SOME GENERALIZATIONS OF LITTLEWOOD-PALEY INEQUALITY IN THE POLYDISC

K. L. Avetisyan and R. F. Shamoyan

Abstract

The paper generalizes the well-known inequality of Littlewood-Paley in the polydisc. We establish a family of inequalities which are analogues and extensions of Littlewood-Paley type inequalities proved by Sh. Yamashita and D. Luecking in the unit disk. Some other generalizations of the Littlewood-Paley inequality are stated in terms of anisotropic Triebel-Lizorkin spaces. With the help of an extension of Hardy-Stein identity, we also obtain area inequalities and representations for quasi-norms in weighted spaces of holomorphic functions in the polydisc.

1. Introduction

Let $\mathbf{D}^{n}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{C}^{n}:\left|z_{j}\right|<1,1 \leq j \leq n\right\}$ be the unit polydisc in \mathbf{C}^{n}, and $\mathbf{T}^{n}=\left\{\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbf{C}^{n}:\left|\xi_{j}\right|=1,1 \leq j \leq n\right\}$ be the n dimensional torus, the distinguished boundary of \mathbf{D}^{n}. Denote by $H\left(\mathbf{D}^{n}\right)$ the set of all holomorphic functions in \mathbf{D}^{n}. If $f(z)=f(r \xi)$ is a measurable function in \mathbf{D}^{n}, then

$$
M_{p}(f, r)=\left[\frac{1}{(2 \pi)^{n}} \int_{\mathbf{T}^{n}}|f(r \xi)|^{p} d m_{n}(\xi)\right]^{1 / p}, \quad r=\left(r_{1}, \ldots, r_{n}\right) \in I^{n}
$$

where $0<p<\infty, I^{n}=(0,1)^{n}, m_{n}$ is the n-dimensional Lebesgue measure on \mathbf{T}^{n}. The collection of holomorphic functions $f(z)$, for which $\|f\|_{H^{p}}=\sup _{r \in I^{n}} M_{p}(f, r)<$ $+\infty$, is the usual Hardy space H^{p}. For a radial weight function $\omega(r)=\prod_{j=1}^{n} \omega_{j}\left(r_{j}\right)$ the quasi-normed space $L_{\omega}^{p}(0<p<\infty)$ is the set of those functions $f(z)$ measurable in the polydisc \mathbf{D}^{n}, for which the quasi-norm

$$
\|f\|_{L_{\omega}^{p}}=\left(C_{\omega} \int_{\mathbf{D}^{n}}|f(z)|^{p} \prod_{j=1}^{n} \omega_{j}\left(\left|z_{j}\right|\right) d m_{2 n}(z)\right)^{1 / p}
$$

is finite. Here $d m_{2 n}(z)=r d r d m_{n}(\xi)$ is the Lebesgue measure on \mathbf{D}^{n}, and the constant C_{ω} is chosen so that $\|1\|_{L_{\omega}^{p}}=1$. For the subspace of L_{ω}^{p} consisting of

[^0]holomorphic functions let $A_{\omega}^{p}=H\left(\mathbf{D}^{n}\right) \cap L_{\omega}^{p}$. We will write L_{α}^{p}, A_{α}^{p} instead of $L_{\omega}^{p}, A_{\omega}^{p}$ if $\omega_{j}\left(r_{j}\right)=\left(1-r_{j}\right)^{\alpha_{j}} \quad\left(\alpha_{j}>-1,1 \leq j \leq n\right)$.

The classical inequality of Littlewood and Paley for functions holomorphic in the unit disk $\mathbf{D}=\mathbf{D}^{1}$ (see, e.g., [23]) is well known.

Theorem A. (Littlewood-Paley) If $2 \leq p<\infty$, then for any $f \in H^{p}(\mathbf{D})$

$$
\begin{equation*}
\int_{\mathbf{D}}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p-1} d m_{2}(z) \leq C\|f\|_{H^{p}}^{p} \tag{1.1}
\end{equation*}
$$

Many generalizations and extensions of Theorem A are known, see, for example, $[1-2,8-13,17-22]$. The next theorem is Luecking's [9] generalization of (1.1).

Theorem B. (Luecking) Let $0<p, s<\infty$. Then

$$
\begin{equation*}
\int_{\mathbf{D}}|f(z)|^{p-s}\left|f^{\prime}(z)\right|^{s}(1-|z|)^{s-1} d m_{2}(z) \leq C\|f\|_{H^{p}}^{p} \tag{1.2}
\end{equation*}
$$

for any $f \in H^{p}(\mathbf{D})$ if and only if $2 \leq s<p+2$.
We see that the case $0<s<2$ is omitted. So, it would be of interest to obtain analogues of (1.2) for $0<s<2$.

The present paper is organized as follows. Theorem 1 deals with Luecking's integral (1.2) in the polydisc for $0<s<2$. We obtain a family of inequalities reducing to the Littlewood-Paley inequality in the limiting case $s, p \rightarrow 2$. Note that the proof of D. Luecking [9] essentially uses some one variable methods which are not extendible to the polydisc case by a direct iteration. We exploit function spaces introduced by R. Coifman, Y. Meyer and E. Stein [3] and apply methods for estimating of Luecking's integral, which are quite different from those of [9]. In Theorem 2 we prove another extension of the Littlewood-Paley inequality in terms of anisotropic Triebel-Lizorkin spaces. Then we consider in Theorem 3 fractional derivatives of arbitrary order and estimate more general integrals for all $0<s \leq$ $p<\infty$. We establish in Theorem 4 other analogues of (1.2) by means of general weight functions $\omega(r)$. To this end, we extend to the polydisc the well-known Hardy-Stein identity. Finally, in Theorem 5 we give a characterization of weighted spaces A_{ω}^{p} on the polydisc with the use of (1.2) type integrals.

2. Notation and main theorems

We will use the conventional multi-index notations: $r \zeta=\left(r_{1} \zeta_{1}, \ldots, r_{n} \zeta_{n}\right)$, $d r=d r_{1} \cdots d r_{n},(1-|\zeta|)^{\alpha}=\prod_{j=1}^{n}\left(1-\left|\zeta_{j}\right|\right)^{\alpha_{j}}, \zeta^{\alpha}=\prod_{j=1}^{n} \zeta_{j}^{\alpha_{j}}, \alpha q+1=\left(\alpha_{1} q+\right.$ $1, \ldots, \alpha_{n} q+1$) for $\zeta \in \mathbf{C}^{n}, r \in I^{n}, q \in \mathbf{R}$ and a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Let \mathbf{Z}_{+}^{n} denote the set of all multi-indices $k=\left(k_{1}, \ldots, k_{n}\right)$ with nonnegative integers $k_{j} \in \mathbf{Z}_{+}$. Any inequality (or equality) $A \leq B$ quoted or proved is to be interpreted as meaning 'if B is finite, then A is finite, and $A \leq B$ '. Throughout the paper,
the letters $C(\alpha, \beta, \ldots), C_{\alpha}$ etc. stand for positive constants possibly different at different places and depending only on the parameters indicated. For $A, B>0$ we will write $A \lesssim B$, if there exists an inessential constant $c>0$ independent of variables involved such that $A \leq c B$. The symbol $A \asymp B$ means $A \lesssim B$ and $B \lesssim A$. For any $p, 1 \leq p \leq \infty$, we define the conjugate index p^{\prime} as $p^{\prime}=p /(p-1)$ (we interpret $1 / \infty=0$ and $1 / 0=+\infty$).

For every function $f \in H\left(\mathbf{D}^{n}\right)$ having a series expansion $f(z)=\sum_{k \in \mathbf{Z}_{+}^{n}} a_{k} r^{k} \xi^{k}$, where $z=r \xi, r \in I^{n}, \xi \in \mathbf{T}^{n}$, we define the radial fractional integro-differentiation of arbitrary order $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{j} \in \mathbf{R}$ by

$$
\mathcal{D}^{\alpha} f(z) \equiv \mathcal{D}_{r}^{\alpha} f(z)=\sum_{k \in \mathbf{Z}_{+}^{n}} \prod_{j=1}^{n}\left(1+k_{j}\right)^{\alpha_{j}} a_{k} r^{k} \xi^{k}
$$

It is easily seen that $\mathcal{D}_{r}^{\alpha} f(z)=\mathcal{D}_{r_{1}}^{\alpha_{1}} \mathcal{D}_{r_{2}}^{\alpha_{2}} \ldots \mathcal{D}_{r_{n}}^{\alpha_{n}} f$, where $\mathcal{D}_{r_{j}}^{\alpha_{j}}$ means the same operator acting in the variable r_{j} only.

We now formulate the main theorems of the paper. First we establish a family of inequalities which are analogues of Littlewood-Paley type inequalities (1.2) proved by Sh. Yamashita [22] and D. Luecking [9] in the unit disk.

Theorem 1. Let $0<\alpha<s<2, s<p$. Then for any $\lambda>(p-s) / \alpha$

$$
\begin{equation*}
\int_{\mathbf{D}^{n}}|f(z)|^{p-s}\left|\mathcal{D}^{1} f(z)\right|^{s}(1-|z|)^{s-1} d m_{2 n}(z) \lesssim\|f\|_{H^{\lambda}}^{p-s}\left\|\mathcal{D}^{\alpha / s} f\right\|_{H^{s}}^{s} \tag{2.1}
\end{equation*}
$$

REMARK 1. Taking $p=2$ in (2.1) and formally passing to the limit as $s \rightarrow 2-$ and $\alpha \rightarrow+0$, we get the classical Littlewood-Paley inequality (1.1) for $p=2$ in the polydisc.

Recall now anisotropic Triebel-Lizorkin spaces on the polydisc, see [5], [11], [12], [15], [16]]. The function $f(z)$ holomorphic in \mathbf{D}^{n}, is said to belong to the space $F_{\alpha}^{p q}\left(0<p<\infty, 0<q \leq \infty, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{j} \geq 0\right)$, if for some multiindex $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right), \beta_{j}>\alpha_{j}$ the (quasi-)norm
$\|f\|_{F_{\alpha}^{p q}}= \begin{cases}{\left[\int_{\mathbf{T}^{n}}\left(\int_{I^{n}}(1-r)^{(\beta-\alpha) q-1}\left|\mathcal{D}^{\beta} f(r \xi)\right|^{q} d r\right)^{p / q} d m_{n}(\xi)\right]^{1 / p},} & 0<q<\infty, \\ {\left[\int_{\mathbf{T}^{n}}\left(\sup _{r \in I^{n}}(1-r)^{\beta-\alpha}\left|\mathcal{D}^{\beta} f(r \xi)\right|\right)^{p} d m_{n}(\xi)\right]^{1 / p},} & q=\infty,\end{cases}$
is finite. For different $\beta\left(\beta_{j}>\alpha_{j}\right)$ equivalent norms appear. Many well-studied function spaces are included in the Triebel-Lizorkin spaces. For $p=q$ the space $F_{\alpha}^{p p}$ coincides with the holomorphic Besov space; for $q=2$ Hardy-Sobolev spaces arise, and for $q=2, \alpha_{j}=0$ the space $F_{0}^{p 2}$ coincides with H^{p}.

Theorem 2. For any $0<p<\infty, 0<q \leq q_{1} \leq \infty, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{j} \geq 0$ the following inclusion is continuous

$$
\begin{equation*}
F_{\alpha}^{p q} \subset F_{\alpha}^{p q_{1}} \tag{2.2}
\end{equation*}
$$

Remark 2. The inclusion (2.2) is proved in [11] in the setting of the unit ball of \mathbf{C}^{n}. For the polydisc, (2.2) is a generalization of the inclusion $F_{0}^{p 2} \subset F_{0}^{p \infty}$ proved in [6] as well as of that in [1], where $\alpha_{j}=0$ and n-harmonic functions are considered. In particular, for $\alpha_{j}=0, q=2, p=q_{1}$ the inclusion (2.2) reduces to (1.1).

In the next theorem the fractional derivative of the first order is replaced by the same operator \mathcal{D}^{α} of arbitrary order $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{j}>0$ and more general integrals are studied.

Theorem 3. Let $0<s \leq p<\infty$, $\alpha_{j}>0(1 \leq j \leq n)$, and $f(z)$ is a function of Hardy space $H^{p}\left(\mathbf{D}^{n}\right)$, and a function $g(z)$ belongs to the mixed norm space $H(p, s, \alpha)$, that is

$$
\|g\|_{H(p, s, \alpha)}^{s}=\int_{I^{n}} M_{p}^{s}(g, r)(1-r)^{\alpha s-1} d r<+\infty .
$$

Then

$$
\frac{1}{(2 \pi)^{n}} \int_{\mathbf{D}^{n}}|f(z)|^{p-s}|g(z)|^{s}(1-|z|)^{\alpha s-1} d m_{2 n}(z) \leq\|f\|_{H^{p}}^{p-s}\|g\|_{H(p, s, \alpha)}^{s}
$$

In particular, if $\mathcal{D}^{\alpha} f \in H(p, s, \alpha)$, then

$$
\begin{equation*}
\frac{1}{(2 \pi)^{n}} \int_{\mathbf{D}^{n}}|f(z)|^{p-s}\left|\mathcal{D}^{\alpha} f(z)\right|^{s}(1-|z|)^{\alpha s-1} d m_{2 n}(z) \leq\|f\|_{H^{p}}^{p-s}\left\|\mathcal{D}^{\alpha} f\right\|_{H(p, s, \alpha)}^{s} \tag{2.3}
\end{equation*}
$$

Theorem 4. (i) Let $f(z)$ be a holomorphic function in $\mathbf{D}^{n}, 0<p<\infty$, $\omega_{j}\left(r_{j}\right), j=1, \ldots, n$ be weight functions positive and continuously differentiable in $[0,1)$ such that

$$
\begin{equation*}
\omega_{j}\left(r_{j}\right) \frac{\partial}{\partial r_{j}} M_{p}^{p}(f, r)=o(1) \quad \text { as } \quad r_{j} \rightarrow 1- \tag{2.4}
\end{equation*}
$$

Then the following identity holds:
$\int_{\mathbf{D}^{n}} \prod_{j=1}^{n} \omega_{j}\left(r_{j}\right) \cdot f^{\#}(z) d m_{2 n}(z)=(-1)^{n} \int_{\mathbf{D}^{n}} \prod_{j=1}^{n} \omega_{j}^{\prime}\left(r_{j}\right) \frac{\partial^{n}}{\partial r_{1} \cdots \partial r_{n}}|f(z)|^{p} d m_{2 n}(z)$,
where $f^{\#}(z)=\Delta_{z_{1}} \Delta_{z_{2}} \ldots \Delta_{z_{n}}|f(z)|^{p}$, and $\Delta_{z_{j}}$ is the usual Laplacian in the variable z_{j}. For the standard weight functions $\omega_{j}\left(r_{j}\right)=\left(1-r_{j}\right)^{\alpha_{j}}\left(\alpha_{j}>0\right)$ the assumptions (2.4) can be dropped.
(ii) For $n=1$ the following improvements of (2.5) are valid: The identity
$\int_{\mathbf{D}}(1-|z|)^{\alpha} f^{\#}(z) d m_{2}(z)=\alpha \int_{\mathbf{D}}(1-|z|)^{\alpha-1} \frac{\partial}{\partial r}|f(z)|^{p} d m_{2}(z), \quad p>0, \alpha>0$,
holds if one of the integrals in (2.6) exists. Here

$$
\begin{equation*}
f^{\#}(z)=\Delta|f(z)|^{p}=p^{2}|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2} \tag{2.7}
\end{equation*}
$$

(iii) The integrals

$$
\begin{aligned}
& A(f ; p, \alpha)=\int_{\mathbf{D}}|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2}(1-|z|)^{\alpha} d m_{2}(z) \\
& B(f ; p, \alpha)=\int_{\mathbf{D}}|f(z)|^{p-1}\left|f^{\prime}(z)\right|(1-|z|)^{\alpha-1} d m_{2}(z)
\end{aligned}
$$

are comparable. More precisely,

- If $p>0, \alpha>0$, then

$$
\begin{equation*}
A(f ; p, \alpha) \leq \frac{\alpha}{p} B(f ; p, \alpha) \tag{2.8}
\end{equation*}
$$

where the constant α / p is sharp.

- If $p>0, \alpha>1$, then there exists a constant $C_{\alpha, p}>0$ such that

$$
\begin{equation*}
B(f ; p, \alpha) \leq C_{\alpha, p} A(f ; p, \alpha) \tag{2.9}
\end{equation*}
$$

Remark 3. The inequalities (2.8) and (2.9) for $p=2$ are proved in [21]. Their analogues for integers $p(p \geq 2)$ in the unit disk and in the unit ball of \mathbf{C}^{n} are proved in [17], [18] in another way.

The next theorem gives a characterization of weighted Bergman spaces A_{ω}^{p} on the bidisc and a representation for (quasi-)norms in A_{ω}^{p} with the use of (1.2) type integrals.

Theorem 5. Let $0<p<\infty, f(z) \in H\left(\mathbf{D}^{2}\right), \omega_{j}\left(r_{j}\right) \in L^{1}(0,1), \omega_{j}\left(r_{j}\right)>0$, $j=1,2$. Then the following representations are valid:

$$
\begin{align*}
\|f\|_{A_{\omega}^{p}\left(\mathbf{D}^{2}\right)}^{p} \asymp|f(0,0)|^{p} & +\int_{\mathbf{D}^{2}}\left(\Delta_{z_{1}} \Delta_{z_{2}}\left|f\left(z_{1}, z_{2}\right)\right|^{p}+\Delta_{z_{1}}\left|f\left(z_{1}, 0\right)\right|^{p}+\right. \\
& \left.+\Delta_{z_{2}}\left|f\left(0, z_{2}\right)\right|^{p}\right) \prod_{j=1}^{2} h_{\omega_{j}}\left(\left|z_{j}\right|\right) d m_{4}(z) \tag{2.10}\\
\|f\|_{A_{\omega}^{p}\left(\mathbf{D}^{2}\right)}^{p}+|f(0,0)|^{p}= & \|f(\cdot, 0)\|_{A_{\omega_{1}}^{p}}^{p}+\|f(0, \cdot)\|_{A_{\omega_{2}}^{p}}^{p}+ \\
& +C_{\omega} \int_{\mathbf{D}^{2}} f^{\#}\left(z_{1}, z_{2}\right) \prod_{j=1}^{2} h_{\omega_{j}}\left(\left|z_{j}\right|\right) d m_{4}(z) \tag{2.11}
\end{align*}
$$

where $A_{\omega_{j}}^{p}$ is the weighted Bergman space in the variable z_{j}, and $h_{\omega_{j}}$ is the weight function

$$
h_{\omega_{j}}\left(\left|z_{j}\right|\right)=\int_{\left|z_{j}\right|}^{1}\left(\int_{\rho_{j}}^{1} \omega_{j}(x) x d x\right) \frac{d \rho_{j}}{\rho_{j}}
$$

In particular, $f \in A_{\alpha}^{p}\left(\mathbf{D}^{2}\right)$ if and only if $f^{\#} \in L_{\alpha+2}^{1}\left(\mathbf{D}^{2}\right)\left(\alpha_{j}>-1\right)$.

REMARK 4. For $n=1$ and $\omega(r)=(1-r)^{\alpha}(\alpha>-1)$ and by virtue of the formula (2.7), the relation (2.10) in the limiting case $\alpha \rightarrow-1$ coincides with Yamashita's [22] characterization of Hardy spaces $H^{p}(\mathbf{D})$, while some analogues of (2.10) and (2.11) for the unit ball of \mathbf{C}^{n} are established in [2], [10], [20].

Without loss of generality and to simplify notation, we may assume that $n=2$ everywhere below in the proofs.

3. Preliminaries and proof of Theorem 1

Let us introduce some more notation i order to formulate several auxiliary lemmas. In what follows, for a fixed $\delta>1$ let $\Gamma_{\delta}(\xi)=\{z \in \mathbf{D}:|1-\bar{\xi} z| \leq \delta(1-|z|)\}$ be the admissible approach region whose vertex is at $\xi \in \mathbf{T}$. For any $\operatorname{arc} I \subset \mathbf{T}$ of the length $|I|$ define the Carleson square over I to be $\square I=\left\{z \in \mathbf{D} ; \frac{z}{|z|} \in I, 1-|z| \leq\right.$ $\left.\frac{1}{2 \pi}|I|\right\}$. Following [3], consider the functions

$$
\begin{aligned}
A_{p}(f)(\xi) & =\left(\int_{\Gamma_{\delta}(\xi)} \frac{|f(z)|^{p}}{(1-|z|)^{2}} d m_{2}(z)\right)^{1 / p}, \quad p<\infty \\
A_{\infty}(f)(\xi) & =\sup \left\{|f(z)| ; z \in \Gamma_{\delta}(\xi)\right\} \\
C_{p}(f)(\xi) & =\sup _{I \supset \xi}\left(\frac{1}{|I|} \int_{\square I} \frac{|f(z)|^{p}}{1-|z|} d m_{2}(z)\right)^{1 / p}, \quad p<\infty, \quad \xi \in \mathbf{T} .
\end{aligned}
$$

Lemma C. ([3], [12]) For any functions $f(z)$ and $g(z)$ measurable in the unit disk

$$
\begin{gather*}
\int_{\mathbf{D}} \frac{|f(z)|}{1-|z|} d m_{2}(z) \tag{3.1}\\
\lesssim \int_{\mathbf{T}}\left(\int_{\Gamma_{\delta}(\xi)} \frac{|f(z)|}{(1-|z|)^{2}} d m_{2}(z)\right) d m(\xi) \tag{3.2}\\
\int_{\mathbf{D}} \frac{|f(z)||g(z)|}{1-|z|} d m_{2}(z)
\end{gather*} \int_{\mathbf{T}} A_{p}(f)(\xi) C_{p^{\prime}}(g)(\xi) d m(\xi), \quad 1<p \leq \infty,
$$

where $d m(\xi)=d m_{1}(\xi)$ is the Lebesgue measure on the circle \mathbf{T}.
For a proof of Lemma C see [3, pp. 313, 316, 326], [12, Th. 2.1].
Lemma D. ([3], [12]) For $0<q<\infty, \alpha>0, \beta>0$ and a function $f(z)$ measurable in the unit disk

$$
\begin{equation*}
\left\|C_{q}\left(|f(z)|(1-|z|)^{\alpha}\right)\right\|_{L^{\infty}}^{q} \asymp \sup _{w \in \mathbf{D}}(1-|w|)^{\beta} \int_{\mathbf{D}} \frac{|f(z)|^{q}(1-|z|)^{\alpha q-1}}{|1-\bar{w} z|^{\beta+1}} d m_{2}(z) . \tag{3.3}
\end{equation*}
$$

For a proof of Lemma D including estimates of Carleson measures see [12, pp. 736-737], and also [4, Ch. VI, Sec. 3].

Define a version of Lusin's area integral (see, e.g., [23])

$$
S(f)(\xi)=\left(\int_{\Gamma_{\delta}(\xi)}\left|\mathcal{D}^{1} f(z)\right|^{2} d m_{2}(z)\right)^{1 / 2}, \quad \xi \in \mathbf{T}, \quad \delta>1
$$

Lemma E. (Lusin [23]) If $f \in H(\mathbf{D}), 0<p<\infty$, then $\|S(f)\|_{L^{p}(\mathbf{T})} \asymp\|f\|_{H^{p}}$.

We now turn to the proof of Theorem 1. Denote by L the integral on the left-hand side of (2.1) and write

$$
\begin{equation*}
L=\int_{\mathbf{D}}\left(1-\left|z_{2}\right|\right)^{s-1}\left[\int_{\mathbf{D}}|f(z)|^{p-s}\left|\mathcal{D}^{1} f(z)\right|^{s}\left(1-\left|z_{1}\right|\right)^{s-1} d m_{2}\left(z_{1}\right)\right] d m_{2}\left(z_{2}\right) \tag{3.4}
\end{equation*}
$$

Denote also the inner integral in (3.4) by J. Choosing any $\alpha, 0<\alpha<s$, we estimate J by Lemma C:

$$
\begin{align*}
J & =\int_{\mathbf{D}}\left|\mathcal{D}^{1} f(z)\right|^{s}\left(1-\left|z_{1}\right|\right)^{s-\alpha} \cdot|f(z)|^{p-s}\left(1-\left|z_{1}\right|\right)^{\alpha} \frac{d m_{2}\left(z_{1}\right)}{1-\left|z_{1}\right|} \\
& \lesssim \int_{\mathbf{T}} A_{2 / s}\left(\left|\mathcal{D}^{1} f(z)\right|^{s}\left(1-\left|z_{1}\right|\right)^{s-\alpha}\right)\left(\xi_{1}\right) \cdot C_{(2 / s)^{\prime}}\left(|f(z)|^{p-s}\left(1-\left|z_{1}\right|\right)^{\alpha}\right)\left(\xi_{1}\right) d m\left(\xi_{1}\right) \\
& \leq\left\|C_{(2 / s)^{\prime}}\left(|f(z)|^{p-s}\left(1-\left|z_{1}\right|\right)^{\alpha}\right)\right\|_{L^{\infty}} \int_{\mathbf{T}} A_{2 / s}\left(\left|\mathcal{D}^{1} f(z)\right|^{s}\left(1-\left|z_{1}\right|\right)^{s-\alpha}\right)\left(\xi_{1}\right) d m\left(\xi_{1}\right) \tag{3.5}
\end{align*}
$$

Estimate the last integral separately:

$$
\begin{aligned}
J_{1} & \equiv \int_{\mathbf{T}} A_{2 / s}\left(\left|\mathcal{D}^{1} f(z)\right|^{s}\left(1-\left|z_{1}\right|\right)^{s-\alpha}\right)\left(\xi_{1}\right) d m\left(\xi_{1}\right) \\
& =\int_{\mathbf{T}}\left[\int_{\Gamma_{\delta}\left(\xi_{1}\right)}\left|\mathcal{D}^{1} f(z)\right|^{2}\left(1-\left|z_{1}\right|\right)^{-2 \alpha / s} d m_{2}\left(z_{1}\right)\right]^{s / 2} d m\left(\xi_{1}\right)
\end{aligned}
$$

According to a result of [11, pp. 179, 186] on fractional differentiation and then by Lemma E

$$
\begin{equation*}
J_{1} \lesssim \int_{\mathbf{T}}\left[\int_{\Gamma_{\delta}\left(\xi_{1}\right)}\left|\mathcal{D}_{r_{1}}^{\alpha / s} \mathcal{D}^{1} f(z)\right|^{2} d m_{2}\left(z_{1}\right)\right]^{s / 2} d m\left(\xi_{1}\right) \lesssim\left\|\mathcal{D}_{r_{2}}^{1} \mathcal{D}_{r_{1}}^{\alpha / s} f\right\|_{H_{z_{1}}^{s}}^{s} \tag{3.6}
\end{equation*}
$$

where $H_{z_{1}}^{s}$ means the Hardy space in the variable z_{1}. Combining the inequalities (3.4)-(3.6), we conclude that

$$
L \lesssim \int_{\mathbf{D}}\left(1-\left|z_{2}\right|\right)^{s-1}\left\|C_{(2 / s)^{\prime}}\left(|f(z)|^{p-s}\left(1-\left|z_{1}\right|\right)^{\alpha}\right)\left(\xi_{1}\right)\right\|_{L^{\infty}}\left\|\mathcal{D}_{r_{2}}^{1} \mathcal{D}_{r_{1}}^{\alpha / s} f\right\|_{H_{z_{1}}^{s}}^{s} d m_{2}\left(z_{2}\right)
$$

By Fatou's lemma and Lemma C

$$
\begin{aligned}
& L \lesssim \liminf _{r_{1} \rightarrow 1} \iint_{\mathbf{T}}\left(1-\left|z_{2}\right|\right)^{s-1}\left\|C_{\left(\frac{2}{s}\right)^{\prime}}\left(|f(z)|^{p-s}\left(1-\left|z_{1}\right|\right)^{\alpha}\right)\right\|_{L^{\infty}} \times \\
& \times\left|\mathcal{D}_{r_{2}}^{1} \mathcal{D}_{r_{1}}^{\alpha / s} f\right|^{s} d m\left(\xi_{1}\right) d m_{2}\left(z_{2}\right) \\
& \lesssim\left\|C_{(2 / s)^{\prime}}\left(\left\|C_{(2 / s)^{\prime}}\left(|f(z)|^{p-s}\left(1-\left|z_{1}\right|\right)^{\alpha}\right)\right\|_{L^{\infty}}\left(1-\left|z_{2}\right|\right)^{\alpha}\right)\left(\xi_{2}\right)\right\|_{L^{\infty}} \times \\
& \times \liminf _{r_{1} \rightarrow 1} \int_{\mathbf{T}} \int_{\mathbf{T}} A_{2 / s}\left(\left|\mathcal{D}_{r_{2}}^{1} \mathcal{D}_{r_{1}}^{\alpha / s} f\right|^{s}\left(1-\left|z_{2}\right|\right)^{s-\alpha}\right)\left(\xi_{2}\right) d m\left(\xi_{2}\right) d m\left(\xi_{1}\right) \equiv J_{2} \cdot J_{3} .
\end{aligned}
$$

Let us now evaluate each factor J_{2} and J_{3} separately. Applying again the rule of fractional differentiation [11, pp. 179, 186], Lemma E, Fatou's lemma and using the equality $\mathcal{D}_{r}^{\gamma_{1}} \mathcal{D}_{r}^{\gamma_{2}}=\mathcal{D}_{r}^{\gamma_{2}} \mathcal{D}_{r}^{\gamma_{1}}$, we get

$$
\begin{aligned}
J_{3} & =\liminf _{r_{1} \rightarrow 1} \int_{\mathbf{T}} \int_{\mathbf{T}}\left[\int_{\Gamma_{\delta}\left(\xi_{2}\right)}\left|\mathcal{D}_{r_{2}}^{1} \mathcal{D}_{r_{1}}^{\alpha / s} f\right|^{2}\left(1-\left|z_{2}\right|\right)^{-2 \alpha / s} d m_{2}\left(z_{2}\right)\right]^{s / 2} d m\left(\xi_{2}\right) d m\left(\xi_{1}\right) \\
& \lesssim \liminf _{r_{1} \rightarrow 1} \int_{\mathbf{T}} \int_{\mathbf{T}}\left[\int_{\Gamma_{\delta}\left(\xi_{2}\right)}\left|\mathcal{D}_{r_{2}}^{\alpha / s} \mathcal{D}_{r_{2}}^{1} \mathcal{D}_{r_{1}}^{\alpha / s} f\right|^{2} d m_{2}\left(z_{2}\right)\right]^{s / 2} d m\left(\xi_{2}\right) d m\left(\xi_{1}\right) \\
& \lesssim \liminf _{r_{1} \rightarrow 1} \int_{\mathbf{T}}\left\|\mathcal{D}^{\alpha / s} f\right\|_{H_{z_{2}}^{s}}^{s} d m\left(\xi_{1}\right)=\left\|\mathcal{D}^{\alpha / s} f\right\|_{H^{s}}^{s} .
\end{aligned}
$$

Estimate now J_{2} choosing $\beta>0$ large enough:

$$
J_{2}=\left\|C_{(2 / s)^{\prime}}\left(\left\|C_{(2 / s)^{\prime}}\left(|f(z)|^{p-s}\left(1-\left|z_{1}\right|\right)^{\alpha}\right)\right\|_{L^{\infty}}\left(1-\left|z_{2}\right|\right)^{\alpha}\right)\left(\xi_{2}\right)\right\|_{L^{\infty}}
$$

By Lemma D, the inner norm can be estimated as follows

$$
\begin{aligned}
& \left\|C_{2 /(2-s)}\left(|f(z)|^{p-s}\left(1-\left|z_{1}\right|\right)^{\alpha}\right)\right\|_{L^{\infty}}^{2 /(2-s)} \\
& \lesssim \sup _{w \in \mathbf{D}}(1-|w|)^{\beta} \int_{\mathbf{D}}\left|f\left(z_{1}, z_{2}\right)\right|^{2(p-s) /(2-s)} \frac{\left(1-\left|z_{1}\right|\right)^{2 \alpha /(2-s)-1}}{\left|1-\bar{w} z_{1}\right|^{\beta+1}} d m_{2}\left(z_{1}\right) \\
& \leq\|f\|_{H_{z_{1}}}^{2(p-s) /(2-s)} \sup _{w \in \mathbf{D}}(1-|w|)^{\beta} \int_{\mathbf{D}} \frac{\left(1-\left|z_{1}\right|\right)^{2 \alpha /(2-s)-(2 / \lambda)(p-s) /(2-s)-1}}{\left|1-\bar{w} z_{1}\right|^{\beta+1}} d m_{2}\left(z_{1}\right) \\
& \lesssim\|f\|_{H_{z_{1}}}^{2(p-s) /(2-s)},
\end{aligned}
$$

where the inequality $|f(\zeta)| \lesssim\|f\|_{H^{q}}(1-|\zeta|)^{-1 / q}, \zeta \in \mathbf{D}$, and another well-known inequality ([14, Sec. 1.4.10]) are used. Hence

$$
\begin{aligned}
J_{2} & \lesssim\left\|C_{2 /(2-s)}\left(\|f\|_{H_{z_{1}}^{\lambda}}^{p-s}\left(1-\left|z_{2}\right|\right)^{\alpha}\right)\left(\xi_{2}\right)\right\|_{L^{\infty}} \\
& \lesssim\left[\sup _{w \in \mathbf{D}}(1-|w|)^{\beta} \int_{\mathbf{D}}\left\|f\left(z_{1}, z_{2}\right)\right\|_{H_{z_{1}}^{\lambda}}^{2(p-s) /(2-s)} \frac{\left(1-\left|z_{2}\right|\right)^{2 \alpha /(2-s)-1}}{\left|1-\bar{w} z_{2}\right|^{\beta+1}} d m_{2}\left(z_{2}\right)\right]^{\frac{2-s}{2}} \\
& \lesssim\|f\|_{H^{\lambda\left(\mathbf{D}^{2}\right)}}^{p-s}\left[\sup _{w \in \mathbf{D}}(1-|w|)^{\beta} \int_{\mathbf{D}} \frac{\left(1-\left|z_{2}\right|\right)^{2 \alpha /(2-s)-(2 / \lambda)(p-s) /(2-s)-1}}{\left|1-\bar{w} z_{2}\right|^{\beta+1}} d m_{2}\left(z_{2}\right)\right]^{\frac{2-s}{2}} \\
& \lesssim\|f\|_{H^{\lambda}}^{p-s} .
\end{aligned}
$$

Thus, for any $\lambda>(p-s) / \alpha$

$$
L \lesssim\|f\|_{H^{\lambda}}^{p-s}\left\|\mathcal{D}^{\alpha / s} f\right\|_{H^{s}}^{s}
$$

This completes the proof of Theorem 1.

4. Proof of Theorems 2 and 3

We begin by proving the inclusion (2.2) for $q_{1}=\infty$, i.e.

$$
\begin{equation*}
\|f\|_{F_{\alpha}^{p \infty}} \lesssim\|f\|_{F_{\alpha}^{p q}} \tag{4.1}
\end{equation*}
$$

Throughout the proof, J_{ξ} denotes the arc on \mathbf{T} centered at $\xi \in \mathbf{T}$

$$
J_{\xi}(t)=\{\eta \in \mathbf{T} ;|1-\bar{\xi} \eta|<t\}
$$

On the torus \mathbf{T}^{n} the symbol $J_{\xi}(t)$ means $J_{\xi}(t)=J_{\xi_{1}}\left(t_{1}\right) \times \cdots \times J_{\xi_{n}}\left(t_{n}\right), \xi=$ $\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbf{T}^{n}, t=\left(t_{1}, \ldots, t_{n}\right)$. Consider a version of Hardy-Littlewood maximal function on the circle:

$$
M(\psi)(\xi)=\sup _{t>0} \frac{1}{\left|J_{\xi}(t)\right|} \int_{J_{\xi}(t)}|\psi(\eta)| d m(\eta), \quad \xi \in \mathbf{T}
$$

It is well known (see, e.g., [23]) that the operator M is bounded in L^{p} for $p>1$.
Let $f(r \xi)$ be a function of the space $F_{\alpha}^{p q}$ on the bidisc. For $\varepsilon, 0<\varepsilon<\min \{p, q\}$, in view of 2 -subharmonicity, we can find small numbers $c, c^{\prime} \in(0,1)$ such that

$$
\left|\mathcal{D}^{\beta} f(r \xi)\right|^{\varepsilon} \lesssim \frac{1}{(1-r)^{2}} \int_{J_{\xi}(c(1-r))} \int_{r-c(1-r)}^{r+c^{\prime}(1-r)}\left|\mathcal{D}^{\beta} f(t \eta)\right|^{\varepsilon} d t d m_{2}(\eta), \quad r \in I^{2}, \quad \xi \in \mathbf{T}^{2}
$$

A similar argument in the setting of the unit ball of \mathbf{C}^{n} can be found in [11, p. 189].

Then an application of Hölder's inequality with indices q / ε and $q /(q-\varepsilon)$ leads to
$(1-r)^{\varepsilon(\beta-\alpha)}\left|\mathcal{D}^{\beta} f(r \xi)\right|^{\varepsilon}$

$$
\begin{aligned}
& \lesssim \frac{1}{(1-r)^{2}} \int_{J_{\xi}(c(1-r))} \int_{r-c(1-r)}^{r+c^{\prime}(1-r)}(1-t)^{\varepsilon(\beta-\alpha)}\left|\mathcal{D}^{\beta} f(t \eta)\right|^{\varepsilon} d t d m_{2}(\eta) \\
& \lesssim \frac{1}{1-r} \int_{J_{\xi}(c(1-r))}\left(\int_{r-c(1-r)}^{r+c^{\prime}(1-r)}(1-t)^{q(\beta-\alpha)-1}\left|\mathcal{D}^{\beta} f(t \eta)\right|^{q} d t\right)^{\varepsilon / q} d m_{2}(\eta)
\end{aligned}
$$

Denoting

$$
\psi\left(\eta_{1}, \eta_{2}\right)=\left(\int_{I^{2}}(1-t)^{q(\beta-\alpha)-1}\left|\mathcal{D}^{\beta} f(t \eta)\right|^{q} d t\right)^{\varepsilon / q}
$$

we get

$$
\begin{aligned}
& (1-r)^{p(\beta-\alpha)}\left|\mathcal{D}^{\beta} f(r \xi)\right|^{p} \lesssim\left[\frac{1}{1-r} \int_{J_{\xi}(c(1-r))} \psi\left(\eta_{1}, \eta_{2}\right) d m_{2}(\eta)\right]^{p / \varepsilon} \\
& \lesssim\left[\frac{1}{\left|J_{\xi_{1}}\left(c\left(1-r_{1}\right)\right)\right|} \int_{J_{\xi_{1}}\left(c\left(1-r_{1}\right)\right)}\left(\frac{1}{\left|J_{\xi_{2}}\left(c\left(1-r_{2}\right)\right)\right|} \int_{J_{\xi_{2}}\left(c\left(1-r_{2}\right)\right)} \psi\left(\eta_{1}, \eta_{2}\right) d m\left(\eta_{2}\right)\right) d m\left(\eta_{1}\right)\right]^{p / \varepsilon}
\end{aligned}
$$

Taking supremum over all $r \in I^{2}$, and then integrating the inequality in ξ_{1}, ξ_{2}, and twice applying the boundedness of the Hardy-Littlewood operator M in $L^{p / \varepsilon}$, we obtain

$$
\int_{\mathbf{T}^{2}} \sup _{r \in I^{n}}(1-r)^{p(\beta-\alpha)}\left|\mathcal{D}^{\beta} f(r \xi)\right|^{p} d m_{2}(\xi) \lesssim \int_{\mathbf{T}^{2}} \psi^{p / \varepsilon}\left(\eta_{1}, \eta_{2}\right) d m\left(\eta_{1}\right) d m\left(\eta_{2}\right)=\|f\|_{F_{\alpha}^{p q}}^{p}
$$

The inclusion (4.1) is proved. The general case $0<q \leq q_{1}<\infty$ follows easily from (4.1). Indeed, an application of Hölder's inequality with indices q_{1} / q and $q_{1} /\left(q_{1}-q\right)$ gives

$$
\begin{aligned}
& \|f\|_{F_{\alpha}^{p q_{1}}}^{p} \\
& =\int_{\mathbf{T}^{2}}\left(\int_{I^{2}}(1-r)^{(\beta-\alpha)\left(q_{1}-q\right)}(1-r)^{(\beta-\alpha) q-1}\left|\mathcal{D}^{\beta} f(r \xi)\right|^{q_{1}-q}\left|\mathcal{D}^{\beta} f(r \xi)\right|^{q} d r\right)^{p / q_{1}} d m_{2}(\xi) \\
& \lesssim\|f\|_{F_{\alpha}^{p q}}^{p q / q_{1}}\left(\int_{\mathbf{T}^{2}} \sup _{r \in I^{2}}(1-r)^{p(\beta-\alpha)}\left|\mathcal{D}^{\beta} f(r \xi)\right|^{p} d m_{2}(\xi)\right)^{\left(q_{1}-q\right) / q_{1}}
\end{aligned}
$$

Thus,

$$
\|f\|_{F_{\alpha}^{p q_{1}}} \lesssim\|f\|_{F_{\alpha}^{p q}}^{q / q_{1}}\|f\|_{F_{\alpha}^{p \infty}}^{\left(q_{1}-q\right) / q_{1}} \lesssim\|f\|_{F_{\alpha}^{p o}}^{q / q_{1}}\|f\|_{F_{\alpha}^{p q}}^{\left(q_{1}-q\right) / q_{1}}=\|f\|_{F_{\alpha}^{p q}}
$$

and this completes the proof of Theorem 2.
Proof of Theorem 3. Assuming that $\|f\|_{H^{p}} \neq 0$, we can apply Jensen's inequality to the integral

$$
\begin{aligned}
& \frac{1}{(2 \pi)^{n}} \int_{\mathbf{T}^{n}}|f(r \xi)|^{p-s}|g(r \xi)|^{s} d m_{n}(\xi) \\
&=M_{p}^{p}(f, r)\left[\frac{1}{M_{p}^{p}(f, r)} \int_{\mathbf{T}^{n}}\left|\frac{g(r \xi)}{f(r \xi)}\right|^{s}|f(r \xi)|^{p} \frac{d m_{n}(\xi)}{(2 \pi)^{n}}\right]^{\frac{p}{s} \frac{s}{p}} \\
& \leq M_{p}^{p}(f, r)\left[\frac{1}{M_{p}^{p}(f, r)} \int_{\mathbf{T}^{n}}\left|\frac{g(r \xi)}{f(r \xi)}\right|^{p}|f(r \xi)|^{p} \frac{d m_{n}(\xi)}{(2 \pi)^{n}}\right]^{s / p} \\
&=M_{p}^{p-s}(f, r)\left[\int_{\mathbf{T}^{n}}|g(r \xi)|^{p} \frac{d m_{n}(\xi)}{(2 \pi)^{n}}\right]^{s / p}=M_{p}^{p-s}(f, r) M_{p}^{s}(g, r)
\end{aligned}
$$

A similar method is applied in the proof of Theorem 4 of [19]. Further, a weighted integration leads now to

$$
\begin{aligned}
& \frac{1}{(2 \pi)^{n}} \int_{\mathbf{D}^{n}}|f(z)|^{p-s}|g(z)|^{s}(1-|z|)^{\alpha s-1} d m_{2 n}(z) \\
& \leq \int_{I^{n}} M_{p}^{p-s}(f, r) M_{p}^{s}(g, r)(1-r)^{\alpha s-1} d r \\
& \leq\|f\|_{H^{p}}^{p-s} \int_{I^{n}} M_{p}^{s}(g, r)(1-r)^{\alpha s-1} d r
\end{aligned}
$$

and the proof is complete.

5. Proof of Theorems 4 and 5

We need the next lemma which extends the well-known Hardy-Stein identity (see, e.g., [7]) to the polydisc.

Lemma 1. Suppose that $f(z) \in H\left(\mathbf{D}^{n}\right), 0<p<\infty$. Then for any $r=$ $\left(r_{1}, \ldots, r_{n}\right) \in I^{n}$

$$
\begin{equation*}
\prod_{j=1}^{n} r_{j} \cdot \frac{\partial^{n}}{\partial r_{1} \ldots \partial r_{n}} M_{p}^{p}(f, r)=\frac{1}{(2 \pi)^{n}} \int_{\left|z_{1}\right|<r_{1}} \cdots \int_{\left|z_{n}\right|<r_{n}} f^{\#}(z) d m_{2 n}(z) \tag{5.1}
\end{equation*}
$$

where $f^{\#}(z)=\Delta_{z_{1}} \Delta_{z_{2}} \ldots \Delta_{z_{n}}|f(z)|^{p}$, and $\Delta_{z_{j}}$ is the usual Laplacian in the variable z_{j}.

Proof. Fix z_{2} for a moment and apply Green's formula (see, e.g., [4], [23]) to the function $\left|f\left(z_{1}, z_{2}\right)\right|^{p}$ in $\left|z_{1}\right|<r_{1}$:

$$
\int_{\left|z_{1}\right|=r_{1}} \frac{\partial}{\partial r_{1}}\left|f\left(z_{1}, z_{2}\right)\right|^{p} d \ell=\int_{\left|z_{1}\right|<r_{1}} \Delta_{z_{1}}\left|f\left(z_{1}, z_{2}\right)\right|^{p} d m_{2}\left(z_{1}\right)
$$

where $d \ell$ means arc length integration. With respect to the function

$$
\psi\left(z_{2}\right)=r_{1} \frac{\partial}{\partial r_{1}} \int_{\mathbf{T}}\left|f\left(r_{1} \xi_{1}, z_{2}\right)\right|^{p} d m\left(\xi_{1}\right)=\int_{\left|z_{1}\right|<r_{1}} \Delta_{z_{1}}\left|f\left(z_{1}, z_{2}\right)\right|^{p} d m_{2}\left(z_{1}\right)
$$

we can again apply Green's formula in $\left|z_{2}\right|<r_{2}$:

$$
\int_{\left|z_{2}\right|=r_{2}} \frac{\partial}{\partial r_{2}} \psi\left(z_{2}\right) d \ell=\int_{\left|z_{2}\right|<r_{2}} \Delta_{z_{2}} \psi\left(z_{2}\right) d m_{2}\left(z_{2}\right)
$$

Combining these equalities, we obtain

$$
\begin{array}{rl}
r_{1} r_{2} \frac{\partial^{2}}{\partial r_{1} \partial r_{2}} \int_{\mathbf{T}} \int_{\mathbf{T}}\left|f\left(r_{1} \xi_{1}, r_{2} \xi_{2}\right)\right|^{p} & d m\left(\xi_{1}\right) d m\left(\xi_{2}\right) \\
= & \int_{\left|z_{1}\right|<r_{1}} \int_{\left|z_{2}\right|<r_{2}} \Delta_{z_{1}} \Delta_{z_{2}}\left|f\left(z_{1}, z_{2}\right)\right|^{p} d m_{4}(z)
\end{array}
$$

which finishes the proof.
Remark 5. For $n=1$ (5.1) coincides with the well-known Hardy-Stein identity [7] in view of formula (2.7).

Proof of Theorem 4. Lemma 1 enables us to establish another identity

$$
\begin{align*}
& r_{1} r_{2} \int_{\mathbf{T}^{2}} \Delta_{z_{1}} \Delta_{z_{2}}\left|f\left(z_{1}, z_{2}\right)\right|^{p} d m\left(\xi_{1}\right) d m\left(\xi_{2}\right) \\
& =\frac{\partial^{2}}{\partial r_{1} \partial r_{2}} \int_{0}^{r_{1}} \int_{0}^{r_{2}} \int_{\mathbf{T}^{2}} \Delta_{z_{1}} \Delta_{z_{2}}\left|f\left(z_{1}, z_{2}\right)\right|^{p} \rho_{1} \rho_{2} d m\left(\xi_{1}\right) d m\left(\xi_{2}\right) d \rho_{1} d \rho_{2} \\
& =(2 \pi)^{2} \frac{\partial^{2}}{\partial r_{1} \partial r_{2}}\left[r_{1} r_{2} \frac{\partial^{2}}{\partial r_{1} \partial r_{2}} M_{p}^{p}\left(f, r_{1}, r_{2}\right)\right] \tag{5.2}
\end{align*}
$$

First we prove the identity (2.6), i.e. the one variable version. We transform the left integral of (2.6), integrating by parts and using the identity (5.2):

$$
\begin{align*}
\frac{1}{2 \pi} \int_{\mathbf{D}} & (1-|z|)^{\alpha} f^{\#}(z) d m_{2}(z) \\
& =\frac{1}{2 \pi} \int_{0}^{1}(1-r)^{\alpha}\left[\int_{-\pi}^{\pi} \Delta\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right] r d r \\
& =\int_{0}^{1}(1-r)^{\alpha}\left[\frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r} M_{p}^{p}(f, r)\right)\right] d r \\
& =\lim _{r \rightarrow 1-}(1-r)^{\alpha} r \frac{\partial}{\partial r} M_{p}^{p}(f, r)+\alpha \int_{0}^{1}(1-r)^{\alpha-1} r \frac{\partial}{\partial r} M_{p}^{p}(f, r) d r \tag{5.3}
\end{align*}
$$

If the right-hand side integral in (2.6) or (5.3) exists, then the limit in (5.3) vanishes. Indeed, by the Hardy-Stein identity, the function $r \frac{\partial}{\partial r} M_{p}^{p}(f, r)$ is increasing in $r \in$ $(0,1)$. Hence for any $\rho \in(0,1)$

$$
\int_{\rho}^{(1+\rho) / 2}(1-r)^{\alpha-1} r \frac{\partial}{\partial r} M_{p}^{p}(f, r) d r \geq C_{\alpha} \rho(1-\rho)^{\alpha} \frac{\partial}{\partial \rho} M_{p}^{p}(f, \rho)
$$

By the Cauchy criterion for convergence

$$
\lim _{\rho \rightarrow 1-}(1-\rho)^{\alpha} \frac{\partial}{\partial \rho} M_{p}^{p}(f, \rho)=0
$$

It follows from (5.3) that

$$
\frac{1}{2 \pi} \int_{\mathbf{D}}(1-|z|)^{\alpha} f^{\#}(z) d m_{2}(z)=\alpha \int_{0}^{1}(1-r)^{\alpha-1} r \frac{\partial}{\partial r} M_{p}^{p}(f, r) d r
$$

Part (ii) of the theorem is proved.
Proceeding to the proof of the inequality (2.8), note that the example $f(z)=z$ shows the sharpness of the constant α / p. Then the identity (2.6) can be written as follows

$$
\begin{equation*}
A(f ; p, \alpha)=\frac{\alpha}{p} \int_{0}^{1} \int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p-1}\left(\frac{\partial}{\partial r}\left|f\left(r e^{i \theta}\right)\right|\right)(1-r)^{\alpha-1} r d r d \theta \tag{5.4}
\end{equation*}
$$

Since $\left|\left|f\left(r e^{i \theta}\right)\right|-\left|f\left(\rho e^{i \theta}\right)\right|\right| \leq\left|f\left(r e^{i \theta}\right)-f\left(\rho e^{i \theta}\right)\right|$, we have $\left|\frac{\partial}{\partial r}\right| f\left(r e^{i \theta}\right)\left|\left|\leq\left|f^{\prime}\left(r e^{i \theta}\right)\right|\right.\right.$. Hence, (2.8) follows.

We now turn to the proof of the inequality (2.9). By the Cauchy-Schwarz inequality,

$$
B(f ; p, \alpha) \leq \sqrt{A(f ; p, \alpha)}\left(\int_{\mathbf{D}}|f(z)|^{p}(1-|z|)^{\alpha-2} d m_{2}(z)\right)^{1 / 2}
$$

Therefore, it only remains to verify the inequality

$$
\begin{equation*}
\int_{\mathbf{D}}|f(z)|^{p}(1-|z|)^{\alpha-2} d m_{2}(z) \lesssim A(f ; p, \alpha), \quad p>0, \alpha>1 \tag{5.5}
\end{equation*}
$$

To this end, we integrate by parts to get

$$
\begin{aligned}
& \frac{p^{2}}{2 \pi \alpha} A(f ; p, \alpha)=\int_{0}^{1}(1-r)^{\alpha-1} r \frac{\partial}{\partial r} M_{p}^{p}(f, r) d r \\
& \quad=\lim _{r \rightarrow 1-}(1-r)^{\alpha-1} r M_{p}^{p}(f, r)-\int_{0}^{1} M_{p}^{p}(f, r) d\left(r(1-r)^{\alpha-1}\right) \\
& \quad=\lim _{r \rightarrow 1-}(1-r)^{\alpha-1} r M_{p}^{p}(f, r)+\frac{1}{2 \pi} \int_{0}^{1} \int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p}(1-r)^{\alpha-2}(\alpha r-1) d r d \theta
\end{aligned}
$$

This equality shows that if $A(f ; p, \alpha)$ exists, then the function $f(z)$ is in the Bergman space $A_{\alpha-2}^{p}(\mathbf{D})$. Consequently $\lim _{r \rightarrow 1-}(1-r)^{\alpha-1} M_{p}^{p}(f, r)=0$. So, we get

$$
\begin{aligned}
A(f ; p, \alpha) & =\frac{\alpha}{p^{2}} \int_{0}^{1} \int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p}(1-r)^{\alpha-2}(\alpha r-1) d r d \theta \\
& \geq \frac{\alpha(\alpha-1)}{2 p^{2}} \int_{(\alpha+1) /(2 \alpha)}^{1} \int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p}(1-r)^{\alpha-2} d r d \theta \\
& \geq C(\alpha, p) \int_{\mathbf{D}}|f(z)|^{p}(1-|z|)^{\alpha-2} d m_{2}(z)
\end{aligned}
$$

and this gives the desired result. Part (iii) of the theorem is proved. Part (i) of the theorem can be proved from (5.2) similarly, so we omit the details.

$$
\begin{aligned}
& \text { Proof of Theorem 5. The integrated Hardy-Stein identity (see Lemma 1) } \\
& M_{p}^{p}\left(f, r_{1}, r_{2}\right)+|f(0,0)|^{p}=M_{p}^{p}\left(f, 0, r_{2}\right)+M_{p}^{p}\left(f, r_{1}, 0\right)+ \\
& +\frac{1}{(2 \pi)^{2}} \int_{0}^{r_{1}} \int_{0}^{r_{2}}\left(\int_{\left|z_{1}\right|<\rho_{1}} \int_{\left|z_{2}\right|<\rho_{2}} f^{\#}\left(z_{1}, z_{2}\right) d m_{4}(z)\right) \frac{d \rho_{1} d \rho_{2}}{\rho_{1} \rho_{2}}
\end{aligned}
$$

can be integrated again with respect to the measure $(2 \pi)^{2} C_{\omega_{1}} C_{\omega_{2}} \omega_{1}\left(r_{1}\right) \omega_{2}\left(r_{2}\right) \times$ $r_{1} r_{2} d r_{1} d r_{2}$. We thus have

$$
\|f\|_{A_{\omega}^{p}}^{p}+|f(0,0)|^{p}=J_{1}+J_{2}+J_{3},
$$

where
$J_{1}=\left\|f\left(z_{1}, 0\right)\right\|_{A_{\omega_{1}}^{p}(\mathbf{D})}^{p}=|f(0,0)|^{p}+2 \pi C_{\omega_{1}} \int_{0}^{1} M_{1}\left(\Delta_{z_{1}}\left|f\left(z_{1}, 0\right)\right|^{p}, r_{1}\right) h_{\omega_{1}}\left(r_{1}\right) r_{1} d r_{1}$, $J_{2}=\left\|f\left(0, z_{2}\right)\right\|_{A_{\omega_{2}}^{p}(\mathbf{D})}^{p}=|f(0,0)|^{p}+2 \pi C_{\omega_{2}} \int_{0}^{1} M_{1}\left(\Delta_{z_{2}}\left|f\left(0, z_{2}\right)\right|^{p}, r_{2}\right) h_{\omega_{2}}\left(r_{2}\right) r_{2} d r_{2}$.
Besides, a further application of Fubini's theorem shows that

$$
\begin{aligned}
J_{3} & =C_{\omega_{1}} C_{\omega_{2}} \int_{I^{2}}\left[\int_{0}^{r_{1}} \int_{0}^{r_{2}}\left(\int_{\left|z_{1}\right|<\rho_{1}\left|z_{2}\right|<\rho_{2}} f^{\#}\left(z_{1}, z_{2}\right) d m_{4}(z)\right) \frac{d \rho_{1} d \rho_{2}}{\rho_{1} \rho_{2}}\right] \omega(r) r d r \\
& =(2 \pi)^{2} C_{\omega_{1}} C_{\omega_{2}} \int_{0}^{1} \int_{0}^{1} M_{1}\left(f^{\#}\left(z_{1}, z_{2}\right), r_{1}, r_{2}\right) h_{\omega_{1}}\left(r_{1}\right) h_{\omega_{2}}\left(r_{2}\right) r_{1} r_{2} d r_{1} d r_{2} .
\end{aligned}
$$

This completes the proof of Theorem 5.
Acknowledgment. The authors thank the referees for their useful suggestions and comments.

REFERENCES

[1] K.L. Avetisyan, Inequalities of Littlewood-Paley type for n-harmonic functions on the polydisc, Mat. Zametki 75 (2004), No. 4, 483-492 (in Russian) [English translation: Math. Notes 75 (2004), No. 3-4, 453-461].
[2] F. Beatrous, J. Burbea, Characterizations of spaces of holomorphic functions in the unit ball, Kodai Math. J. 8 (1985), 36-51.
[3] R.R. Coifman, Y. Meyer, E.M. Stein, Some new functional spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304-335.
[4] J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
[5] V.S. Guliev, P.I. Lizorkin, Classes of holomorphic and harmonic functions in the polydisc in connection with their boundary values, Trudy Mat. Inst. Steklov 204 (1993), 137-159 (in Russian) [English translation: Proc. Steklov Inst. Math. 204 (1994), No. 3, 117-135].
[6] M. Gvaradze, Multipliers of a class of analytic functions defined on the polydisk, Trudy Tbil. Mat. Inst. 66 (1980), 15-21 (in Russian).
[7] W.K. Hayman, Multivalent Functions, Cambridge Univ. Press, 1958.
[8] M. Jevtić, M. Pavlović, Littlewood-Paley type inequalities for \mathcal{M}-harmonic functions, Publ. Inst. Math. (Belgrade) 64(78) (1998), 36-52.
[9] D.H. Luecking, A new proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc. 103 (1988), 887-893.
[10] M. Nowak, Bloch space on the unit ball of \mathbf{C}^{n}, Ann. Acad. Sci. Fenn. Math. 23 (1998), 461-473.
[11] J.M. Ortega, J. Fàbrega, Holomorphic Triebel-Lizorkin spaces, J. Funct. Anal. 151 (1997), 177-212.
[12] J.M. Ortega, J. Fàbrega, Hardy's inequality and embeddings in holomorphic Triebel-Lizorkin spaces, Illinois J. Math. 43 (1999), 733-751.
[13] M. Pavlović, A Littlewood-Paley theorem for subharmonic functions, Publ. Inst. Math. (Belgrade) 68(82)(2000), 77-82.
[14] W. Rudin, Function Theory in the Unit Ball of \mathbf{C}^{n}, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[15] R.F. Shamoyan, Multipliers of power series, Toeplitz operators and space embeddings, Izv. Akad. Nauk Armenii, Matematika 34 (1999), No. 4, 56-73 (in Russian) [English translation: J. Contemp. Math. Anal. (Armenian Academy of Sciences) 34(1999), No. 4, 43-59].
[16] R.F. Shamoyan, On Triebel-Lizorkin type spaces of holomorphic functions in the polydisk, Izv. Akad. Nauk Armenii, Matematika 37 (2002), No. 3, 57-78 (in Russian) [English translation: J. Contemp. Math. Anal. (Armenian Academy of Sciences) 37(2002), No. 3, 56-75].
[17] S. Stević, On an area inequality and weighted integrals of analytic functions, Result. Math. 41 (2002), 386-393.
[18] S. Stević, Weighted integrals of holomorphic functions in \mathbf{C}^{n}, Complex Variables Theory Appl. 47 (2002), 821-838.
[19] S. Stević, On harmonic Hardy and Bergman spaces, J. Math. Soc. Japan 54, No. 4 (2002), 983-996.
[20] M. Stoll, A characterization of Hardy spaces on the unit ball of \mathbf{C}^{n}, J. London Math. Soc. (2) 48 (1993), 126-136.
[21] K.J. Wirths, J. Xiao, An image-area inequality for some planar holomorphic maps, Result. Math. 38 (2000), 172-179.
[22] Sh. Yamashita, Criteria for functions to be of Hardy class H^{p}, Proc. Amer. Math. Soc. 75 (1979), 69-72.
[23] A. Zygmund, Trigonometric Series, vol. II, Cambridge Univ. Press, 1959.
(received 14.01.2005, in revised form 20.02.2006)
K. L. Avetisyan, Yerevan State University, Yerevan, Armenia, E-mail: avetkaren@ysu.am
R. F. Shamoyan, Bryansk Pedagogical University, Bryansk, Russia, E-mail: rshamoyan@mail.ru

[^0]: AMS Subject Classification: 32A37, 32A36.
 Keywords and phrases: Littlewood-Paley inequalities, polydisc, Triebel-Lizorkin spaces, weighted spaces.

