SPACES RELATED TO γ-SETS

Filippo Cammaroto ${ }^{1}$ and Ljubiša D.R. Kočinac ${ }^{2}$

Abstract

We characterize Ramsey theoretically two classes of spaces which are related to γ-sets.

1. Introduction

The notation and terminology are mainly as in [2]. X will denote an infinite Hausdorff topological space.

Let \mathcal{A} and \mathcal{B} be sets whose members are families of subsets of an infinite set X. Then (see [7], [4]):
$\mathrm{S}_{1}(\mathcal{A}, \mathcal{B})$ denotes the selection principle:
For each sequence $\left(A_{n}: n \in \mathbf{N}\right)$ of elements of \mathcal{A} there is a sequence $\left(b_{n}: n \in\right.$ $\mathbf{N})$ such that for each $n \in \mathbf{N}, b_{n} \in A_{n}$ and $\left\{b_{n}: n \in \mathbf{N}\right\} \in \mathcal{B}$.
$\mathrm{S}_{\text {fin }}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis:
For each sequence $\left(A_{n}: n \in \mathbf{N}\right)$ of elements of \mathcal{A} there is a sequence (B_{n} : $n \in \mathbf{N}$) of finite (not necessarily non-empty) sets such that for each $n \in \mathbf{N}$, $B_{n} \subset A_{n}$ and $\bigcup_{n \in \mathbf{N}} B_{n}$ is an element of \mathcal{B}.
The symbol $\mathrm{G}_{1}(\mathcal{A}, \mathcal{B})$ [7] denotes an infinitely long game for two players, ONE and TWO, which play a round for each positive integer. In the n-th round ONE chooses a set $A_{n} \in \mathcal{A}$, and TWO responds by choosing an element $b_{n} \in A_{n}$. TWO wins a play $\left(A_{1}, b_{1} ; \cdots ; A_{n}, b_{n} ; \cdots\right)$ if $\left\{b_{n}: n \in \mathbf{N}\right\} \in \mathcal{B}$; otherwise, ONE wins.

If ONE does not have a winning strategy in the game $\mathrm{G}_{1}(\mathcal{A}, \mathcal{B})$, then the selection hypothesis $\mathrm{S}_{1}(\mathcal{A}, \mathcal{B})$ is true, but the converse need not be always true. In many cases the game characterizes the corresponding selection principle.

[^0]For positive integers n and m the symbol $\mathcal{A} \rightarrow(\mathcal{B})_{m}^{n}$ denotes the statement:
For each $A \in \mathcal{A}$ and for each function $f:[A]^{n} \rightarrow\{1, \cdots, m\}$ there are a set $B \subset A, B \in \mathcal{B}$, and an $i \in\{1, \cdots, m\}$ such that for each $Y \in[B]^{n}, f(Y)=i$.
Here $[A]^{n}$ denotes the set of n-element subsets of A. We call f a "coloring" and say that " B is homogeneous of color i for f ".

This symbol is called the ordinary partition symbol [7]. Several selection principles of the form $S_{1}(\mathcal{A}, \mathcal{B})$ have been characterized by the ordinary partition relation (see [7], [4], [6]).

An open cover \mathcal{U} of a space X is an ω-cover (resp. k-cover) if X does not belong to \mathcal{U} and every finite (resp. compact) subset of X is contained in a member of \mathcal{U}. Because we deal with k-covers, we assume that spaces we consider are (infinite) non-compact. An open cover \mathcal{U} of X is called a γ-cover [3] if it is infinite and each $x \in X$ belongs to all but finitely many elements of \mathcal{U}. Notice that it is equivalent to the assertion: Each finite subset of X belongs to all but finitely many members of \mathcal{U}. An open cover of a space X is called a γ_{k}-cover of X if each compact subset of X is contained in all but finitely many elements of \mathcal{U} and X is not a member of the cover ([5]).

We suppose that all covers are countable. Recall that spaces in which every open k-cover contains a countable k-subcover are called k-Lindelöf.

For a topological space X we denote:

1. Ω - the family of ω-covers of X;
2. \mathcal{K} - the family of k-covers of X;
3. Γ - the family of γ-covers of X;
4. Γ_{k} - the family of γ_{k}-covers of X.

Let us observe that we have

$$
\Gamma_{k} \subset \Gamma \subset \Omega, \quad \Gamma_{k} \subset \mathcal{K} \subset \Omega
$$

In [3], Gerlits and Nagy introduced the following notion: a space X is a γ-space (or a γ-set) if each ω-cover \mathcal{U} of X contains a countable family $\left\{U_{n}: n \in \mathbf{N}\right\}$ which is a γ-cover of X. They have also proved that the γ-set property of a space X is equivalent to the statement that X satisfies the selection property $S_{1}(\Omega, \Gamma)$. It was shown in [4] that the γ-set property is equivalent also to the selection hypothesis $S_{f i n}(\Omega, \Gamma)$.

In [7], it was proved:
Theorem 1. For a space X the following statements are equivalent:
(a) X is a γ-set;
(b) ONE has no winning strategy in the game $\mathrm{G}_{1}(\Omega, \Gamma)$ on X;
(c) For all $n, m \in \mathbf{N}$, X satisfies $\Omega \rightarrow(\Gamma)_{m}^{n}$.

We shall prove here that similar results are true for two recently introduced classes of spaces which are similar to γ-sets. In fact, we give Ramsey theoretical characterizations of those classes of spaces.

2. k - γ-sets

In [1], the class of $k-\gamma$-sets was introduced as the class of $S_{1}(\mathcal{K}, \Gamma)$-sets and the following result regarding that class of spaces was shown.

Theorem 2. For a space X the following are equivalent:
(1) X is a $k-\gamma$-set;
(2) X satisfies $\mathrm{S}_{\text {fin }}(\mathcal{K}, \Gamma)$;
(3) ONE has no winning strategy in the game $\mathrm{G}_{1}(\mathcal{K}, \Gamma)$ on X.

We show here that this class of spaces also can be described Ramsey-theoretically.

Theorem 3. For a k-Lindelöf space X the following are equivalent:
(1) X is a $k-\gamma$-set;
(2) For positive integers n and m, X satisfies $\mathcal{K} \rightarrow(\Gamma)_{m}^{n}$.

Proof. We consider the case $n=m=2$, because the general case can be easily obtained from it by standard induction arguments.
$(1) \Rightarrow(2)$: Let $\mathcal{U}=\left\{U_{1}, U_{2}, \cdots\right\}$ be a countable k-cover of X and let f : $[\mathcal{U}]^{2} \rightarrow\{1,2\}$ be a coloring. For $j \in\{1,2\}$ let $\mathcal{H}_{j}=\left\{V \in \mathcal{U}: f\left(\left\{U_{1}, V\right\}\right)=j\right\}$. Then at least one of the sets \mathcal{H}_{1} and \mathcal{H}_{2} is a k-cover of X. Denote such a set by \mathcal{U}_{1} and the corresponding j by i_{1}. In a similar way define inductively sets \mathcal{U}_{n} of k-covers of X and elements i_{n} from $\{1,2\}$ such that

$$
\mathcal{U}_{n}=\left\{V \in \mathcal{U}_{n-1}: f\left(\left\{U_{n}, V\right\}\right)=i_{n}\right\} .
$$

Apply now the $\mathrm{S}_{1}(\mathcal{K}, \Gamma)$ property of X to the sequence $\left(\mathcal{U}_{n}: n \in \mathbf{N}\right)$ to choose for each $n \in \mathbf{N}$ a $V_{n} \in \mathcal{U}_{n}$ such that $\mathcal{V}=\left\{V_{n}: n \in \mathbf{N}\right\} \in \Gamma$. Consider now the sets $\mathcal{V}_{1}:=\left\{V_{m} \in \mathcal{V}: i_{m}=1\right\}$ and $\mathcal{V}_{2}:=\left\{V_{m} \in \mathcal{V}: i_{m}=2\right\}$. At least one of them is infinite and so is a γ-cover of X, as each infinite subset of a γ-cover is also a γ-cover. So, one may suppose that there is an $i \in\{1,2\}$ satisfying: for each $U_{m} \in \mathcal{V}, i_{m}=i$. We have that $f(\{A, B\})=i$ for each $\{A, B\} \in[\mathcal{V}]^{2}$.
$(2) \Rightarrow(1)$: Let $\left(\mathcal{U}_{n}: n \in \mathbf{N}\right)$ be a sequence of countable k-covers of X and let us suppose that for each $n \in \mathbf{N}, \mathcal{U}_{n}=\left\{U_{n, m}: m \in \mathbf{N}\right\}$. Define now \mathcal{V} to be the family of all nonempty sets of the form $U_{1, n} \cap U_{n, m}, n, m \in \mathbf{N}$. Clearly, \mathcal{V} is a k-cover of X. Let $f:[\mathcal{V}]^{2} \rightarrow\{1,2\}$ be define by

$$
f\left(U_{1, n_{1}} \cap U_{n_{1}, m}, U_{1, n_{2}} \cap U_{n_{2}, l}\right)= \begin{cases}1, & \text { if } n_{1}=n_{2} \\ 2, & \text { otherwise }\end{cases}
$$

Apply $\mathcal{K} \rightarrow(\Gamma)_{2}^{2}$ to find a γ-cover $\mathcal{W} \subset \mathcal{V}$ and an $i \in\{1,2\}$ such that whenever U and V are from \mathcal{W}, then $f(\{U, V\})=i$. Consider two possibilities:
(i) $i=1$: Then there is some $n \in \mathbf{N}$ such that for each $W \in \mathcal{W}$ we have $W \subset$ $U_{1, n}$. However, this implies that \mathcal{W} is not a $(\gamma-)$ cover of X and this contradiction shows that this case is impossible.
(ii) $i=2$: Whenever $W \in \mathcal{W}$ is of the form $U_{1, n} \cap U_{n, m}$ choose (one element) $H_{n}=U_{n, m} \in \mathcal{U}_{n}$. Otherwise, let $H_{n}=\emptyset$. Then the set $\mathcal{H}:=\left\{H_{n}: n \in \mathbf{N}\right\}$ is a γ-cover of X (because \mathcal{W} refines \mathcal{H}), and the sequence $\left(H_{n}: n \in \mathbf{N}\right)$ witnesses for $\left(\mathcal{U}_{n}: n \in \mathbf{N}\right)$ that X satisfies $\mathrm{S}_{\text {fin }}(\mathcal{K}, \Gamma)$. By Theorem 2 it is equivalent to $\mathrm{S}_{1}(\mathcal{K}, \Gamma)$, i.e. (1) holds.

3. γ_{k}^{\prime}-sets

The following class of spaces was introduced in [5]. A space X is said to be a γ_{k}^{\prime}-set if it satisfies the selection hypothesis $\mathrm{S}_{1}\left(\mathcal{K}, \Gamma_{k}\right)$.

A characterization of γ_{k}^{\prime}-sets from [5] is given in the next theorem.
Theorem 4. For a space X the following are equivalent:
(1) X is a γ_{k}^{\prime}-set;
(2) X satisfies $\mathrm{S}_{\text {fin }}\left(\mathcal{K}, \Gamma_{k}\right)$;
(3) ONE does not have a winning strategy in the game $\mathrm{G}_{1}\left(\mathcal{K}, \Gamma_{k}\right)$ played on X.

We give now a Ramsey-theoretical characterization of γ_{k}^{\prime}-sets.
Theorem 5. For a k-Lindelöf space X the following are equivalent:
(1) X is a γ_{k}^{\prime}-set;
(2) For all $n, m \in \mathbf{N}$, X satisfies $\mathcal{K} \rightarrow\left(\Gamma_{k}\right)_{m}^{n}$.

Proof. We again consider only the case $n=m=2$.
$(1) \Rightarrow(2)$: We shall use that (1) is equivalent to the fact that ONE has no winning strategy in the game $\mathrm{G}_{1}\left(\mathcal{K}, \Gamma_{k}\right)$ played on X (Theorem 4).

Suppose $\mathcal{U}=\left\{U_{1}, U_{2}, \cdots\right\}$ is a k-cover of X and let $f:[\mathcal{U}]^{2} \rightarrow\{1,2\}$ be a coloring. Let us define a strategy σ for ONE in the game $\mathrm{G}_{1}\left(\mathcal{K}, \Gamma_{k}\right)$.

In the first round ONE plays $\sigma(\emptyset)=\mathcal{U}$. Then choose $i_{n} \in\{1,2\}, n \in \mathbf{N}$, such that $\sigma\left(U_{n}\right)=\left\{V \in \mathcal{U}: \sigma\left(\left\{U_{n}, V\right\}\right)=i_{n}\right\}$ is a k-cover of X (see the proof of Theorem 3). Let us write $\sigma\left(U_{n}\right)=\left\{U_{n, m}: m \in \mathbf{N}\right\}$. Suppose for each finite sequence $\left(n_{1}, \ldots, n_{p}\right)$ of natural numbers we have defined sets $U_{n_{1}, \ldots, n_{p}}$ and $i_{n_{1}, \ldots, n_{p-1}} \in\{1,2\}$ satisfying the condition $\left\{U_{n_{1}, \ldots, n_{p}, m}: m \in \mathbf{N}\right\}$ is a k-cover of X which is equal to the set

$$
\left\{V \in \sigma\left(U_{n_{1}}, U_{n_{1}, n_{2}}, \ldots, U_{n_{1}, n_{2}, \ldots, n_{p}}\right): f\left(\left\{U_{n_{1}, n_{2}, \ldots, n_{p}}, V\right\}\right)=i_{n_{1}, n_{2}, \ldots, n_{p}}\right\}
$$

In this way one defines a strategy σ for ONE in $\mathrm{G}_{1}\left(\mathcal{K}, \Gamma_{k}\right)$. As ONE has no winning strategy, there is a play (for TWO)

$$
U_{n_{1}}, U_{n_{1}, n_{2}}, \ldots, U_{n_{1}, n_{2}, \ldots, n_{m}}, \ldots
$$

which defeats this strategy. The set $\left\{U_{n_{1}}, \ldots, U_{n_{1}, n_{2}, \ldots, n_{m}}, \ldots\right\}$ is a γ_{k}-cover of X. Besides, if $p<q$, then

$$
f\left(\left\{U_{n_{1}, n_{2}, \ldots, n_{p}}, U_{n_{1}, n_{2}, \ldots, n_{q}}\right\}\right)=i_{n_{1}, n_{2}, \ldots, n_{p}}
$$

We may choose $i \in\{1,2\}$ such that for infinitely many m we have $i_{n_{1}, n_{2}, \ldots, n_{m}}=i$. Then define

$$
\mathcal{V}=\left\{U_{n_{1}, n_{2}, \ldots, n_{m}}: i_{n_{1}, n_{2}, \ldots, n_{m}}=i\right\} \subset \mathcal{U}
$$

This set is a γ_{k}-cover of X (because an infinite subset of a γ_{k}-cover is also a γ_{k}-cover) and, by construction, is homogeneous for f of color i.
$(2) \Rightarrow(1):$ Let $\left(\mathcal{U}_{n}: n \in \mathbf{N}\right)$ be a sequence of countable k-covers of X and suppose that for each $n, \mathcal{U}_{n}=\left\{U_{n ; m}: m \in \mathbf{N}\right\}$. Consider now the set \mathcal{V} of all nonempty sets of the form $U_{1 ; m} \cap U_{m ; k}, n, k \in \mathbf{N}$. Clearly, \mathcal{V} is a k-cover of X. Define $f:[\mathcal{V}]^{2} \rightarrow\{1,2\}$ by

$$
f\left(U_{1 ; n_{1}} \cap U_{n_{1} ; k}, U_{1 ; n_{2}} \cap U_{n_{2} ; m}\right)= \begin{cases}1, & \text { if } n_{1}=n_{2} \\ 2, & \text { otherwise }\end{cases}
$$

Since $\mathcal{K} \rightarrow\left(\Gamma_{k}\right)_{2}^{2}$ holds there are $j \in\{1,2\}$ and a homogeneous for f of color j collection $\mathcal{W} \subset \mathcal{V}$ such that $\mathcal{W} \in \Gamma_{k}$. Consider two possibilities:
(i) $j=1$: Then there is some n such that for each $W \in \mathcal{W}$ we have $W \subset U_{1, n}$. However, this means that \mathcal{W} is not a γ_{k}-cover of X and we have a contradiction which shows that this case is impossible.
(ii) $j=2$: For each $W \in \mathcal{W}$ choose, when it is possible, $U_{n ; k_{n}}$ to be the second term in the chosen representation of W; otherwise let $U_{n ; k_{n}}=\emptyset$. Let \mathcal{V}^{\prime} be the set of all $U_{n, k_{n}}$'s chosen in this way. Then \mathcal{V}^{\prime} is a γ_{k}-cover of X witnessing for $\left(\mathcal{U}_{n}: n \in \mathbf{N}\right)$ that X satisfies $\mathrm{S}_{f i n}\left(\mathcal{K}, \Gamma_{k}\right)$. Apply now Theorem 4

REFERENCES

[1] G. Di Maio, Lj.D.R. Kočinac and E. Meccariello, Applications of k-covers, Acta Math. Sinica, English Series, to appear.
[2] R. Engelking, General Topology, PWN, Warszawa, 1977.
[3] J. Gerlits and Zs. Nagy, Some properties of $C(X)$, I, Topology Appl. 14 (1982), 151-161.
[4] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, Combinatorics of open covers (II), Topology Appl. 73 (1996), 241-266.
[5] Lj.D.R. Kočinac, γ-sets, γ_{k}-sets and hyperspaces, Math. Balkanica 19, 1-2 (2005), 109-118.
[6] Lj.D.R. Kočinac and M. Scheepers, Combinatorics of open covers (VII): Groupability, Fund. Math. 179 (2003), 131-155.
[7] M. Scheepers, Combinatorics of open covers (I): Ramsey Theory, Topology Appl. 69 (1996), 31-62.
(received 12.11.2005, in revised form 08.03.2006)
Filippo Cammaroto, Dipartimento di Matematica, Università di Messina, 98166 Messina, Italia
E-mail: camfil@unime.it
Ljubiša D.R. Kočinac, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
E-mail: lkocinac@ptt.yu

[^0]: AMS Subject Classification: 54D20, 05C55, 03E02, 91A44.
 Keywords and phrases: Selection principles, Ramsey theory, game theory, ω-cover, k-cover, γ-cover, γ_{k}-cover, γ-set, k - γ-set, γ_{k}^{\prime}-set.
 ${ }^{1}$ Supported by MURST-PRA 2000.
 ${ }^{2}$ Supported by MNZŽS RS

