SPACES RELATED TO γ -SETS

Filippo Cammaroto¹ and Ljubiša D.R. Kočinac²

Abstract. We characterize Ramsey theoretically two classes of spaces which are related to $\gamma\text{-sets.}$

1. Introduction

The notation and terminology are mainly as in [2]. X will denote an infinite Hausdorff topological space.

Let \mathcal{A} and \mathcal{B} be sets whose members are families of subsets of an infinite set X. Then (see [7], [4]):

 $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $(A_n : n \in \mathbf{N})$ of elements of \mathcal{A} there is a sequence $(b_n : n \in \mathbf{N})$ such that for each $n \in \mathbf{N}$, $b_n \in A_n$ and $\{b_n : n \in \mathbf{N}\} \in \mathcal{B}$.

 $\mathsf{S}_{fin}(\mathcal{A},\mathcal{B})$ denotes the selection hypothesis:

For each sequence $(A_n : n \in \mathbf{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbf{N})$ of finite (not necessarily non-empty) sets such that for each $n \in \mathbf{N}$, $B_n \subset A_n$ and $\bigcup_{n \in \mathbf{N}} B_n$ is an element of \mathcal{B} .

The symbol $G_1(\mathcal{A}, \mathcal{B})$ [7] denotes an infinitely long game for two players, ONE and TWO, which play a round for each positive integer. In the *n*-th round ONE chooses a set $A_n \in \mathcal{A}$, and TWO responds by choosing an element $b_n \in A_n$. TWO wins a play $(A_1, b_1; \cdots; A_n, b_n; \cdots)$ if $\{b_n : n \in \mathbf{N}\} \in \mathcal{B}$; otherwise, ONE wins.

If ONE does not have a winning strategy in the game $G_1(\mathcal{A}, \mathcal{B})$, then the selection hypothesis $S_1(\mathcal{A}, \mathcal{B})$ is true, but the converse need not be always true. In many cases the game characterizes the corresponding selection principle.

²Supported by MNZŽS RS

125

AMS Subject Classification: 54D20, 05C55, 03E02, 91A44.

Keywords and phrases: Selection principles, Ramsey theory, game theory, ω -cover, k-cover, γ -cover, γ -set, k- γ -set, k- γ -set.

¹Supported by MURST-PRA 2000.

For positive integers n and m the symbol $\mathcal{A} \to (\mathcal{B})_m^n$ denotes the statement: For each $A \in \mathcal{A}$ and for each function $f : [A]^n \to \{1, \dots, m\}$ there are a set $B \subset A, B \in \mathcal{B}$, and an $i \in \{1, \dots, m\}$ such that for each $Y \in [B]^n, f(Y) = i$.

Here $[A]^n$ denotes the set of *n*-element subsets of *A*. We call *f* a "coloring" and say that "*B* is homogeneous of color *i* for *f*".

This symbol is called the *ordinary partition symbol* [7]. Several selection principles of the form $S_1(\mathcal{A}, \mathcal{B})$ have been characterized by the ordinary partition relation (see [7], [4], [6]).

An open cover \mathcal{U} of a space X is an ω -cover (resp. k-cover) if X does not belong to \mathcal{U} and every finite (resp. compact) subset of X is contained in a member of \mathcal{U} . Because we deal with k-covers, we assume that spaces we consider are (infinite) non-compact. An open cover \mathcal{U} of X is called a γ -cover [3] if it is infinite and each $x \in X$ belongs to all but finitely many elements of \mathcal{U} . Notice that it is equivalent to the assertion: Each finite subset of X belongs to all but finitely many members of \mathcal{U} . An open cover of a space X is called a γ_k -cover of X if each compact subset of X is contained in all but finitely many elements of \mathcal{U} and X is not a member of the cover ([5]).

We suppose that all covers are *countable*. Recall that spaces in which every open k-cover contains a countable k-subcover are called k-Lindelöf.

For a topological space X we denote:

- 1. Ω the family of ω -covers of X;
- 2. \mathcal{K} the family of k-covers of X;
- 3. Γ the family of γ -covers of X;
- 4. Γ_k the family of γ_k -covers of X.

Let us observe that we have

$$\Gamma_k \subset \Gamma \subset \Omega, \quad \Gamma_k \subset \mathcal{K} \subset \Omega.$$

In [3], Gerlits and Nagy introduced the following notion: a space X is a γ -space (or a γ -set) if each ω -cover \mathcal{U} of X contains a countable family $\{U_n : n \in \mathbf{N}\}$ which is a γ -cover of X. They have also proved that the γ -set property of a space X is equivalent to the statement that X satisfies the selection property $S_1(\Omega, \Gamma)$. It was shown in [4] that the γ -set property is equivalent also to the selection hypothesis $S_{fin}(\Omega, \Gamma)$.

In [7], it was proved:

THEOREM 1. For a space X the following statements are equivalent:

- (a) X is a γ -set;
- (b) ONE has no winning strategy in the game $G_1(\Omega, \Gamma)$ on X;
- (c) For all $n, m \in \mathbf{N}$, X satisfies $\Omega \to (\Gamma)_m^n$.

We shall prove here that similar results are true for two recently introduced classes of spaces which are similar to γ -sets. In fact, we give Ramsey theoretical characterizations of those classes of spaces.

2. k- γ -sets

In [1], the class of k- γ -sets was introduced as the class of $S_1(\mathcal{K}, \Gamma)$ -sets and the following result regarding that class of spaces was shown.

THEOREM 2. For a space X the following are equivalent:

(1) X is a k- γ -set;

- (2) X satisfies $S_{fin}(\mathcal{K},\Gamma)$;
- (3) ONE has no winning strategy in the game $G_1(\mathcal{K},\Gamma)$ on X.

We show here that this class of spaces also can be described Ramsey-theoretically.

THEOREM 3. For a k-Lindelöf space X the following are equivalent:

- (1) X is a k- γ -set;
- (2) For positive integers n and m, X satisfies $\mathcal{K} \to (\Gamma)_m^n$.

Proof. We consider the case n = m = 2, because the general case can be easily obtained from it by standard induction arguments.

 $(1) \Rightarrow (2)$: Let $\mathcal{U} = \{U_1, U_2, \cdots\}$ be a countable k-cover of X and let $f : [\mathcal{U}]^2 \to \{1, 2\}$ be a coloring. For $j \in \{1, 2\}$ let $\mathcal{H}_j = \{V \in \mathcal{U} : f(\{U_1, V\}) = j\}$. Then at least one of the sets \mathcal{H}_1 and \mathcal{H}_2 is a k-cover of X. Denote such a set by \mathcal{U}_1 and the corresponding j by i_1 . In a similar way define inductively sets \mathcal{U}_n of k-covers of X and elements i_n from $\{1, 2\}$ such that

$$\mathcal{U}_{n} = \{ V \in \mathcal{U}_{n-1} : f(\{U_{n}, V\}) = i_{n} \}.$$

Apply now the $S_1(\mathcal{K}, \Gamma)$ property of X to the sequence $(\mathcal{U}_n : n \in \mathbf{N})$ to choose for each $n \in \mathbf{N}$ a $V_n \in \mathcal{U}_n$ such that $\mathcal{V} = \{V_n : n \in \mathbf{N}\} \in \Gamma$. Consider now the sets $\mathcal{V}_1 := \{V_m \in \mathcal{V} : i_m = 1\}$ and $\mathcal{V}_2 := \{V_m \in \mathcal{V} : i_m = 2\}$. At least one of them is infinite and so is a γ -cover of X, as each infinite subset of a γ -cover is also a γ -cover. So, one may suppose that there is an $i \in \{1, 2\}$ satisfying: for each $U_m \in \mathcal{V}, i_m = i$. We have that $f(\{A, B\}) = i$ for each $\{A, B\} \in [\mathcal{V}]^2$.

(2) \Rightarrow (1): Let $(\mathcal{U}_n : n \in \mathbf{N})$ be a sequence of countable k-covers of X and let us suppose that for each $n \in \mathbf{N}$, $\mathcal{U}_n = \{U_{n,m} : m \in \mathbf{N}\}$. Define now \mathcal{V} to be the family of all nonempty sets of the form $U_{1,n} \cap U_{n,m}$, $n, m \in \mathbf{N}$. Clearly, \mathcal{V} is a k-cover of X. Let $f : [\mathcal{V}]^2 \to \{1, 2\}$ be define by

$$f(U_{1,n_1} \cap U_{n_1,m}, U_{1,n_2} \cap U_{n_2,l}) = \begin{cases} 1, & \text{if } n_1 = n_2, \\ 2, & \text{otherwise.} \end{cases}$$

Apply $\mathcal{K} \to (\Gamma)_2^2$ to find a γ -cover $\mathcal{W} \subset \mathcal{V}$ and an $i \in \{1, 2\}$ such that whenever U and V are from \mathcal{W} , then $f(\{U, V\}) = i$. Consider two possibilities:

(i) i = 1: Then there is some $n \in \mathbf{N}$ such that for each $W \in \mathcal{W}$ we have $W \subset U_{1,n}$. However, this implies that \mathcal{W} is not a $(\gamma$ -) cover of X and this contradiction shows that this case is impossible.

(ii) i = 2: Whenever $W \in W$ is of the form $U_{1,n} \cap U_{n,m}$ choose (one element) $H_n = U_{n,m} \in \mathcal{U}_n$. Otherwise, let $H_n = \emptyset$. Then the set $\mathcal{H} := \{H_n : n \in \mathbf{N}\}$ is a γ -cover of X (because W refines \mathcal{H}), and the sequence $(H_n : n \in \mathbf{N})$ witnesses for $(\mathcal{U}_n : n \in \mathbf{N})$ that X satisfies $\mathsf{S}_{fin}(\mathcal{K}, \Gamma)$. By Theorem 2 it is equivalent to $\mathsf{S}_1(\mathcal{K}, \Gamma)$, i.e. (1) holds.

3. γ'_k -sets

The following class of spaces was introduced in [5]. A space X is said to be a γ'_k -set if it satisfies the selection hypothesis $S_1(\mathcal{K}, \Gamma_k)$.

A characterization of γ_k' -sets from [5] is given in the next theorem.

THEOREM 4. For a space X the following are equivalent:

- (1) X is a γ'_k -set;
- (2) X satisfies $S_{fin}(\mathcal{K}, \Gamma_k)$;
- (3) ONE does not have a winning strategy in the game $G_1(\mathcal{K}, \Gamma_k)$ played on X.

We give now a Ramsey-theoretical characterization of γ'_k -sets.

THEOREM 5. For a k-Lindelöf space X the following are equivalent:

- (1) X is a γ'_k -set;
- (2) For all $n, m \in \mathbf{N}$, X satisfies $\mathcal{K} \to (\Gamma_k)_m^n$.

Proof. We again consider only the case n = m = 2.

(1) \Rightarrow (2): We shall use that (1) is equivalent to the fact that ONE has no winning strategy in the game $\mathsf{G}_1(\mathcal{K},\Gamma_k)$ played on X (Theorem 4).

Suppose $\mathcal{U} = \{U_1, U_2, \cdots\}$ is a k-cover of X and let $f : [\mathcal{U}]^2 \to \{1, 2\}$ be a coloring. Let us define a strategy σ for ONE in the game $\mathsf{G}_1(\mathcal{K}, \Gamma_k)$.

In the first round ONE plays $\sigma(\emptyset) = \mathcal{U}$. Then choose $i_n \in \{1, 2\}, n \in \mathbb{N}$, such that $\sigma(U_n) = \{V \in \mathcal{U} : \sigma(\{U_n, V\}) = i_n\}$ is a k-cover of X (see the proof of Theorem 3). Let us write $\sigma(U_n) = \{U_{n,m} : m \in \mathbb{N}\}$. Suppose for each finite sequence (n_1, \ldots, n_p) of natural numbers we have defined sets U_{n_1, \ldots, n_p} and $i_{n_1, \ldots, n_{p-1}} \in \{1, 2\}$ satisfying the condition $\{U_{n_1, \ldots, n_p, m} : m \in \mathbb{N}\}$ is a k-cover of X which is equal to the set

 $\{V \in \sigma(U_{n_1}, U_{n_1, n_2}, \dots, U_{n_1, n_2, \dots, n_p}) : f(\{U_{n_1, n_2, \dots, n_p}, V\}) = i_{n_1, n_2, \dots, n_p}\}.$

In this way one defines a strategy σ for ONE in $G_1(\mathcal{K}, \Gamma_k)$. As ONE has no winning strategy, there is a play (for TWO)

 $U_{n_1}, U_{n_1, n_2}, \ldots, U_{n_1, n_2, \ldots, n_m}, \ldots$

which defeats this strategy. The set $\{U_{n_1}, \ldots, U_{n_1, n_2, \ldots, n_m}, \ldots\}$ is a γ_k -cover of X. Besides, if p < q, then

$$f(\{U_{n_1,n_2,\ldots,n_p}, U_{n_1,n_2,\ldots,n_q}\}) = i_{n_1,n_2,\ldots,n_p}.$$

We may choose $i \in \{1, 2\}$ such that for infinitely many m we have $i_{n_1, n_2, ..., n_m} = i$. Then define

$$\mathcal{V} = \{U_{n_1, n_2, \dots, n_m} : i_{n_1, n_2, \dots, n_m} = i\} \subset \mathcal{U}.$$

This set is a γ_k -cover of X (because an infinite subset of a γ_k -cover is also a γ_k -cover) and, by construction, is homogeneous for f of color i.

(2) \Rightarrow (1): Let $(\mathcal{U}_n : n \in \mathbf{N})$ be a sequence of countable k-covers of X and suppose that for each $n, \mathcal{U}_n = \{U_{n;m} : m \in \mathbf{N}\}$. Consider now the set \mathcal{V} of all nonempty sets of the form $U_{1;m} \cap U_{m;k}, n, k \in \mathbf{N}$. Clearly, \mathcal{V} is a k-cover of X. Define $f : [\mathcal{V}]^2 \to \{1, 2\}$ by

$$f(U_{1;n_1} \cap U_{n_1;k}, U_{1;n_2} \cap U_{n_2;m}) = \begin{cases} 1, & \text{if } n_1 = n_2\\ 2, & \text{otherwise.} \end{cases}$$

Since $\mathcal{K} \to (\Gamma_k)_2^2$ holds there are $j \in \{1, 2\}$ and a homogeneous for f of color j collection $\mathcal{W} \subset \mathcal{V}$ such that $\mathcal{W} \in \Gamma_k$. Consider two possibilities:

(i) j = 1: Then there is some n such that for each $W \in \mathcal{W}$ we have $W \subset U_{1,n}$. However, this means that \mathcal{W} is not a γ_k -cover of X and we have a contradiction which shows that this case is impossible.

(ii) j = 2: For each $W \in \mathcal{W}$ choose, when it is possible, $U_{n;k_n}$ to be the second term in the chosen representation of W; otherwise let $U_{n;k_n} = \emptyset$. Let \mathcal{V}' be the set of all U_{n,k_n} 's chosen in this way. Then \mathcal{V}' is a γ_k -cover of X witnessing for $(\mathcal{U}_n : n \in \mathbf{N})$ that X satisfies $\mathsf{S}_{fin}(\mathcal{K}, \Gamma_k)$. Apply now Theorem 4

REFERENCES

- G. Di Maio, Lj.D.R. Kočinac and E. Meccariello, Applications of k-covers, Acta Math. Sinica, English Series, to appear.
- [2] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [3] J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982), 151–161.
- [4] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, Combinatorics of open covers (II), Topology Appl. 73 (1996), 241–266.
- [5] Lj.D.R. Kočinac, γ -sets, γ_k -sets and hyperspaces, Math. Balkanica **19**, 1–2 (2005), 109–118.
- [6] Lj.D.R. Kočinac and M. Scheepers, Combinatorics of open covers (VII): Groupability, Fund. Math. 179 (2003), 131–155.
- [7] M. Scheepers, Combinatorics of open covers (I): Ramsey Theory, Topology Appl. 69 (1996), 31–62.

(received 12.11.2005, in revised form 08.03.2006)

Filippo Cammaroto, Dipartimento di Matematica, Università di Messina, 98166 Messina, Italia *E-mail*: camfil@unime.it

Ljubiša D.R. Kočinac, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia *E-mail*: 1kocinac@ptt.yu