hilbert space H. We assume that H
is a reproducing kernel Hilbert space whose elements are functions on a manifold
M . This allows us to introduce the Berezin quantization on M . In Section 2,
we review some properties of the Berezin calculus on M which is a bijection from
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the class of all bounded operators on H onto a class of functions on M . We then
study the problem of decomposing π into its irreducible components in the context
of Berezin quantization (Section 3). In particular, we give some integral formulas
for the multiplicity of a unitary irreducible representation in π. Then, we recover
the results of [3] relative to the computation of weight multiplicities in the unitary
irreducible representations of a compact semisimple Lie group (Section 5). We also
study some examples in the case where H is infinite-dimensional (Section 6).

2. Generalities on Berezin quantization

In this section, we review some general facts on Berezin quantization [9], [10].
Let M be a locally compact second-countable Hausdorff space endowed with a

Radon measure µ̃. Let H be a reproducing kernel Hilbert space of square integrable
functions on M with respect to µ̃, that is, H is a Hilbert with respect to the L2-
norm and, for each x ∈ M , the evaluation map H 3 f 7→ f(x) is continuous. Then,
for each x ∈ M , there exists a unique function ex ∈ H such that

f(x) = 〈f, ex〉 =
∫

M

f(y)ex(y) dµ̃(y) (2.1)

for every f ∈ H. The function k(x, y) := ex(y) = 〈ex, ey〉 = 〈ey, ex〉 is called the
reproducing kernel of H.

Let G be a Lie group acting on M . We consider a cocycle α : G ×M → C∗,
the cocycle condition being

α(g1g2, x) = α(g1, g2 · x)α(g2, x) (2.2)

for all g1, g2 ∈ G and x ∈ M . There is an action π of G on the space of functions
on M , according to the formula

(π(g)f)(x) = α(g−1, x) f(g−1 · x).

We assume that π(g)(f) ∈ H for each g ∈ G and f ∈ H. Then π induces a
representation of G on H. The following proposition can be proved easily, see [5]
for instance.

Proposition 2.1. (1) The representation π is unitary if and only if we have

dµ̃(g · x) = |α(g, x)|2dµ̃(x) g ∈ G, x ∈ M (2.3)

(2) If the representation π is unitary then we have

(i) π(g)ex = α(g, x)eg·x g ∈ G, x ∈ M, (2.4)

(ii) k(g · x, g · y) = α(g, x)−1α(g, y)
−1

k(x, y) g ∈ G, x, y ∈ M. (2.5)
(iii) The measure dµ(x) := k(x, x)dµ̃(x) is G-invariant.

In the rest of this section and in the following section, we shall assume that
Condition (2.3) is fulfilled.
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Consider now a bounded operator A on H. The Berezin (covariant) symbol of
A is the function defined on M by

s(A)(x) =
〈Aex , ex〉
〈ex , ex〉 (2.6)

and the double Berezin symbol of A is the function defined by

S(A)(x, y) =
〈Aey , ex〉
〈ey , ex〉 (2.7)

for x, y ∈ M such that 〈ex, ey〉 6= 0 (see [9]). The operator A can be recovered from
its symbol as follows:

Af(x) = 〈Af , ex〉 = 〈f , A∗ ex〉 =
∫

M

f(y)A∗ ex(y) dµ̃(y)

=
∫

M

f(y)〈A∗ ex, ey〉 dµ̃(y) =
∫

M

f(y) S(A)(x, y)〈ey, ex〉 dµ̃(y).

In particular, the map A 7→ S(A) is thus injective. The following properties of the
Berezin symbols will be needed later.

Proposition 2.2. (1) If A is a trace-class operator on H then

Tr(A) =
∫

M

s(A)(x) dµ(x). (2.8)

In particular, we have that dimH < +∞ if and only if the integral
∫

M
dµ(x) exists

and, in this case, dimH =
∫

M
dµ(x).

(2) Let A be a bounded operator on H. Then we have

S(π(g−1)Aπ(g))(x, y) = S(A)(g · x, g · y) g ∈ G, x, y ∈ M. (2.9)

Proof. For Part (1), see [9]. Part (2) easily follows from (2.4).

3. Multiplicities and Berezin quantization

We retain the notation from Section 2. From now, we assume that the group
G is compact. Let π =

∑
σ m(σ)σ be the decomposition of π into G-irreducible

components. Let us assume moreover that the multiplicities m(σ) are finite. We
denote by Vσ the σ-isotypic component and by Pσ : H → Vσ ⊂ H the projection
operator on Vσ. Let χσ be the character of σ and d(σ) be the dimension of σ.
We denote by dg the normalized Haar measure on G. Finally, for g ∈ G, we set
E(g) = s(π(g)) and L(g) = S(π(g)).

Proposition 3.1. 1) The double Berezin symbol of Pσ is given by

S(Pσ)(x, y) = d(σ)
∫

G

L(g)(x, y)χσ(g−1) dg. (3.1)
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2) We have

m(σ) =
∫

M

dµ(x)
(∫

G

E(g)(x)χσ(g−1) dg

)
. (3.2)

Proof. 1) From elementary representation theory, we have Pσ = d(σ) ×∫
G

π(g)χσ(g−1) dg. Equation (3.1) then follows. 2) Applying Equation (2.8) to
the operator Pσ and using 1), we obtain the desired result.

Note that the integral
∫

M

∫
G

E(g)(x)χσ(g−1) dgdµ(x) does not exist in general,
as is shown by the following example.

Example 3.1. We take G to be the torus T = {eiθ | θ ∈ R} and H
to be the Hilbert space of all holomorphic functions on C such that ‖f‖2 :=
1
2π

∫
C
|f(z)|2e−|z|2/2 dx dy < +∞. We consider the unitary representation π

of T on H defined by (π(t)f)(z) = f(t−1z). Then H has reproducing kernel
k(w, z) = ez(w) = ezw/2 and we have L(t)(w, z) = e(t−1−1)zw/2.

For p ∈ Z, let χp be the character of T defined by χp(t) = t−p. For p ≥ 0, we
have ∫

T

E(t)(z)χp(t−1)dt = e−zz/2

∫

T

et−1zz/2tp dt =
1
p!

(
zz

2

)p

e−zz/2.

This implies that

m(χp) =
1
2π

∫

C

1
p!

(
zz

2

)p

e−zz/2 dx dy = 1

for p ≥ 0 and m(χp) = 0 for p < 0, as expected. On the other hand, the integral
∫

C

∫

T

|E(t)(z)χp(t−1)| dt dx dy =
1
2π

∫

C

∫ 2π

0

e(cos θ−1)|z|2/2 dθ dx dy

does not exist, as we see by taking polar coordinates.

Proposition 3.2. If H is finite-dimensional, then
1) the integral

∫
M

∫
G

E(g)(x)χσ(g−1) dg dµ(x) always exists,

2) the function F (g) =
∫

M
E(g)(x) dµ(x) is a class function, that is, F (hgh−1)

= F (g) for each g, h ∈ G.

Proof. 1) Clearly, we have |E(g)(x)| ≤ 1 for each g ∈ G and x ∈ M . The
result then follows from Proposition 2.2 (1). 2) Applying Proposition 2.2 (2) to the
operator π(g) (g ∈ G) we have

E(hgh−1)(x) = s(π(h)π(g)π(h)−1)(x) = s(π(g))(h−1 · x) = E(g)(h−1 · x)

for g, h ∈ G and x ∈ M . The measure dµ being G-invariant, we then obtain

F (hgh−1) =
∫

M

E(hgh−1)(x) dµ(x) =
∫

M

E(g)(h−1·x) dµ(x) =
∫

M

E(g)(x) dµ(x).

Hence F (hgh−1) = F (g).
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Using the Weyl Integration Formula [21], we immediately obtain the following
result.

Corollary 3.3. Suppose that G is a connected semisimple compact Lie group
and that H is finite-dimensional. Let T be a maximal torus of G, W be the Weyl
group associated with T and ∆ the root system of G relative to T . Then we have

m(σ) =
∫

T

∫

M

E(t)(x)χσ(t)−1D(t) dt dµ(x) (3.3)

where dt denotes the normalized Haar measure on T and D(t) :=
∏

α∈∆(1− tα).

Suppose now that H is infinite-dimensional. In many examples H can be
easily decomposed as a direct sum of orthogonal G-invariant subspaces which are
finite-dimensional.

Proposition 3.4. Assume that H admits an orthogonal decomposition H =
⊕n≥0Hn where, for each integer n ≥ 0, Hn is a finite-dimensional G-invariant
subspace of H. Let Pn be the projection operator on Hn. Denote by mn(σ) the
multiplicity of σ ∈ Ĝ in the restriction of π to Hn.

1) The space Hn has reproducing kernel kn(x, y) := 〈Pney, ex〉 = S(Pn)(x, y)〈ey, ex〉.
2) We have mn(σ) =

∫
M

∫
G

s(π(g)Pn)(x)χσ(g)−1 dµ(x) dg.

3) We have m(σ) =
∑

n≥0 mn(σ).

Proof. 1) For f ∈ Hn and x ∈ M , we can write f(x) = 〈f, ex〉 = 〈Pnf, ex〉 =
〈f, Pnex〉. Then kn(x, y) = 〈Pney, Pnex〉 = 〈Pney, ex〉 = S(Pn)(x, y)〈ey, ex〉.
2) This is a consequence of 1) and Proposition 3.1 2). 3) Immediate.

Under the hypothesis of the previous proposition, it is possible to express m(σ)
as a limit of a double integral by generalizing the method introduced in [12].

Proposition 3.5. Under the same hypothesis as in Proposition 3.4, for r ∈
]0, 1[ we introduce the operator Ar on H defined by Ar|Hn = rnIdHn for each n ≥ 0.
Set Er(g) = s(Arπ(g)). If the series

∑
n≥0 rn dimHn converges for r ∈]0, 1[ then

the integral mr(σ) :=
∫

M

∫
G

Er(g)χσ(g)−1 dµ(x)dg exists and we have mr(σ) =∑
n≥0 rnmn(σ) for each r ∈]0, 1[. Here mn(σ) denotes the multiplicity of σ in Hn.

Moreover, we have m(σ) = limr→1 mr(σ).

Proof. Set en
x = Pnex. Then Hn has reproducing kernel 〈en

y , en
x〉. Note that

〈Arπ(g)ex, ex〉 =
∑
n≥0

rn〈π(g)en
x , en

x〉.

By the Cauchy-Schwarz inequality, we have
∑
n≥0

rn|〈π(g)en
x , en

x〉| ≤
∑
n≥0

rn‖en
x‖2.
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We also have
∫

M

∑
n≥0 rn‖en

x‖2dµ̃(x) = Tr(Ar) =
∑

n≥0 rn dimHn < +∞. Then
the Lebesgue dominated convergence theorem shows that the integral

mr(σ) =
∫

M

∫

G

〈Arπ(g)ex, ex〉χσ(g)−1 dµ̃(x)dg

exists and is equal to
∑

n≥0 rnmn(σ) where

mn(σ) =
∫

M

∫

G

〈π(g)en
x , en

x〉χσ(g)−1 dµ̃(x) dg

is precisely the multiplicity of σ in Hn.
In the rest in this section, by generalizing a result of [3] we introduce a method

for computing the multiplicities which is simpler than the use of the preceding
integral formulas. We assume that H is finite-dimensional and we set n = dimH.
Fix σ ∈ Ĝ. Let (si)1≤i≤n be a basis of H and let (ψk)1≤k≤m be an orthonormal
basis of Vσ. We can decompose the ψk (1 ≤ k ≤ m) in the basis (si). We write
ψk =

∑n
l=1 alksl and we denote by A the n ×m-matrix (alk). We also introduce

the n× n-matrix B = AA∗ = (bkj).

Proposition 3.6. 1) The reproducing kernel kσ of Vσ is given by

kσ(x, y) = S(Pσ)(x, y)〈ey, ex〉 =
n∑

j,k=1

bljsl(x)sj(y).

2) We have that d(σ)m(σ) = dim Vσ = rk B.

Proof. 1) For f ∈ Vσ we have

f(x) = 〈f, ex〉 = 〈f, Pσex〉 =
∫

M

f(y)Pσex(y) dµ̃(x).

Then

kσ(x, y) = Pσex(y) = 〈Pσex, ey〉 = 〈ey, Pσex〉 = S(Pσ)(x, y)〈ey, ex〉.
On the other hand, we have

kσ(x, y) =
m∑

k=1

ψk(x)ψk(y) =
m∑

k=1

(
n∑

j=1

ajksj(y)

) (
n∑

l=1

alksl(x)
)

=
∑

1≤j,l≤n

(
m∑

k=1

ajkalk

)
sl(x)sj(y) =

∑
1≤j,l≤n

bljsl(x)sj(y).

We have thus obtained the desired result.
2) Since B = AA∗, we have rk B = rkA = dim Vσ.
Let us briefly describe how Proposition 3.6 can be used for explicit compu-

tations of multiplicities. In some cases, one can explicitly compute the function
kσ(x, y) = S(Pσ)(x, y)〈ey, ex〉 and its development in the basis sl ⊗ sj . Then we
obtain the matrix B and we can compute rk B = dim Vσ. In other words, the trick
is that one can calculate dim Vσ = rkA without knowing A.
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4. Berezin quantization on flag manifolds

In this section and in the next section, we apply the general results of the pre-
ceding sections to weight multiplicities in a unitary irreducible representation of a
compact semisimple Lie group. First, we recall Borel-Weil’s method for construct-
ing the irreducible unitary representations of a compact group as representations in
the space of holomorphic sections of a certain line bundle and we introduce Berezin
quantization on flag manifolds. We follow the presentation of [15] which is essen-
tially based on [2] and [22]. Note that our presentation is slightly different from
those of [3] which is based on geometric quantization. Also, we give explicit formu-
las for reproducing kernels and Berezin symbols of representation operators which
are different from the formulas obtained in [3] by using generalized determinants
for Kaehler potentials.

Let G be a connected simply-connected semisimple compact Lie group. Let T
be a maximal torus of G. The manifold M := G/T is called a flag manifold. Let ∆
be the root system of G relative to T . We choose a Weyl chamber P of T relative
to G. Let ∆+ the positive roots of ∆ relative to P .

Let g and t be the Lie algebras of G and T , respectively. We denote by
gc and tc the complexifications of g and t, respectively. Let Gc and T c be the
connected complex Lie groups whose Lie algebras are gc and tc, respectively. Let
gc =

∑
α∈∆ gα be the root spaces decomposition of gc. We set n+ =

∑
α∈∆+ gα

and n− =
∑

α∈∆+ g−α. Then n+ and n− are nilpotent Lie algebras satisfying
[tc , n±] ⊂ n±. We also have gc = tc ⊕ n+ ⊕ n−. We denote by N+ and N− the
analytic subgroups of Gc with Lie algebras n+ and n−, respectively. A complex
structure on M is then defined by the diffeomorphism M = G/T ' Gc/T cN−

[22], 6.2.11. This complex structure depends on the choice of P . We denote by
τ : Gc → M ' Gc/T cN− the natural projection.

Let β be the Killing form on gc, that is, β(X,Y ) = Tr(adX ad Y ) for X, Y ∈
gc. For each α ∈ ∆, we denote by Hα the element of it satisfying β(H, Hα) = α(H)
for all H ∈ tc.

Let χ0 be a character of T . Then λ := dχ0|t is integral i.e. 2λ(Hα)/α(Hα) ∈ Z
for each α ∈ ∆+. Conversely, each weight λ ∈ t∗ which is integral defines a unique
character χ0 on T such that λ = dχ0|t.

Now we fix a character χ0 on T . Let λ := dχ0|t. Denote by χ the unique
extension of χ0 to T cN−. The line bundle Lλ := G ×χ0 C can be identified to
Gc ×χ C by means of the map [g, z]0 → [g, z] where [g, z]0 (g ∈ G, z ∈ C) denotes
the equivalence class {(gh, χ0(h−1)z) : h ∈ T} ∈ Lλ and [g, z] (g ∈ Gc, z ∈ C)
denotes the equivalence class {(gh, χ(h−1)z) : h ∈ T cN−} ∈ G×χ C. Thus Lλ has
a natural structure of holomorphic line bundle. Recall that Gc acts on Lλ by left
translations: g [g′, z] := [gg′, z]. A G-invariant Hermitian structure on Lλ is given
by 〈[g, z], [g, z′]〉 = zz̄′ where g ∈ G and z, z′ ∈ C.

The space H0
λ of holomorphic sections of Lλ is endowed with the G-invariant
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Hermitian scalar product defined by

〈s , s′〉H0
λ

=
∫

M

〈s(x) , s′(x)〉 dν(x)

where dν(x) is a G-invariant measure on M .
Since M is compact, H0

λ is finite-dimensional [9], [16]. Moreover, H0
λ carries a

unitary representation π0 of G:

(π0(g) s)(x) = g s(g−1 · x).

Suppose that λ is dominant (i.e. 2λ(Hα)/α(Hα) is a nonnegative integer for each
α ∈ ∆+). Then, by the Borel-Weil Theorem, we have that π0 is the irreducible
(finite-dimensional) representation of G with highest weight λ.

Now we introduce an alternative realization of π0 which is more convenient for
explicit computations. Recall that (1) each g in a dense open subset of Gc has a
unique Gauss decomposition g = n+hn− where n+ ∈ N+, h ∈ T c and n− ∈ N−

and (2) the map σ : Z → τ(exp Z) is a holomorphic diffeomorphism from n+ onto
a dense open subset of M (see [18], Chap. VIII). Then the natural action of Gc on
M ' Gc/T cN− induces an action (defined almost everywhere) of Gc on n+. We
denote by g · Z the action of g ∈ Gc on Z ∈ n+. Using again the diffeomorphism
G/T ' Gc/T cN−, we see that for each Z ∈ n+ there exists an element gZ ∈ G for
which τ(gZ) = τ(exp Z) or, equivalently, gZ · 0 = Z.

We associate with each s ∈ H0
λ the holomorphic function fs on n+ defined by:

s(σ(Z)) = [expZ, fs(Z)]. For s, s′ ∈ H0
λ, we have

〈s(σ(Z)), s′(σ(Z))〉 = 〈[exp Z, fs(Z)] , [expZ, fs′(Z)]〉
= 〈[gZ(g−1

Z expZ), fs(Z)] , [gZ(g−1
Z exp Z), fs′(Z)]〉

= 〈[gZ , χ(g−1
Z expZ)fs(Z)] , [gZ , χ(g−1

Z exp Z)fs′(Z)]〉
= |χ(g−1

Z exp Z)|2 fs(Z)fs′(Z).

This implies that

〈s , s′〉H0
λ

=
∫

n+
fs(Z)fs′(Z) |χ(g−1

Z exp Z)|2 dµ(Z)

where µ := σ∗(ν) is a G-invariant measure on n+. We can always normalize the
measure ν so that k(0, 0) = 1.

This leads us to introduce the Hilbert space Hλ of holomorphic functions f on
n+ such that

‖f‖2Hλ
:=

∫

n+
|f(Z)|2 |χ(g−1

Z expZ)|2 dµ(Z) < +∞.

Moreover, for s ∈ H0
λ, g ∈ G and Z ∈ n+ we have

(π0(g)s)(σ(Z)) = g s(g−1σ(Z)) = g s(σ(g−1 · Z)) = [g exp(g−1 · Z), fs(g−1 · Z)]

= [exp(Z), χ(exp(−Z)g exp(g−1 · Z))fs(g−1 · Z)].
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Hence we can conclude that the equality

(πλ(g)f)(Z) = χ(exp(−Z)g exp(g−1 · Z))f(g−1 · Z) (4.1)

defines a unitary representation πλ of G on Hλ which is unitarily equivalent to π0,
the intertwining operator between πλ and π0 being given by s → fs.

Now, we apply the general considerations of the preceding section to the Hilbert
space Hλ together with the representation πλ. We retain the notation from Sec-
tion 2. The cocycle α associated with πλ is given by

α(g−1, Z) = χ(exp(−Z)g exp(g−1 · Z)). (4.2)

The reproducing kernel k(W,Z) satisfies

k(Z,Z) = |χ(g−1
Z exp Z)|−2. (4.3)

We shall deduce from (4.3) a simple expression for k(Z, W ) and thus for
the functions eZ (Z ∈ n+). Following [20], we introduce the projections κ :
N+T cN− → T c and ζ : N+T cN− → N+. Then, for g ∈ Gc and Z ∈ n+ we
have g · Z = log ζ(g exp Z).

We set (X + iY )∗ = −X + iY for X, Y ∈ g and we denote by g → g∗ the
involutive automorphism of Gc which is obtained by exponentiating X + iY →
(X + iY )∗ to Gc.

Proposition 4.1. We have
1) α(g−1, Z) = χ(κ(g−1 expZ))−1 for g ∈ Gc, Z ∈ n+.
2) k(Z, Z) = χ(κ(exp Z∗ exp Z))−1 for Z ∈ n+.
3) k(W,Z) = eZ(W ) = χ(κ(exp Z∗ exp W ))−1 for Z, W ∈ n+.

Proof. 1) We can write g−1 exp Z = exp(g−1 · Z)hn where h ∈ T c, n ∈
N−. Then exp(−Z)g exp(g−1 · Z) = (hn)−1. Applying χ, we thus obtain
χ(exp(−Z)g exp(g−1 · Z)) = χ(h)−1 = χ(κ(g−1 exp Z))−1.

2) We can write gZ = exp(Z)hn where h ∈ T c, n ∈ N−. Since gZ ∈ G, we have
g∗Z = g−1

Z . Then (exp Z)∗ exp Z = h∗−1n∗−1n−1h−1 = (h∗−1n∗−1h∗)(h∗−1h−1) ×
(hn−1h−1). But hn−1h−1 ∈ N− since [hc, n−] ⊂ n−. Similarly, h∗−1n∗−1h∗ ∈ N+.
We thus obtain κ(exp Z∗ exp Z) = h∗−1h−1. Hence, applying χ, we get

χ(κ(exp Z∗ expZ)) = χ(h)−1χ(h)−1 = |χ(g−1
Z exp Z)|2.

3) Since χ is trivial on N− we have

χ(κ(exp Z∗ exp W )) = χ(ζ(exp Z∗ exp W ) exp Z∗ exp W )

= χ(exp(exp Z∗ ·W ) exp Z∗ exp W )

and expZ∗ ·W = σ−1(τ(exp Z∗ exp W )). Then the function χ(κ(exp Z∗ exp W ))−1

is holomorphic in W and anti-holomorphic in Z. On the other hand, the function

k(W,Z) = 〈eZ , eW 〉 = eZ(W ) = eW (Z)

is also holomorphic in W and anti-holomorphic in Z. Since these two functions
coincide for W = Z we then obtain 3).
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In fact, one can give an explicit formula for the G-invariant measure dµ.

Proposition 4.2. [15], [20] Let dµL be a fixed Lebesgue measure on n+. Set
Λ :=

∑
α∈∆+ α. Let χΛ be the corresponding character of T c. Then the G-invariant

measure dµ on n+ is dµ(Z) = C χΛ(κ(exp Z∗ exp Z)) dµL(Z) where the constant C
is given by C

∫
n+ χΛ(κ(exp Z∗ exp Z)) dµL(Z) = dimHλ.

Also, we are in position to calculate the so-called star exponential, that is, the
Berezin symbol of π(g) (g ∈ G). The star exponential plays a prominent role in
the construction of the generalized Fourier transform in [2] and [23].

Proposition 4.3. Let g ∈ G. The Berezin symbol of πλ(g) is then given by

L(g)(W,Z) = S(πλ(g))(W,Z) = χ
(
κ(exp Z∗g−1 exp W )−1κ(exp Z∗ exp W )

)
.

(4.4)

Proof. We have

S(πλ(g))(W,Z) =
〈πλ(g)eZ , eW 〉
〈eZ , eW 〉 =

(πλ(g)eZ)(W )
ez(W )

= χ(κ(g−1 exp W ))−1 eZ(g−1 ·W ) eZ(W )−1.

Using Proposition 4.1 3), we get

S(πλ(g))(W,Z) = χ
(
κ(g−1 expW )−1 κ(exp Z∗ exp(g−1 ·W ))−1 κ(exp Z∗ exp W )

)
.

(4.5)
Now, let h = κ(g−1 exp W ). We can write g−1 exp W = exp(g−1 · W )h y
where y ∈ N−. Then exp Z∗ exp(g−1 · W ) = exp Z∗g−1 exp W y−1h−1. Thus
κ(exp Z∗ exp(g−1 ·W )) = κ(exp Z∗g−1 expW ) h−1. From this and (4.5) we deduce
(4.4).

5. Weight multiplicities

We retain the notation from the previous section. We reformulate the results
of Section 3 in the setting of Section 4 in order to recover the main results of [3]
which yield a method for weight multiplicity computations in representations of
semisimple compact Lie groups.

Proposition 5.1. [3] Let χσ be the character of T corresponding to the weight
σ and Pσ the projection operator of Hλ onto the σ-isotypic component.

1) For t ∈ T and Z, W ∈ n+, we have

L(t)(W,Z) = χσ(t)
〈et·Z , eW 〉
〈eZ , eW 〉 .

2) The double Berezin symbol of Pσ is given by

S(Pσ)(W,Z) =
∫

T

L(t)(W,Z)χσ(t)−1 dt =
∫

T

χ(t)χσ(t)−1 et·Z(W )
eZ(W )

dt.
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3) The multiplicity of σ in πλ is given by

m(σ) =
∫

T

∫

n+
E(t)(Z)χσ(t)−1 dµ(Z)dt =

∫

T

∫

n+
χ(t)χσ(t)−1 〈et·Z , eW 〉

〈eZ , eW 〉 dµ(Z)dt.

Proof. 1) For t ∈ T and Z ∈ n+, we have ζ(t exp Z) = ζ(t(exp Z)t−1) =
ζ(expAd(t)Z). Then t · Z = Ad(t)Z. Consequently,

α(t, Z) = χ(exp(−Z)t−1 exp(t · Z)) = χ(t)−1.

Using Proposition 2.1 (2)(i), we then obtain

〈eZ , eW 〉L(t)(W,Z) = 〈πλ(t)eZ , eW 〉 = α(t, Z)〈et·Z , eW 〉 = χ(t)〈et·Z , eW 〉.
2), 3) By 1) and Proposition 3.1.
Let us denote by α1, α2, . . . , αn the elements of ∆+. Let (Ek)1≤k≤n be a

basis for n+ such that Ek ∈ gαk
for k = 1, 2, . . . , n. For Z =

∑n
k=1 zkEk and p =

(p1, p2, . . . , pn) ∈ Nn, we define Z(p) = zp1
1 zp2

2 · · · zpn
n . Here N denotes the set of all

nonnegative integers. By construction of Hλ, there exists d = (d1, d2, . . . , dn) ∈ Nn

such that

Hλ ⊂ span〈Z(p) : p = (p1, p2, . . . , pn), 0 ≤ pk ≤ dk, k = 1, 2, . . . , n〉.
The following proposition is analogous to Proposition 3 of [3].

Proposition 5.2. 1) We can write 〈eZ , eW 〉L(t)(W,Z) =
∑

σ χσ(t)uσ(W,Z)
where the sum is taken over the weights of πλ and, for each weight σ, uσ(W,Z) =
〈eZ , eW 〉S(Pσ)(W,Z) is a polynomial in the variables zk, wl, (1 ≤ k, l ≤ n).

2) Write uσ(W,Z) =
∑

p,q bσ
qpW

(q)Z(p). Choose an ordering on the set con-
sisting of the elements p = (p1, p2, . . . , pn) ∈ Nn such that 0 ≤ pk ≤ dk for each
1 ≤ k ≤ n and consider the matrix Bσ := (bσ

qp)q,p. Then m(σ) = rk Bσ.

Proof. 1) Since πλ(t) =
∑

σ χσ(t)Pσ, we have

〈πλ(t)eZ , eW 〉 =
∑

σ

χσ(t)〈PσeZ , eW 〉.

Then
〈eZ , eW 〉S(πλ(t))(W,Z) =

∑
σ

χσ(t)uσ(W,Z)

where uσ(W,Z) = 〈eZ , eW 〉S(Pσ)(W,Z). Since

uσ(W,Z) = 〈PσeW , eZ〉 = (PσeW )(Z) = (PσeZ)(W ),

uσ is a polynomial in the variables zk, wl, (1 ≤ k, l ≤ n).
2) Immediate from Proposition 3.6 2).
Example 5.1. We take G = SU(2), T = {diag(eiθ, e−iθ) | θ ∈ R} and

N+ =
{(

1 z
0 1

)
| z ∈ C

}
.
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For each integer m ≥ 0, let χm be the character of T defined by χm(diag(eiθ, e−iθ))
= eimθ. The corresponding representation πm of SU(2) is realized on the space
complex polynomials on n+ ' C of degree ≤ m endowed with the Hilbert product

〈f1, f2〉m =
∫

C

f1(z)f2(z)
m + 1

π
(1 + zz)−m−2 dx dy .

More precisely, we have

(πm (g) f)(z) = (a + b z)m f

(
az − b

bz + a

)
, g =

(
a b
−b a

)
.

We easily verify that ez(w) = (1 + zw)m and that

L(g)(w, z) = (a + azw + bw − bz)m(1 + zw)−m

for g ∈ SU(2) as above. For t = diag(eiθ, e−iθ) ∈ T , we then obtain

〈ez, ew〉L(t)(w, z) = (eiθ + e−iθzw)m =
m∑

k=0

(
m
k

)
(zw)k(eiθ)m−2k.

Thus the projection operator on the (m − 2k)-isotypic component has Berezin
symbol um−2k(w, z) = (1 + zw)−m

(
m
k

)
(zw)k for k = 0, 1, 2, . . . ,m.

Example 5.2. We take G = SU(3),

T = {diag(eiθ1 , eiθ2 , eiθ3) | θ1 + θ2 + θ3 = 0, θk ∈ R}
and

N+ =
{


1 z3 z2

0 1 z1

0 0 1


 | zk ∈ C

}
⊂ Gc = SL(3,C).

We denote by ω(k,l) the weight defined by ω(k,l)(diag(a, b,−a−b) = (k+ l)a+ lb and
by χ(k,l) the corresponding character of T . Here we consider the representation πλ

where λ = ω(1,1). For t ∈ T as above, we can easily compute L(t)(W,Z) by writing
explicitly the Gauss decomposition for SL(3,C). Then we obtain

〈eZ , eW 〉L(t)(W,Z) = (z1w1)(z3w3) + 2u2(Z)u2(W ) + ei(2θ1+θ2)

+ z1w1e
i(θ1−θ2) + z3w3e

i(θ1+2θ2) + z3w3u1(Z)u1(W )ei(−θ1+θ2)

+ z1w1u2(Z)u2(W )ei(−θ1−2θ2) + u1(Z)u1(W )u2(Z)u2(W )ei(−2θ1−θ2).

where u1(W ) = 1
2w1w3 + w2 and u2(W ) = 1

2w1w3 − w2. Then, by Proposition
5.2, the weights of πλ are ω(1,1), ω(−1,2), ω(2,−1), ω(1,−2), ω(−2,1), ω(−1,−1) with
multiplicity 1 and ω(0,0) with multiplicity 2. Similar examples can be found in [3].

6. Some more examples: Gel’fand pairs

The action of the unitary group U(n) on the (2n + 1)-dimensional Heisenberg
group Hn defined by k · (z, t) = (kz, t) (k ∈ U(n), z ∈ Cn, t ∈ R) yields a Gel’fand
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pair. That is, the convolution algebra L1
U(n)(Hn) of U(n)-invariant L1-functions on

Hn is commutative [6],[7]. Also, the action of many compact subgroups G of U(n)
yields Gel’fand pairs (G,Hn). In fact, (G,Hn) is a Gel’fand pair if and only if the
natural action of G on the space P(Cn) of the holomorphic polynomials on Cn is
multiplicity-free [6]. Let us introduce the Fock space, that is, the Hilbert space H
consisting of entire functions f : Cn → C such that

‖f‖2 :=
1

(2π)n

∫

Cn

|f(z)|2 e−|z|
2/2 dz < +∞

where dz = dx1dy1 . . . dxndyn. Let π be the unitary representation of G on H
defined by π(g)f(z) = f(g−1z). Since P(Cn) is dense in H it is clear that (G,Hn)
is a Gel’fand pair if and only if π is multiplicity-free. So, we can apply the results
of Section 3 to the study of such Gel’fand pairs.

It is well-known that the reproducing kernel of H is given by k(w, z) = ez(w) =
ez∗w/2 (see [17] for instance). For each integer N ≥ 0, we denote by HN the space
of holomorphic polynomials on Cn of degree N . Then H =

⊕
N≥0HN is an

orthogonal decomposition of H into G-invariant finite-dimensional subspaces. Let
PN be the projection operator onHN . By Proposition 3.4 1), the reproducing kernel
of HN is kN (w, z) := 〈PNez, ew〉. Since ez(w) =

∑
N≥0

1
N ! (

z∗w
2 )N , we immediately

obtain kN (w, z) = 1
N ! (

z∗w
2 )N .

Example 6.1. Let G = Tn the maximal torus of U(n) consisting of all
matrices t = diag(t1, t2, . . . , tn) where tk ∈ C, |tk| = 1. We can directly see that
(Tn,Hn) is a Gel’fand pair. Here, we will recover this fact by applying Proposition
3.4 and Proposition 3.5. For p = (p1, p2, . . . , pn) ∈ Zn, we denote by χp the
character of Tn defined by χp(t) = tp1

1 tp2
2 . . . tpn

n . Also, we shall use the standard
notation zp = zp1

1 zp2
2 . . . zpn

n , p! = p1!p2! . . . pn! and |p| = p1 + p2 + · · · + pn for
p = (p1, p2, . . . , pn) ∈ Nn and z = (z1, z2, . . . , zn) ∈ Cn.

1) First method: by Proposition 3.4. The multiplicity of χp in πHN is given
by the integral

mN (χp) =
1

(2π)n

∫

Cn

∫

Tn

〈π(t)PNez, ez〉χp(t)−1 e−|z|
2/2 dz dt.

We have

〈π(t)PNez, ez〉 = (π(t)PNez)(z) = (PNez)(t−1z) =
1

2NN !
(z∗(t−1z))N .

This gives

〈π(t)PNez, ez〉 =
1

2N

∑
k∈Nn,|k|=N

1
k!

χk(t)−1|z1|2k1 |z2|2k2 . . . |zn|2kn

for z ∈ Cn and t ∈ Tn. Then, by using the fact that
(
(1/

√
2|p|p!) zp

)
|p|=N

is an

orthonormal basis for HN , we obtain

mN (χp) =
∫

Tn

χp(t)−1 ∑
|k|=N

χk(t)−1 dt.
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Hence we can conclude that for each p satisfying p1, p2, . . . , pn ≤ 0 and p1 + p2 +
· · ·+ pn = −N we have mN (χp) = 1 and in the other cases we have mN (χp) = 0.
This proves that π is multiplicity-free.

2) Second method: by Proposition 3.5. Since we have dimHN =
(
n+N−1

n−1

)
, we

see that the series
∑

N≥0(dimHN )rN converges for r < 1 and we have

mr(χp) =
1

(2π)n

∫

Cn

∫

Tn

〈Arπ(t)ez, ez〉χp(t)−1 e−|z|
2/2 dz dt.

But

(π(t)ez)(w) = ez(t−1w) = ez∗(t−1w)/2 =
∑

N≥0

1
N !

(
z∗(t−1z)

2

)N

implies that

(Arπ(t)ez)(z) =
∑

N≥0

1
N !

(
z∗(t−1z)

2

)N

rN .

Hence
mr(χp) =

1
(2π)n

∫

Cn

∫

Tn

erz∗(t−1z)/2χp(t)−1 e−|z|
2/2 dz dt.

Therefore, by transforming the integral to polar coordinates we obtain

mr(χp) =
∫

Tn

n∏

k=1

1
1− rt−1

k

t−pk

k dt.

Finally, we find that mr(χp) = r−(p1+p2+···+pn) if p1, p2, . . . , pn ≤ 0 and mr(χp) = 0
otherwise. Since for each p we have limr→1 mr(χp) ≤ 1, we can conclude that π is
multiplicity-free.

Example 6.2. [12] Here we shall prove that (SU(2),H2) is a Gel’fand pair. Let
T ⊂ SU(2) be the torus consisting of matrices t = diag(eiθ, e−iθ) (θ ∈ R). For each
integer p ≥ 0, let σp be the (p + 1)-dimensional unitary irreducible representation
of SU(2). The character χσp of σp is given by χσp(t) = sin(p+1)θ

sin θ for each t as
above. In the notation of Proposition 3.5 we also have D(t) = 4 sin2 θ. Then the
multiplicity of σp in π is given by

mr(σp) =
1
2π

∫ 2π

0

4 sin((p + 1)θ) sin θ
1

(1− reiθ)(1− re−iθ)
dθ

=
1
2π

∫

|z|=1

(
−zp+2 − 1

zp+2
+ zp +

1
zp

)
1

i(1− rz)(z − r)
dz.

By using the Cauchy residue Theorem, we easily find that mr(σp) = rp. Then we
can conclude that (SU(2), H2) is a Gel’fand pair. Similarly it could be verified by
a long computation that (SU(3),H3) is a Gel’fand pair [12]. However, it seems to
be difficult to prove by the same method that, more generally, (SU(n), Hn) is a
Gel’fand pair. In fact, there are many simple ways to verify that (SU(n),Hn) is
a Gel’fand pair. For instance, one can prove that the restriction of π to HN is a
irreducible representation of SU(n); one can also use the algebraic criterion of [19].
So, we see that the use of Corollary 3.3 for explicit computations of multiplicities
is limited to simple examples.
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60 YEARS OF “MATEMATIČKI VESNIK”

In 1948 the Managing Board of the Society of Mathematicians and Physicists
of Serbia decided to start publishing a scientific journal named VESNIK DRUŠTVA
MATEMATIČARA I FIZIČARA NR SRBIJE (“Bulletin of the Society of Math-
ematicians and Physicists of Serbia”). Jovan Karamata, a well-known Serbian
mathematician, was the first Editor-in-chief, the Editorial Board consisted of Pavle
Savić, Dragoljub K. Jovanović, Miloš Radojčić and Dobrivoje Mihajlović, while Ivan
Atanasijević was the Technical Editor.

The first issue of the journal was published in the beginning of 1949. It con-
sisted of four columns: Scientific articles, Problems and exercises, Critics and bib-
liography and Meetings of the Society. Eight articles (in Serbian, with abstracts in
French and Russian) were published in this issue. In the column Meetings of the
Society in this and subsequent issues (up to 1963), reports on all the important
activities of the Society and, later, of the Union of Societies of Mathematicians,
Physicists and Astronomers of Yugoslavia can be found.

In the subsequent years, Vesnik continued to be published in single or double-
issues. The name of the journal changed to MATEMATIČKI VESNIK (“Mathe-
matical Bulletin”) in 1964, and in the period 1964–1976 it was published jointly
with the Mathematical Institute from Belgrade. Starting from 1977 it has again
been published by the Mathematical Society of Serbia alone.

Editors-in-chief of “Matematički Vesnik” in the past 60 years were: Jovan
Karamata, Dragoljub Marković, Zlatko Mamuzić, Dušan Adna -dević, Zoran Kadel-
burg, Mila Mršević and Ljubǐsa Kočinac, and the secretaries were: Ivan Atanasije-
vić, Milorad Bertolino, Dušan Adna -dević, Vladimir Mićić, Zoran Kadelburg, Pavle
Mladenović, Aleksandar Lipkovski, Darko Milinković, Vladimir Grujić and Miroslav
Ristić.

The Editorial Board was refreshed several times. Starting with 1996, some
foreign mathematicians were included in the Board, in an effort to raise the quality
of articles. The list of the present Editorial Board can be found in each issue of the
journal.

We can conclude that MATEMATIČKI VESNIK has played a very important
role in the development of mathematical sciences in Yugoslavia. Some of the most
eminent mathematicians published their articles in it, and, on the other hand, a lot
of our mathematicians had an opportunity to publish their first articles in this jour-
nal. All the articles from Vesnik have been regularly reviewed in the main reviewing
journals—Mathematical Reviews, Zentralblatt für Mathematik und ihre Grenzgebi-
ete and Referativny� �urnal. Finally, starting with 1996, Matematički Vesnik
is published electronically, too, as a part of the ELibEMS (Electronic Library of
the European Mathematical Society) and it can be obtained through Internet on
http://www.emis.de/journals/MV/ or http://www.dms.org.rs.

This is the last issue of the jubilar, 60th volume of Matematički Vesnik; we
are sure that this jubilee will not be the last one.

Editorial Board


