RELATIONS BETWEEN SOME TOPOLOGIES

T. Hatice Yalvac

Abstract. Generalizations of openness, such as semi-open, preopen, semi-pre-open, α -open, etc. are important in topological spaces and in particular in topological spaces on which ideals are defined. α -equivalent topologies and *-equivalent topologies with respect to an ideal have some common properties. Relations between these aforementioned notions of openness are investigated within the framework of α -equivalence and *-equivalence.

1. Introduction

The subject of ideals in general topological spaces was introduced by Kuratowski [8] and Vaidyanathaswamy [18]. An ideal \mathcal{I} on a set X is a nonempty collection of subsets of X which satisfies

- (i) If $A \in \mathcal{I}$ and $B \subset A$, then $B \in \mathcal{I}$,
- (ii) If $A \in \mathcal{I}$ and $B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$.

By (X, τ, \mathcal{I}) we will denote a topological space (X, τ) with an ideal \mathcal{I} on X. No separation properties are assumed on X. For a space (X, τ, \mathcal{I}) and a subset $A \subset X$,

$$A^*(\tau, \mathcal{I}) = \{ x \in X : U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x) \}$$

(where $\tau(x) = \{U \in \tau : x \in U\}$) is called the *local function of* A with respect to \mathcal{I} and τ [8]. Note that $\operatorname{cl}^*(A) = A \cup A^*$ defines a Kuratowski closure operator for a topology $\tau^*(\mathcal{I})$ [15] on X. If there is no chance of confusion, we simply write A^* or $A^*(\mathcal{I})$ instead of $A^*(\tau, \mathcal{I})$, and τ^* instead of $\tau^*(\mathcal{I})$.

If \mathcal{I} and \mathcal{J} are ideals on X, then $\mathcal{I} \vee \mathcal{J} = \{I \cup J : I \in \mathcal{I} \text{ and } J \in \mathcal{J}\}$ is also an ideal on X [6].

In a topological space (X, τ) , for any subset A, A^o , int A or τ int A will stand for the interior of A and \overline{A} , cl A, or τ cl A will stand for the closure of A. A subset Aof a space (X, τ) is said to be *semi-open* (*pre-open*, α -*open*, *semi-pre-open*, *regular open*, nowhere dense, codense) if $A \subset A^{\overline{o}}$ ($A \subset A^{2}$, $A \subset A^{2}$, $A \subset A^{\overline{2}}$, $A = A^{2}$, $A^{2} = \emptyset$, $A^{o} = \emptyset$), respectively.

AMS Subject Classification: Primary: 54 A 05, 54 A 10; Secondary: 54 C 08, 54 C 10. 85

T. Hatice Yalvac

A point x of X is called a θ -interior point of A if there exists an open set U such that $x \in U \subset \overline{U} \subset A$. Also, θ -int A will stand for the set of θ -interior points of A. A is θ -open iff $A \subset \theta$ -int A [10]. The family of all α -open sets in (X, τ) is a topology on X which is finer than τ and it is denoted by τ^{α} . Topologies τ and σ on X are called α -equivalent if they have the same α -open sets [14].

A supratopology $\mathcal A$ on X is a nonempty collection of subsets of X which satisfies

(i) $\emptyset \in \mathcal{A}, X \in \mathcal{A},$

(ii) \mathcal{A} is closed under arbitrary unions [10].

The \mathcal{A} -interior (shortly, \mathcal{A} -int) of a subset A of X is defined as

$$\mathcal{A}\text{-}\operatorname{int} A = \bigcup \{ U : U \subset A, U \in \mathcal{A} \}$$

[9]. It is well known that the family of semi-open (pre-open, semi-pre-open) sets of a topological space is a supratopology on this space. If \mathcal{A} is a supratopology on X, then

$$\mathcal{T}_{\mathcal{A}} = \{ A \subset X : A \cap B \in \mathcal{A} \text{ for each } B \in \mathcal{A} \}$$

is a topology and $\mathcal{T}_{\mathcal{A}} \subset \mathcal{A}$ [19].

We will use the following notational conventions:

- $\tau \in Top(X) \iff \tau$ is a topology on X,
- $\mathcal{I} \in Id(X) \iff \mathcal{I}$ is an ideal on X,
- $A \in D(X) \iff A$ is dense in X,
- $A \in CD(X) \iff A^o = \emptyset$ (i.e. A is codense),
- $A \in NO(X) \iff A^{\circ} = \emptyset$ (i.e. A is nowhere dense),
- $A \in SO(X) \iff A \subset A^{\overline{o}},$
- $A \in PO(X) \iff A \subset A^{\circ},$

$$A \in \alpha O(X) \iff A \subset A^{\frac{o}{o}},$$

$$A \in SPO(X) \iff A \subset A^{\stackrel{o}{=}}$$

$$A \in RO(X) \iff A = A^{\circ},$$

- $A \in \theta O(X) \iff A \text{ is } \theta \text{-open},$
- $A \in SC(X) \iff X A$ is semi-open (i.e. A is semi-closed),
- $A \in SR(X) \iff A$ is semi-open and semi-closed (i.e. A is semi-regular),
- $\sigma \in [\tau]^{\alpha} \iff \sigma \in Top(X)$, and $\sigma^{\alpha} = \tau^{\alpha}$ (i.e. τ and σ are α -equivalent).

 I_n (or $I_n(\tau)$) and $I_n(\sigma)$ will stand for the family of nowhere dense sets in X with respect to τ and σ , respectively. From now on, A^o and \bar{A} will be reserved for the interior and closure of A with respect to topology τ , respectively.

In a topological space scl, sint, pcl, spcl, etc. will stand for the operations semi-closure, semi-interior, pre-closure, semi-pre-closure, respectively. Where it is necessary to indicate the topology, we will write, for example, τ -scl or σ -scl.

In the following theorem we recall some known results in the literature which will be used in this paper. They appear in [1, 2, 5, 6, 13–18].

THEOREM 1.1. In any topological space (X, τ) we have the following results: (1) For any subset A of X,

$$\begin{split} & \operatorname{scl} A = A \cup A^{\overline{v}}, & \operatorname{sint} A = A \cap A^{\circ}, \\ & \operatorname{pcl} A = A \cup A^{\overline{v}}, & \operatorname{pint} A = A \cap A^{\overline{z}}, \\ & \operatorname{spcl} A = A \cup A^{\overline{v}}, & \operatorname{spint} A = A \cap A^{\overline{z}}, \\ & \alpha \operatorname{-cl} A = \tau^{\alpha} \operatorname{cl} A = A \cup A^{\overline{v}}, & \alpha \operatorname{-int} A = \tau^{\alpha} \operatorname{int} A = A \cap A^{\overline{v}} \ [1,2]. \\ & (2) \ \tau \subset \mathcal{T}_{SO(X)} \cap \mathcal{T}_{PO(X)} \cap \mathcal{T}_{SPO(X)} \ [1,2]. \\ & In \ the \ remaining \ results \ given \ below, \ \sigma \in Top \ (X) \ and \ \mathcal{I}, \ \mathcal{J} \in Id(X). \\ & (3) \ If \ \tau \subset \sigma \subset \tau^{\alpha}, \ then \ \sigma \in [\tau]^{\alpha} \ [14]. \\ & (4) \ \tau \subset \tau^{*}(\mathcal{I}) \ and \ (\tau^{*}(\mathcal{I}))^{*}(\mathcal{I}) = \tau^{*}(\mathcal{I}). \\ & (5) \ A^{*}(\tau, \mathcal{I}) \ is \ \tau \operatorname{-closed} \ and \ A^{*}(\tau, \mathcal{I}) = A^{*}(\tau^{*}(\mathcal{I}), \mathcal{I}) \ for \ each \ A \subset X, \\ & (6) \ I \in \mathcal{I} \implies I \ is \ \tau^{*}(\mathcal{I}) \ \operatorname{-closed} \ and \ I^{*} = \emptyset. \\ & (7) \ \mathcal{I} \subset \mathcal{J} \implies A^{*}(\tau, \mathcal{J}) \ \subset A^{*}(\tau, \mathcal{I}) \ for \ each \ A \subset X \ and \ \tau^{*}(\mathcal{I}) \ \subset \tau^{*}(\mathcal{J}). \\ & (8) \ \tau \cap \sigma \implies A^{*}(\sigma, \mathcal{I}) \ \subset A^{*}(\tau, \mathcal{I}) \ for \ each \ A \subset X \ and \ \tau^{*}(\mathcal{I}) \ \operatorname{-cm}^{*}(\mathcal{I}). \\ & (8) \ \tau \cap \mathcal{I} = \{\emptyset\} \ \iff \tau^{*}(\mathcal{I}) \cap \mathcal{I} = \{\emptyset\} \ \iff X = X^{*} \ \iff U \subset U^{*} \ for \ each \ U \in \tau. \\ & (9) \ \mathcal{B}(\tau^{*}(\mathcal{I})) = \{U - I : U \in \tau, I \in \mathcal{I}\} \ is \ a \ base \ for \ the \ topology \ \tau^{*}(\mathcal{I}). \\ & (10) \ If \ \tau \cap \mathcal{I} = \{\emptyset\}, \ then \ for \ each \ U \in \tau \ and \ for \ each \ I \in \mathcal{I}, \ we \ have \ \overline{U} = U^{*}(\mathcal{I})^{*}(\mathcal{I}) \ [6]. \\ & (12) \ \tau^{*}(\mathcal{I}_{n}) = \tau^{\alpha}, \ \tau \cap \mathcal{I}_{n} = \{\emptyset\}, \ \mathcal{PO}(X, \tau) \cap \mathcal{I}_{n} = \{\emptyset\}. \\ & (13) \ A \subset B \implies A^{*}(\mathcal{I}) \subset B^{*}(\mathcal{I}). \\ & (14) \ (A - I)^{*} = A^{*} \ for \ each \ A \subset X \ and \ each \ I \in \mathcal{I}. \\ & (16) \ If \ \tau \cap \mathcal{I} = \{\emptyset\}, \ then \ for \ each \ U \in \tau^{*}(\mathcal{I}) \ we \ have \ \tau \operatorname{-cl} U = \tau^{*}(\mathcal{I})\operatorname{-cl} U. \\ & (16) \ If \ \tau \cap \mathcal{I} = \{\emptyset\}, \ then \ for \ each \ U \in \tau^{*}(\mathcal{I}) \ we \ have \ \tau \operatorname{-cl} U = \tau^{*}(\mathcal{I})\operatorname{-cl} U. \\ & (16) \ If \ \tau \cap \mathcal{I} = \{\emptyset\}, \ then \ for \ each \ U \in \tau^{*}(\mathcal{I}) \ we \ have \ \tau \operatorname{-cl} U = \tau^{*}(\mathcal{I})\operatorname{-cl} U. \\ & (16) \ If \ \tau \cap \mathcal{I} = \{\emptyset\}, \ then \ for \ each \ U \in \tau^{*}(\mathcal{I}) \ we \ have \ \tau \operatorname{-cl} U = \tau^{*}(\mathcal{I})\operatorname{-cl} U. \\ & (16) \ If$$

2. Relations between topologies and some special sets

Firstly, some relations between families such as SO(X), PO(X), SPO(X), etc. on a set X with two topologies are investigated. Then, these relations will be carried over to topological spaces on which ideals are defined. Some known results will be obtained by a different method.

THEOREM 2.1. Let $\tau, \sigma, \omega \in Top(X)$. Then we have the following results. (1) If $\tau \subset \sigma \subset SPO(X, \tau)$, then: (a) $SPO(X, \sigma) \subset SPO(X, \tau)$, (b) $\mathcal{I}_n(\tau) \subset \mathcal{I}_n(\sigma)$.

(2) If $\tau \subset \sigma \subset PO(X,\tau)$, then $PO(X,\sigma) \subset PO(X,\tau)$, and the relations (a) and (b) in (1) are valid.

(3) I. If $\tau \subset \sigma$, and $\tau \operatorname{cl} U = \sigma \operatorname{cl} U$ for each $U \in \tau$, then

(a) For each $A \subset X$ we have

$$\begin{aligned} \tau \operatorname{cl}(\tau \operatorname{int} A) &= \sigma \operatorname{cl}(\tau \operatorname{int} A) \subset \sigma \operatorname{cl}(\sigma \operatorname{int} A), \\ \sigma \operatorname{int}(\sigma \operatorname{cl} A) &\subset \sigma \operatorname{int}(\tau \operatorname{cl} A) = \tau \operatorname{int}(\tau \operatorname{cl} A), \\ \tau \operatorname{int}(\tau \operatorname{cl}(\tau \operatorname{int} A)) &\subset \tau \operatorname{int}(\sigma \operatorname{cl}(\sigma \operatorname{int} A)) \subset \sigma \operatorname{int}(\sigma \operatorname{cl}(\sigma \operatorname{int} A)), \\ \sigma \operatorname{cl}(\sigma \operatorname{int}(\sigma \operatorname{cl} A)) &\subset \sigma \operatorname{cl}(\tau \operatorname{int}(\tau \operatorname{cl} A)) = \tau \operatorname{cl}(\tau \operatorname{int}(\tau \operatorname{cl} A)). \end{aligned}$$

(b) For each $U \in SO(X, \tau)$, we have $\tau \operatorname{cl} U = \sigma \operatorname{cl} U = \tau \operatorname{cl}(\tau \operatorname{int} U) = \sigma \operatorname{cl}(\sigma \operatorname{int} U)$,

(c) $SO(X, \tau) \subset SO(X, \sigma)$, (d) $PO(X, \sigma) \subset PO(X, \tau)$,

- (e) $SPO(X, \sigma) \subset SPO(X, \tau)$,
- (f) $\alpha O(X, \tau) \subset \alpha O(X, \sigma)$,

(g) $\mathcal{I}_n(\tau) \subset \mathcal{I}_n(\sigma)$,

(h) $RO(X, \tau) \subset RO(X, \sigma)$.

II. If $\tau \subset \sigma$, and $\tau \operatorname{cl} U = \sigma \operatorname{cl} U$ for each $U \in \sigma$, then in addition to the results given in (3.1) above, we have $RO(X, \tau) = RO(X, \sigma)$, $SR(X, \tau) = SR(X, \sigma)$, and $\theta O(X, \tau) = \theta O(X, \sigma)$,

(4) If $\tau \subset \sigma \subset SO(X,\tau)$ and $\tau \operatorname{cl} U = \sigma \operatorname{cl} U$ for each $U \in \tau$, then $\tau \operatorname{cl} U = \sigma \operatorname{cl} U$ for each $U \in \sigma$. So, the results in (3) are valid.

(5) $\tau \subset \omega \subset \sigma$, and $\tau clU = \sigma clU$ for each $U \in \sigma$, then $\tau clU = \sigma clU = \omega clU$ for each $U \in \sigma$ (hence for each $U \in \omega$).

So, results similar to those given in (3) are valid for τ, ω and σ .

Proof. (1a) Let $\tau \subset \sigma \subset SPO(X, \tau)$ and $U \in SPO(X, \sigma)$. We have:

 $U \subset \sigma \operatorname{cl}(\sigma \operatorname{int}(\sigma \operatorname{cl} U)) \subset \tau \operatorname{cl}(\sigma \operatorname{int}(\tau \operatorname{cl} U)) \subset \tau \operatorname{cl}(\tau \operatorname{cl}(\tau \operatorname{int}(\tau \operatorname{cl}(\sigma \operatorname{int}(\tau \operatorname{cl} U))))) \subset \tau \operatorname{cl}(\tau \operatorname{int}(\tau \operatorname{cl} U)).$

(1b) The proof is clear from Corollary 2.13 below.

2. Let $\tau \subset \sigma \subset PO(X, \tau)$ and $U \in PO(X, \sigma)$. We have:

 $U \subset \sigma \operatorname{int}(\sigma \operatorname{cl} U) \subset \sigma \operatorname{int}(\tau \operatorname{cl} U) \subset \tau \operatorname{int}(\tau \operatorname{cl}(\sigma \operatorname{int}(\tau \operatorname{cl} U))) \subset \tau \operatorname{int}(\tau \operatorname{cl}(\tau \operatorname{cl} U))$ = $\tau \operatorname{int}(\tau \operatorname{cl} U).$

So, $U \in PO(X, \tau)$. Since $PO(X, \tau) \subset SPO(X, \tau)$, the results in (1) are valid. (3Ib) Let $U \in SO(X, \tau)$. Since $U \subset \tau \operatorname{cl}(\tau \operatorname{int} U)$ and $\sigma cl U \subset \tau \operatorname{cl} U$, we have

 $\sigma \operatorname{cl} U \subset \tau \operatorname{cl} U = \tau \operatorname{cl}(\tau \operatorname{int} U) = \sigma \operatorname{cl}(\tau \operatorname{int} U) \subset \sigma \operatorname{cl}(\sigma \operatorname{int} U) \subset \sigma \operatorname{cl} U.$

Hence we have $\sigma \operatorname{cl} U = \tau \operatorname{cl} U = \tau \operatorname{cl}(\tau \operatorname{int} U) = \sigma \operatorname{cl}(\sigma \operatorname{int} U).$

(3Ic-f). These are clear from (3Ia).

(3Ig) This is clear from (1a) since $\tau \subset \sigma \subset SPO(X, \tau)$.

(31h) Let $U \in RO(X, \tau)$. We have $U = \tau \operatorname{int}(\tau \operatorname{cl} U)$ and $U \in SO(X, \tau)$. Now if we use (31b), we obtain that $\sigma \operatorname{int}(\sigma \operatorname{cl} U) = \sigma \operatorname{int}(\tau \operatorname{cl} U) = \tau \operatorname{int}(\tau \operatorname{cl} U) = U$.

88

(3II) Under the hypothesis, since $RO(X, \tau) = RO(X, \sigma)[11]$, it is clear that $SR(X, \tau) = SR(X, \sigma)$ [7], and $\theta O(X, \tau) = \theta O(X, \sigma)[12]$.

(4). The proof is clear from (3Ib). \blacksquare

COROLLARY 2.2. If $\tau \cap \mathcal{I} = \{\emptyset\}$ for $\tau \in Top(X)$ and $\mathcal{I} \in Id(X)$, then

(a) The results (3) in Theorem 2.1. are valid by taking $\tau^*(\mathcal{I})$ instead of σ . (b) For $\mathcal{J} \in Id(X)$ and $\omega \in Top(X)$, if $\omega \cap \mathcal{J} = \{\emptyset\}$ and $\omega^*(\mathcal{J}) = \tau^*(\mathcal{I})$, then $(X, \tau) = (X, \omega) (X, \omega^*(\mathcal{J}))$ and $(X, \tau^*(\mathcal{I}))$ have the same PO(X) = SP(X) and

then $(X, \tau), (X, \omega), (X, \omega^*(\mathcal{J}))$ and $(X, \tau^*(\mathcal{I}))$ have the same RO(X), SR(X) and $\theta O(X)$ sets.

(c) If $\tau^*(\mathcal{I}) = \sigma^*(\mathcal{I})$ for $\sigma \in Top(X)$, then the results (3) in Theorem 2.1. are valid by taking $\sigma^*(\mathcal{I})$ instead of σ , and then $(X, \tau), (X, \tau^*(\mathcal{I}), (X, \sigma) \text{ and } (X, \sigma^*(\mathcal{I}))$ have the same RO(X), SR(X) and $\theta O(X)$ sets.

The following theorem and corollaries can be obtained by using Lemma 2.7. below and the results of Andrijević given in [1,2,3]. We note that Corollary 2.6.(1) was given by Rose and Hamlett using a different method [16]. We will obtain these results by using the results given here.

THEOREM 2.3. Let $\tau, \sigma \in Top(X)$. If $\tau \subset \sigma \subset SO(X, \tau)$, and $\tau \operatorname{cl} U = \sigma \operatorname{cl} U$ for each $U \in \sigma$, then we have the following results.

(1) For each $A \subset X$, we have

(a) $\tau \operatorname{int}(\tau \operatorname{cl} A) = \sigma \operatorname{int}(\sigma \operatorname{cl} A),$

(b) $\tau \operatorname{cl}(\tau \operatorname{int} A) = \sigma \operatorname{cl}(\sigma \operatorname{int} A),$

(c) $\tau \operatorname{cl}(\tau \operatorname{int}(\tau \operatorname{cl} A)) = \sigma \operatorname{cl}(\sigma \operatorname{int}(\sigma \operatorname{cl} A)),$

(d) $\tau \operatorname{int}(\tau \operatorname{cl}(\tau \operatorname{int} A)) = \sigma \operatorname{int}(\sigma \operatorname{cl}(\sigma \operatorname{int} A)).$

(2) (X,τ) and (X,σ) have the same SO(X), PO(X), SPO(X), RO(X), SR(X), NO(X), D(X), $\alpha O(X)$, CD(X) and $\theta O(X)$ sets.

Proof. (1a) Let $A \subset X$. Then $\sigma \operatorname{int}(\sigma \operatorname{cl} A) \subset \sigma \operatorname{int}(\tau \operatorname{cl} A) = \tau \operatorname{int}(\tau \operatorname{cl} A)$. Since $\tau \operatorname{int}(\tau \operatorname{cl} A) \in \sigma$ and $\tau \operatorname{int}(\tau \operatorname{cl} A) \subset A \cup \tau \operatorname{int}(\tau \operatorname{cl} A) = \tau \operatorname{scl} A \subset \sigma \operatorname{cl} A$, we have $\tau \operatorname{int}(\tau \operatorname{cl} A) = \sigma \operatorname{int}(\tau \operatorname{cl} A)) \subset \sigma \operatorname{int}(\sigma \operatorname{cl} A)$. Hence $\tau \operatorname{int}(\tau \operatorname{cl} A) = \sigma \operatorname{int}(\sigma \operatorname{cl} A)$.

The remaining proofs are clear.

COROLLARY 2.4. Let $\tau \in Top(X), \mathcal{I} \in Id(X)$. If $\tau \cap \mathcal{I} = \{\emptyset\}$ and $\tau^*(\mathcal{I}) \subset SO(X, \tau)$, then the results of Theorem 2.3 are satisfied by taking $\tau^*(\mathcal{I})$ instead of σ .

COROLLARY 2.5. Since $\tau \cap \mathcal{I}_n = \{\emptyset\}$ and $\tau^*(\mathcal{I}_n) = \tau^{\alpha} \subset SO(X, \tau)$, the results of the above theorem are satisfied by taking τ^{α} instead of σ .

COROLLARY 2.6. If $\sigma^{\alpha} = \tau^{\alpha}$ (i.e. if $\sigma \in [\tau]^{\alpha}$ in the sense of Njåstad [14]), then we have the following results.

(1) For each $A \subset X$, we have

(a) $\tau \operatorname{int}(\tau \operatorname{cl} A) = \tau^{\alpha} \operatorname{int}(\tau^{\alpha} \operatorname{cl} A) = \sigma^{\alpha} \operatorname{int}(\sigma^{\alpha} \operatorname{cl} A) = \sigma \operatorname{int}(\sigma \operatorname{cl} A),$

(b) $\tau \operatorname{cl}(\tau \operatorname{int} A) = \tau^{\alpha} \operatorname{cl}(\tau^{\alpha} \operatorname{int} A) = \sigma^{\alpha} \operatorname{cl}(\sigma^{\alpha} \operatorname{int} A) = \sigma \operatorname{cl}(\sigma \operatorname{int} A),$

(c) $\tau \operatorname{int}(\tau \operatorname{cl}(\tau \operatorname{int} A)) = \tau^{\alpha} \operatorname{int}(\tau^{\alpha} \operatorname{cl}(\tau^{\alpha} \operatorname{int} A)) = \sigma^{\alpha} \operatorname{int}(\sigma^{\alpha} \operatorname{cl}(\sigma^{\alpha} \operatorname{int} A)).$

T. Hatice Yalvac

(d) $\tau \operatorname{cl}(\tau \operatorname{int}(\tau \operatorname{cl} A)) = \tau^{\alpha} \operatorname{cl}(\tau^{\alpha} \operatorname{int} A) = (\sigma^{\alpha} \operatorname{cl} A(\sigma^{\alpha} \operatorname{int}(\sigma^{\alpha} \operatorname{cl} A)) = \sigma \operatorname{cl}(\sigma \operatorname{int}(\sigma \operatorname{cl} A)).$

(2) $(X, \tau), (X, \tau^{\alpha}), (X, \sigma^{\alpha})$ and (X, σ) have the same $SO(X), PO(X), SPO(X), NO(X), D(X), CD(X), \alpha O(X), RO(X), SR(X)$ and $\theta O(X)$ sets [3].

LEMMA 2.7. Let $\tau, \sigma \in Top(X)$ and $\tau \subset \sigma$. Then, $\sigma \subset SO(X, \tau)$ and $\tau \operatorname{cl} U = \sigma \operatorname{cl} U$ for each $U \in \sigma$ iff $\sigma \in [\tau]^{\alpha}$.

Njåstad defined α -equivalent topologies and *-equivalent topologies in [14], [15], respectively. Njåstad showed that if $\tau \subset \sigma \subset \tau^{\alpha}$ for $\tau, \sigma \in Top(X)$, then τ and σ are α -equivalent. For $\tau, \sigma \in Top(X)$, $\mathcal{I} \in Id(X)$, if $\tau^*(\mathcal{I}) = \sigma^*(\mathcal{I})$, then we say that σ and τ are * \mathcal{I} -equivalent.

The α -equivalence or $*\mathcal{I}$ -equivalence of topologies on a set on which ideals are defined is important.

For any ideal \mathcal{I} on (X, τ) , $\tau^*(\mathcal{I})$ and $\tau^*(\mathcal{I})^{\alpha}$ are α -equivalent. We know that $\tau^*(\mathcal{I})^{\alpha} = (\tau^*(\mathcal{I}))^*(\mathcal{I}_n(\tau^*(\mathcal{I}))) = \tau^*(\mathcal{I} \vee \mathcal{I}_n(\tau^*(\mathcal{I})))$. Hence, for each ideal \mathcal{J} such that $\mathcal{J} \subset \mathcal{I}_n(\tau^*(\mathcal{I})), \tau^*(\mathcal{I}), \tau^*(\mathcal{I} \vee \mathcal{J})$ and $\tau^*(\mathcal{I} \vee \mathcal{I}_n(\tau^*(\mathcal{I})))$ are α -equivalent.

At the same time, for any ideal \mathcal{I} , since $\tau^*(\mathcal{I}) \cap \mathcal{I}_n(\tau^*(\mathcal{I})) = \{\emptyset\}$ and $\tau \subset \tau^*(\mathcal{I})$, we have that that $\tau \cap \mathcal{I}_n(\tau^*(\mathcal{I})) = \{\emptyset\}$. Hence for any ideal \mathcal{J} such that $\mathcal{J} \subset \mathcal{I}_n(\tau^*(\mathcal{I}))$ we have $\tau \cap \mathcal{J} = \{\emptyset\}$. And, if $\tau \cap \mathcal{I} = \{\emptyset\}$, then we know that $\mathcal{I}_n(\tau) \subset \mathcal{I}_n(\tau^*(\mathcal{I}))$. Now, we can give the following result.

THEOREM 2.8. Let \mathcal{I} be an ideal on (X, τ) and \mathcal{J} any ideal such that $\mathcal{J} \subset \mathcal{I}_n(\tau^*(\mathcal{I}))$. Then the following are equivalent.

(a) $\tau \cap \mathcal{I} = \{\emptyset\}$ (b) $\mathcal{I} \subset \mathcal{I}_n(\tau^*(\mathcal{I}))$ (c) $\mathcal{I} \lor \mathcal{I}_n \subset \mathcal{I}_n(\tau^*(\mathcal{I}))$ (d) $\mathcal{I} \lor \mathcal{J} \subset \mathcal{I}_n(\tau^*(\mathcal{I}))$ (e) $\mathcal{I} \lor \mathcal{I}_n \lor \mathcal{J} \subset \mathcal{I}_n(\tau^*(\mathcal{I}))$ (f) $\tau \cap (\mathcal{I} \lor \mathcal{J}) = \{\emptyset\}$ (g) $\tau \cap (\mathcal{I} \lor \mathcal{J} \lor \mathcal{I}_n) = \{\emptyset\}$ (h) $\tau \cap (\mathcal{I} \lor \mathcal{I}_n) = \{\emptyset\}.$

Proof. (a) \Longrightarrow (b) Let $I \in \mathcal{I}$. Then I is $\tau^*(\mathcal{I})$ -closed and since $\tau^*(\mathcal{I}) \cap \mathcal{I} = \{\emptyset\}$ we have that $\tau^*(\mathcal{I})$ -int $I = \emptyset$. So, $\tau^*(\mathcal{I})$ -int $(\tau^*(\mathcal{I})$ -cl $I) = \emptyset$ and $I \in \mathcal{I}_n(\tau^*(\mathcal{I}))$.

The remaining proofs are clear. \blacksquare

We deduce that if $\tau \cap \mathcal{I} = \{\emptyset\}$ for an ideal \mathcal{I} , then $\mathcal{I} \vee \mathcal{I}_n(\tau^*(\mathcal{I})) = \mathcal{I}_n(\tau^*(\mathcal{I}))$, and $(\tau^*(\mathcal{I}))^{\alpha} = \tau^*(\mathcal{I}_n(\tau^*(\mathcal{I})))$.

COROLLARY 2.9. If $\tau \cap \mathcal{I} = \{\emptyset\}$, then for any ideal \mathcal{J} satisfying $\mathcal{J} \subset \mathcal{I}_n(\tau^*(\mathcal{I}))$ we have that $\tau^*(\mathcal{I}), \ \tau^*(\mathcal{I} \lor \mathcal{J}), \ \tau^*(\mathcal{I} \lor \mathcal{J} \lor \mathcal{I}_n(\tau^*(\mathcal{I})))$ and $\tau^*(\mathcal{I}_n(\tau^*(\mathcal{I})))$ are all α -equivalent.

Several statements equivalent to $\mathcal{I} \subset \mathcal{I}_n$ have been given in the literature. Since τ and $\tau^*(\mathcal{I})$ are α -equivalent when $\mathcal{I} \subset \mathcal{I}_n$, we give some further conditions for $\mathcal{I} \subset \mathcal{I}_n$, in the following theorem.

90

THEOREM 2.10. Let \mathcal{I} be an ideal on (X, τ) and \mathcal{I}_n the ideal of nowhere dense sets in (X, τ) . Then the following are equivalent.

 $\begin{array}{l} (1) \ \mathcal{I} \subset \mathcal{I}_n, \\ (2) \ \tau \cap \mathcal{I} = \{\emptyset\} \ and \ \tau \ and \ \tau^*(\mathcal{I}) \ are \ \alpha\text{-equivalent}, \\ (3) \ \tau \cap \mathcal{I} = \{\emptyset\} \ and \ \tau^*(\mathcal{I}) \subset \tau^{\alpha}, \\ (4) \ \tau \cap \mathcal{I} = \{\emptyset\} \ and \ \tau^*(\mathcal{I}) \subset SO(X, \tau), \\ (5) \ \tau \cap \mathcal{I} = \{\emptyset\} \ and \ SO(X, \tau^*(\mathcal{I})) \subset SO(X, \tau), \\ (6) \ \tau \cap \mathcal{I} = \{\emptyset\} \ and \ SO(X, \tau) \subset PO(X, \tau^*(\mathcal{I})), \\ (7) \ \tau \cap \mathcal{I} = \{\emptyset\} \ and \ SPO(X, \tau) \subset SPO(X, \tau^*(\mathcal{I})), \\ (8) \ \tau \cap \mathcal{I} = \{\emptyset\} \ and \ D(X, \tau) \subset D(X, \tau^*(\mathcal{I})), \\ (9) \ A^*(\mathcal{I}_n) \subset A^*(\mathcal{I}) \ for \ each \ A \subset X, \\ (10) \ A^2 \ \subset A^*(\mathcal{I}) \ for \ each \ A \in D(X, \tau), \\ (11) \ \tau \cap \mathcal{I} = \{\emptyset\} \ and \ A^2 \ \subset \tau^*(\mathcal{I})\text{-cl} \ A \ for \ each \ A \subset X, \\ (12) \ \tau \cap \mathcal{I} = \{\emptyset\} \ and \ \mathcal{I} \subset SC(X, \tau). \end{array}$

Proof. (1) \Longrightarrow (2) Let $\mathcal{I} \subset \mathcal{I}_n$. We have, $\tau \subset \tau^*(\mathcal{I}) \subset \tau^*(\mathcal{I}_n) = \tau^{\alpha}$, so τ and $\tau^*(\mathcal{I})$ are α -equivalent from Theorem 1.1.(3).

 $\begin{array}{l} (2) \Longrightarrow (1) \text{ If } \tau^*(\mathcal{I}) \in [\tau]^{\alpha}, \text{ then we have } \mathcal{I}_n(\tau) = \mathcal{I}_n(\tau^*(\mathcal{I})). \text{ If } \tau \cap \mathcal{I} = \{\emptyset\}, \\ \text{then } \mathcal{I} \subset \mathcal{I}_n(\tau^*(\mathcal{I})). \text{ Hence, } \mathcal{I} \subset \mathcal{I}_n, \text{ if } \tau \cap \mathcal{I} = \{\emptyset\} \text{ and } \tau^*(\mathcal{I}) \in [\tau]^{\alpha}. \end{array}$

 $(2) \iff (3) \iff (4)$ Clear.

 $(2) \Longleftrightarrow (5) \Longleftrightarrow (6) \Longleftrightarrow (7) \Longleftrightarrow (8)$ Clear from [3, Theorem 1] and Corollary 2.2

 $(1) \iff (9)$ Known from the literature.

 $(9) \Longrightarrow (10)$ Clear.

(10) \Longrightarrow (8) Since $X \in D(X, \tau)$, we have $X^{\circ} = X \subset X^{*}(\mathcal{I}), X = X^{*}(\mathcal{I})$ and hence $\tau \cap \mathcal{I} = \{\emptyset\}$. For $A \in D(X, \tau)$ we deduce $\overline{A} = X, A^{\circ} = X, A^{*}(\mathcal{I}) = X$ and $\tau^{*}(\mathcal{I})$ -cl $A = A \cup A^{*}(\mathcal{I}) = X$. Hence we have $D(X, \tau) \subset D(X, \tau^{*}(\mathcal{I}))$.

(4) \implies (11) We have scl $A \subset \tau^*(\mathcal{I})$ -cl A for each $A \subset X$. Since scl $A = A \cup A^2$, the result is clear.

(11) \implies (3) Under the hypothesis of (11) we obtain $A^{\overline{2}} = \tau^*(\mathcal{I})$ -cl $A^{2} \subset \tau^*(\mathcal{I})$ -cl A and τ^{α} -cl $A = A \cup A^{\overline{2}} \subset \tau^*(\mathcal{I})$ -cl A for each subset A. Hence we have $\tau^*(\mathcal{I}) \subset \tau^{\alpha}$.

(4) \Longrightarrow (12) We know that each $I \in \mathcal{I}$ is $\tau^*(\mathcal{I})$ -closed. Since $\tau^*(\mathcal{I}) \subset SO(X, \tau)$, it follows that each $I \in \mathcal{I}$ is τ -semiclosed.

 $(12) \Longrightarrow (4)$ If $\mathcal{I} \subset SC(X, \tau)$, then $U - I \in SO(X, \tau)$ for any $U \in \tau$ and any $I \in \mathcal{I}$. So, $SO(X, \tau)$ contains a base of $\tau^*(\mathcal{I})$ (from Theorem 1.1.(10)). Hence $\tau^*(\mathcal{I}) \subset SO(X, \tau)$.

COROLLARY 2.11. If $\mathcal{I} \subset \mathcal{I}_n$, then we have the following results. (a) $\mathcal{I}_n(\tau^*(\mathcal{I})) = \mathcal{I}_n(\tau)$, (b) $\sigma \in [\tau]^{\alpha}$ iff $\sigma \in [\tau^*(\mathcal{I})]^{\alpha}$, (c) If $\sigma^*(\mathcal{I}) = \tau^*(\mathcal{I})$, then τ , $\tau^*(\mathcal{I})$ and $\sigma^*(\mathcal{I})$ are all α -equivalent.

T. Hatice Yalvac

Some other statements equivalent to $\mathcal{I} \subset \mathcal{I}_n$ can be seen from Corollary 2.13. and Corollary 2.15.

If \mathcal{A} is a supratopology and \mathcal{I} an ideal on X, then it is clear that $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$ iff \mathcal{A} -int $I = \emptyset$ for each $I \in \mathcal{I}$. In the following theorem, the results are clear and almost all of them are known.

THEOREM 2.12. Let (X, τ) be a topological space. Then we have the following results for any $A \subset X$.

(1) $A^2 = \emptyset \iff \text{pre-int } A = \emptyset \iff A^{\overline{2}} = \emptyset \iff \text{semi-pre-int } A = \emptyset$,

(2) $A^{\frac{o}{o}} = \emptyset \iff \alpha \operatorname{-int} A = \emptyset \iff A^{o} = \emptyset \iff A^{\overline{o}} = \emptyset \iff \operatorname{semi-int} A = \emptyset$

- (3) $A^{\overline{o}} = X \iff \text{pre-cl} A = X \iff A^{\frac{o}{o}} = X \iff \text{semi-pre-cl} A = X$,
- (4) $A^{\overline{2}} = X \iff \alpha \operatorname{cl} A = X \iff \overline{A} = X \iff A^{2} = X \iff \operatorname{scl} A = X.$

Clearly, in a topological space (X, τ) , for any $x \in X$, $\{x\} \notin \mathcal{I}_n$ iff pre-int $\{x\} \neq \emptyset$ iff semi-pre-int $\{x\} \neq \emptyset$ iff $\{x\}$ is pre-open iff $\{x\}$ is semi-pre-open.

In the following corollary we assume that the necessary ideals are defined on the topological space (X, τ) .

COROLLARY 2.13. We have the following results. (1) $\mathcal{I}_n = \{A : A^{\circ} = \emptyset\} = \{A : \text{pre-int } A = \emptyset\} = \{A : \text{semi-pre-int } A = \emptyset\} = \{A : \text{semi-pre-int } A = \emptyset\}$

 $\{A: A^{\overline{2}} = \emptyset\} = CD(X, \tau) \cap SC(X, \tau).$

(2) $\mathcal{I}_n \cap PO(X, \tau) = \{\emptyset\}$ and $\mathcal{I}_n \cap SPO(X, \tau) = \{\emptyset\}.$ (3) $\mathcal{I} \subset \mathcal{I}_n$ iff $\mathcal{I} \cap PO(X, \tau) = \{\emptyset\}$ [4] iff $\mathcal{I} \cap SPO(X, \tau) = \{\emptyset\}.$

(4) For $\sigma \in Top(X)$, if $PO(X, \sigma) \subset PO(X, \tau)$ or $SPO(X, \sigma) \subset SPO(X, \tau)$, then $\mathcal{I}_n(\tau) \subset \mathcal{I}_n(\sigma)$.

(5) $CD(X) = \{A : A^{\circ} = \emptyset\} = \{A : A^{\frac{1}{\circ}} = \emptyset\} = \{A : \alpha \text{-int } A = \emptyset\} = \{A : \alpha \text{-int } A = \emptyset\} = \{A : A^{\overline{\circ}} = \emptyset\}.$ (6) For $\sigma \in Top(X)$, if $SO(X, \tau) \subset SO(X, \sigma)$ or $\tau^{\alpha} \subset \sigma^{\alpha}$, then $D(X, \sigma) \subset D(X, \tau)$ and $CD(X, \sigma) \subset CD(X, \tau)$.

(7)(a) $\tau \cap \mathcal{I} = \{\emptyset\}$ iff $SO(X, \tau) \cap \mathcal{I} = \{\emptyset\}$ [4] iff $\tau^{\alpha} \cap \mathcal{I} = \{\emptyset\}$ iff $\tau^*(\mathcal{I}) \cap \mathcal{I} = \{\emptyset\}$ iff $SO(X, \tau^*(\mathcal{I})) \cap \mathcal{I} = \{\emptyset\}$ iff $\tau^*(\mathcal{I})^{\alpha} \cap \mathcal{I} = \{\emptyset\}$.

(b) Let $\sigma \in Top(X)$ and $\sigma^*(\mathcal{I}) = \tau^*(\mathcal{I})$, then we have that $\tau \cap \mathcal{I} = \{\emptyset\}$ iff $\sigma \cap \mathcal{I} = \{\emptyset\}$.

(c) Let $\sigma \in Top(X)$ and $\sigma \in [\tau^*(\mathcal{I})]^{\alpha}$, then we have that $\tau \cap \mathcal{I} = \{\emptyset\}$ iff $\sigma \cap \mathcal{I} = \{\emptyset\}$.

Now, by combining the results given above with the following facts,

(i) If $\tau \subset \sigma \subset \tau^*(\mathcal{I})$ for $\sigma \in Top(X)$, then $\sigma^*(\mathcal{I}) = \tau^*(\mathcal{I})$,

(ii) If $\tau^*(\mathcal{I}) \subset \sigma \subset (\tau^*(\mathcal{I}))^{\alpha} = (\tau^*(\mathcal{I}))^*(\mathcal{I}_n(\tau^*(\mathcal{I})))$ then $\sigma \in [\tau^*(\mathcal{I}))]^{\alpha}$, we can obtain several conditions equivalent to $\tau \cap \mathcal{I} = \{\emptyset\}$.

For a supratopology \mathcal{A} on X, $\mathcal{T}_{\mathcal{A}}$ will stand for the topology

$$\{U: A \in \mathcal{A} \implies U \cap A \in \mathcal{A}\} \ [19].$$

We know that $\tau \subset \mathcal{T}_{PO(X,\tau)}, \tau \subset \mathcal{T}_{SO(X,\tau)}, \tau \subset \mathcal{T}_{SPO(X,\tau)}$ and $\tau \subset \tau^{\alpha} = \mathcal{T}_{\tau^{\alpha}}$ [1–3].

Ø.

THEOREM 2.14. Let (X, τ) be a topological space, $\mathcal{I} \in Id(X)$ and \mathcal{A} a supratopology on X. Then we have the following results.

(1) If $\tau \cap \mathcal{I} = \{\emptyset\}$ and $A^o \neq \emptyset$ for each $A \in \mathcal{A} - \{\emptyset\}$, then $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$.

(2) If $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$ and $\tau \subset \mathcal{T}_{\mathcal{A}}$, then

(a) $A \subset A^*$ for each $A \in \mathcal{A}$,

(b) $\overline{A} = A^* = \tau^* \operatorname{-cl} A$ for each $A \in \mathcal{A}$.

(3)(a) If $A^*(\mathcal{I}) \neq \emptyset$ for each $A \in \mathcal{A} - \{\emptyset\}$, then $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$,

(b) If $\tau \subset \mathcal{T}_{\mathcal{A}}$, then $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$ iff $A \subset A^*(\mathcal{I})$ for each $A \in \mathcal{A}$.

(4) $\mathcal{A} \cap \mathcal{I}_n = \{\emptyset\}$ iff $A^{\circ} \neq \emptyset$ for each $A \in \mathcal{A} - \{\emptyset\}$.

(5) If $\mathcal{A} \cap \mathcal{I}_n = \{\emptyset\}$ and $\tau \subset \mathcal{T}_{\mathcal{A}}$, then $\mathcal{A} \subset SPO(X, \tau)$.

(6) If $PO(X,\tau) \subset \mathcal{A} \subset SPO(X,\tau)$, then $\mathcal{A} \cap \mathcal{I}_n = \{\emptyset\}$ iff $\mathcal{I} \subset \mathcal{I}_n$ iff $A \subset A^*(\mathcal{I})$ for each $A \in \mathcal{A}$.

(7) If $\tau \subset \mathcal{A} \subset SO(X, \tau^*(\mathcal{I}))$, then $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$ iff $\tau \cap \mathcal{I} = \{\emptyset\}$ iff $A \subset A^*(\mathcal{I})$ for each $A \in \mathcal{A}$.

Proof. (2a) Let $A \in \mathcal{A}$ and $x \in A$. If $x \in U \in \tau$, then since $\tau \subset \mathcal{T}_{\mathcal{A}}$, we have $\emptyset \neq U \cap A \in \mathcal{A}$. Hence, $U \cap A \notin \mathcal{I}$. So, we have $x \in A^*$.

(2b) We know that A^* is τ -closed, $A^* \subset \overline{A}$ and $\tau^* clA = A \cup A^*$. Result is clear from (a).

(3a) It is known that $I^* = \emptyset$ for any ideal \mathcal{I} and for each $I \in \mathcal{I}$. Now, result is clear.

(3b) Clear from (3a) and (2a)

(4) Clear from Corollary 2.13.

(5) Let $A \in \mathcal{A}$. From (3)(b) we have $A \subset A^*(\mathcal{I}_n) = A^{\overline{2}}$. Hence, $A \in SPO(X, \tau)$.

(6) Let $PO(X,\tau) \subset \mathcal{A} \subset SPO(X,\tau)$. If $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$ then $PO(X,\tau) \cap \mathcal{I} = \{\emptyset\}$ and hence $\mathcal{I} \subset \mathcal{I}_n$. If $\mathcal{I} \subset \mathcal{I}_n$, then $SPO(X,\tau) \cap \mathcal{I} = \{\emptyset\}$ and hence $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$.

If $\mathcal{I} \subset \mathcal{I}_n$, then $SPO(X, \tau) \cap \mathcal{I} = \{\emptyset\}$. Now, from Corollary 2.15.(1) below, and since $\mathcal{A} \subset SPO(X, \tau)$, we have $\mathcal{A} \subset \mathcal{A}^*(\mathcal{I})$ for each $\mathcal{A} \in \mathcal{A}$.

If $A \subset A^*(\mathcal{I})$ for each $A \in \mathcal{A}$, then we have $A \subset A^*(\mathcal{I})$ for each $A \in PO(X, \tau)$. So, from Corollary 2.15(1), we have $\mathcal{I} \subset \mathcal{I}_n$.

(7) Let $\tau \subset \mathcal{A} \subset SO(X, \tau^*(\mathcal{I}))$. If $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$, then $\tau \cap \mathcal{I} = \{\emptyset\}$. If $\tau \cap \mathcal{I} = \{\emptyset\}$, then from Corollary 2.13(7) we have $SO(X, \tau^*(\mathcal{I})) \cap \mathcal{I} = \{\emptyset\}$. So, $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$.

If $\tau \cap \mathcal{I} = \{\emptyset\}$, then from Corollary 2.15(2) below we have $A \subset A^*(\mathcal{I})$ for each $A \in SO(X, \tau^*(\mathcal{I}))$. So, $A \subset A^*(\mathcal{I})$ for each $A \in \mathcal{A}$.

If $A \subset A^*(\mathcal{I})$ for each $A \in \mathcal{A}$, then from Theorem 1.1.(9) we have $U \subset U^*$ for each $U \in \tau$, and $\tau \cap \mathcal{I} = \{\emptyset\}$.

COROLLARY 2.15. We have the following results.

(1) $PO(X,\tau) \cap \mathcal{I} = \{\emptyset\}$ iff $A \subset A^*(\mathcal{I})$ for each $A \in PO(X,\tau)$ [4] iff $A \subset A^*(\mathcal{I})$ for each $A \in SPO(X,\tau)$.

(2) $\tau \cap \mathcal{I} = \{\emptyset\}$ iff $A \subset A^*(\mathcal{I})$ for each $A \in SO(X, \tau)$. [4] iff $A \subset A^*(\mathcal{I})$ for

each $A \in \tau^{\alpha}$ iff $A \subset A^{*}(\mathcal{I})$ for each $A \in SO(X, \tau^{*}(\mathcal{I}))$ iff $A \subset A^{*}(\mathcal{I})$ for each $A \in \tau^{*}(\mathcal{I})^{\alpha}$.

Proof. The proofs are clear from Theorem 1.1.(2), Theorem 2.14(3b) and Theorem 1.1(5). \blacksquare

COROLLARY 2.16. We have the following results.

(1) If $PO(X,\tau) \cap \mathcal{I} = \{\emptyset\}$, then τ -cl $A = A^* = \tau^*$ -cl A for each $A \in SPO(X,\tau)$.

(2) If $\tau \cap \mathcal{I} = \{\emptyset\}$, then τ -cl $A = A^* = \tau^*$ -cl A for each $A \in SO(X, \tau^*(\mathcal{I}))$.

LEMMA 2.17. Let (X, τ) be topological space, \mathcal{A} a supratopology on X such that $\tau \subset \mathcal{T}_{\mathcal{A}}$. If \mathcal{A} -int $B = \emptyset$ for a subset B, then $(A \cap B)^- \subset (A - B)^-$ and $\overline{A} = (A - B)^-$ for each $A \in \mathcal{A}$.

Proof. Let $B \subset X$, \mathcal{A} - int $B = \emptyset$, $A \in \mathcal{A}$, $x \in (A \cap B)^-$ and $x \in U \in \tau$. Then $U \cap A \cap B \neq \emptyset$ and $U \cap A \neq \emptyset$. Since $\tau \subset \mathcal{T}_{\mathcal{A}}$, we have $\emptyset \neq U \cap A \in \mathcal{A}$. So $U \cap A \not\subset B$, and $(A - B) \cap U = A \cap U - B \neq \emptyset$. Hence $x \in (A - B)^-$.

This now gives $\overline{A} = (A - B)^- \cup (A \cap B)^- = (A - B)^-$.

COROLLARY 2.18. Let $\mathcal{I} \in Id(X)$ and \mathcal{A} a supratopology on X. If $\mathcal{A} \cap \mathcal{I} = \{\emptyset\}$, then we have the following results.

(a) If $\tau \subset \mathcal{T}_{\mathcal{A}}$, then $\overline{A} = (A - I)^{-}$ for each $A \in \mathcal{A}$ and for each $I \in \mathcal{I}$.

(b) If $\tau^*(\mathcal{I}) \subset \mathcal{T}_A$, then $\overline{A} = (A - I)^-$ and $\tau^* \text{-cl}A = \tau^* \text{-cl}(A - I)$ for each $A \in A$ and for each $I \in \mathcal{I}$.

Proof. (a) If $I \in \mathcal{I}$ we obtain \mathcal{A} -int $I = \emptyset$. The proof is now clear from Lemma 2.17.

(b) If $\tau^* \subset \mathcal{T}_{\mathcal{A}}$ then we obtain $\tau \subset \tau^* \subset \mathcal{T}_{\mathcal{A}}$. The proof is now clear from Lemma 2.17. \blacksquare

COROLLARY 2.19. Let (X, τ) be a topological space and $\mathcal{I} \in Id(X)$. Then we have the following results.

(1) If $PO(X,\tau) \cap \mathcal{I} = \{\emptyset\}$, then $\overline{A} = (A-I)^- = A^* = \tau^* - clA = (A-I)^*$ for each $I \in \mathcal{I}$ and for each $A \in SPO(X,\tau)$.

(2) If $\tau \cap \mathcal{I} = \{\emptyset\}$, then $\overline{A} = (A-I)^- = A^* = \tau^* \operatorname{-cl} A = \tau^* \operatorname{-cl} (A-I) = (A-I)^*$ for each $I \in \mathcal{I}$ and for each $A \in SO(X, \tau^*(\mathcal{I}))$.

(3) If $\tau \cap \mathcal{I} = \{\emptyset\}$, then we have τ -scl $A = \tau^*$ -scl A for each $I \in \mathcal{I}$ and for each $A \in SO(X, \tau^*(\mathcal{I}))$.

Proof. (1),(2) Clear from Corollory 2.16, Corollary 2.18 and Theorem 1.1.(15). (3) From (2) we will have $A^{\circ} = \tau \operatorname{-int}(\tau^*\operatorname{-cl} A) = \tau^*\operatorname{-int}(\tau^*\operatorname{-cl} A)$ and $\tau \operatorname{-scl} A = A \cup A^{\circ} = A \cup \tau^*\operatorname{-int}(\tau^*\operatorname{-cl} A) = \tau^*\operatorname{-scl} A$.

REFERENCES

[1] D. Andrijević, Some properties of the topology of α -sets, Mat. Vesnik, 36 (1984), 1–10.

- [2] D. Andrijević, A note on preopen sets, Supplemento ai Rendiconti del Circolo Matematica di Palermo, Serie II, 18, (1988), 195–201.
- [3] D. Andrijević, A note on α -equivalent topologies, Mat. Vesnik, 45 (1993), 65–69.
- [4] R. Devi, D. Sivaraj and T. Chelvam, Codense and completely codense ideals, Acta Math. Hungar., 108, 3, (2005),197–205.
- [5] E. Hayashi, Topologies defined by local properties, Math. Ann., 156 (1964), 205–215.
- [6] D. Janković and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310,
- [7] D. Janković and I.L. Reilly, On semi seperation properties, Indian J. Math., 6, (1985), 957– 967.
- [8] K. Kuratowski, Topologie I, Warszawa, 1933.
- [9] P.E. Long and L.L. Herrington, The τ_θ-topology and faintly continuous functions, Kyungpook Math. J., 22 (1982), 7–14.
- [10] A.S. Mashhour, T.H. Khedr and S.Abd El-Bakkey, On supra-R_o and supra-R₁ spaces, Indian J. Pure Appl. Math., 16 (1985), 1300–1306.
- [11] J. Mioduszewkski and L. Rudolf, H-closed and externally disconnected Hausdorff spaces, Dissertationes Math., 66 (1969), 1–55.
- [12] M.N. Mukherjee and C.K. Basu, θ-equivalent spaces- A new approach to RO-equivalent spaces and semi-regular properties, Indian J. pure appl. Math., 22, 9(1991), 745–750.
- [13] L. Newcomb, Topologies which are compact mudulo an ideal, Ph.D. Dissertation, Univ. of Cal. at. Santa Barbara (1967).
- [14] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15, 3 (1965), 961-970.
- [15] O. Njåstad, Remarks on topologies defined by local properties, Avh. Norske vid.-Akad. Oslo I(N.S), 8(1966), 1–16.
- [16] D. Rose and T.R. Hamlett, Ideally equivalent topologies and semitopological properties, Math. Choronicle 20 (1991), 149–156.
- [17] P. Samuels, A topology formed from a given topology and ideal, J. London Math. Soc., 2,10 (1975), 409–416.
- [18] R. Vaidyanathaswamy, The localization theory in set-topology, Proc. Indian Acad. Sci., 20 (1945), 51–61.
- [19] T.H. Yalvac, Relations between new topologies obtained from old ones, Acta Math. Hungar., 64, 3 (1994), 231–235.

(received 06.01.2006, in revised form 03.09.2007)

T.Hatice YALVAC, Hacettepe University, Faculty of Science, Department of Mathematics, 06532 Beytepe, Ankara-Turkey.