
131 (2006) MATHEMATICA BOHEMICA No. 3, 305–319

ASYMPTOTIC PROPERTIES OF AN UNSTABLE

TWO-DIMENSIONAL DIFFERENTIAL SYSTEM WITH DELAY

Josef Kalas, Brno

(Received December 20, 2005)

Dedicated to Prof. J.Kurzweil on the occasion of his 80th birthday

Abstract. The asymptotic behaviour of the solutions is studied for a real unstable two-
dimensional system x′(t) = A(t)x(t) +B(t)x(t − r) + h(t, x(t), x(t − r)), where r > 0 is a
constant delay. It is supposed that A, B and h are matrix functions and a vector function,
respectively. Our results complement those of Kalas [Nonlinear Anal. 62(2) (2005), 207–224],
where the conditions for the existence of bounded solutions or solutions tending to the origin
as t → ∞ are given. The method of investigation is based on the transformation of the real
system considered to one equation with complex-valued coefficients. Asymptotic properties
of this equation are studied by means of a suitable Lyapunov-Krasovskii functional and by
virtue of the Ważewski topological principle. Stability and asymptotic behaviour of the
solutions for the stable case of the equation considered were studied in Kalas and Baráková
[J.Math.Anal. Appl. 269(1) (2002), 278–300].
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1. Introduction

Consider the real two-dimensional system

(0) x′(t) = A(t)x(t) + B(t)x(t − r) + h(t, x(t), x(t − r)),

where A(t) = (ajk(t)), B(t) = (bjk(t)) (j, k = 1, 2) are real square matrices and

h(t, x, y) = (h1(t, x, y), h2(t, x, y)) is a real vector function, x = (x1, x2), y = (y1, y2).

It is supposed that the functions ajk are locally absolutely continuous on [t0,∞),

bjk are locally Lebesgue integrable on [t0,∞) and the function h satisfies the
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Carathéodory conditions on [t0,∞) × � 4 . Moreover, we suppose the uniqueness

property for solutions of (0). Stability and asymptotic properties of the solutions for

the stable case of (0) are investigated in [2]. The unstable case of (0) was studied

in [1]. In [2], it was shown that it is useful to investigate (0) also under different

conditions, namely the conditions, when the shortened equation x′(t) = A(t)x(t) is

closer to a “focus” than to a “node” at origin. In the present paper we examine (0)

under these assumptions.

The method of investigation is based on the transformation of (0) to an equa-

tion with complex conjugate coordinates and on the use of a convenient Lyapunov-

Krasovskii functional. This method allows to simplify some considerations and esti-

mations and, in the two-dimensional case, leads to new, effective and easily applica-

ble results. The key tool will be a Razumikhin-type version of Ważewski topological

method. Similarly to [1], we shall concentrate considerable attention to the prob-

lem of existence of bounded solutions or solutions tending to the origin as t → ∞.
Related results for ordinary differential equations without delay can be found in [7]

and [3]. Notice that the Razumikhin-type version of Ważewski principle for retarded

functional differential equations was formulated by K.P.Rybakowski [8], [9]. Observe

that complex differential systems were used also by other authors for the solution

of different problems related to differential equations, let us mention here papers of

J.Mawhin [4] and of R.Manásevich, J.Mawhin, F. Zanolin [5], [6].

Introducing complex variables z = x1 + ix2, w = y1 + iy2, we can rewrite the

system (0) into an equivalent equation with complex-valued coefficients

(1) z′(t) = a(t)z(t) + b(t)z(t) +A(t)z(t− r) +B(t)z(t− r) + g(t, z(t), z(t− r)),

where

a(t) =
1

2
(a11(t) + a22(t)) +

i

2
(a21(t) − a12(t)),

b(t) =
1

2
(a11(t) − a22(t)) +

i

2
(a21(t) + a12(t)),

A(t) =
1

2
(b11(t) + b22(t)) +

i

2
(b21(t) − b12(t)),

B(t) =
1

2
(b11(t) − b22(t)) +

i

2
(b21(t) + b12(t)),

g(t, z, w) = h1

(
t,

1

2
(z + z),

1

2i
(z − z),

1

2
(w + w),

1

2i
(w − w)

)

+ ih2

(
t,

1

2
(z + z),

1

2i
(z − z),

1

2
(w + w),

1

2i
(w − w)

)
.

Conversely, putting a11(t) = Re[a(t) + b(t)], a12(t) = Im[b(t) − a(t)], a21(t) =

Im[a(t) + b(t)], a22(t) = Re[a(t)− b(t)], b11(t) = Re[A(t) +B(t)], b12(t) = Im[B(t) −
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A(t)], b21(t) = Im[A(t) + B(t)], b22(t) = Re[A(t) − B(t)], h1(t, x, y) = Re g(t, x1 +

ix2, y1 + iy2), h2(t, x, y) = Im g(t, x1 + ix2, y1 + iy2), A(t) = (aij(t)), B(t) = (bij(t)),

the equation (1) can be written in the real form (0).

We shall use the following notation:�
set of all real numbers,�

+ set of all positive real numbers,� 0
+ set of all non-negative real numbers,�
− set of all negative real numbers,� 0
−
set of all non-positive real numbers,�
set of all complex numbers,

C class of all continuous functions [−r, 0] → �
,

ACloc(I,M) class of all locally absolutely continuous functions I → M ,

Lloc(I,M) class of all locally Lebesgue integrable functions I → M ,

K(I×Ω,M) class of all functions I×Ω →M satisfying the Carathéodory conditions

on I × Ω,

Re z real part of z,

Im z imaginary part of z,

z complex conjugate of z.

2. Results

Consider the equation

(1) z′(t) = a(t)z(t) + b(t)z(t) +A(t)z(t− r) +B(t)z(t− r) + g(t, z(t), z(t− r)),

where r > 0 is a constant, a, b ∈ ACloc(J,
�
), A,B ∈ Lloc(J,

�
), g ∈ K(J × � 2 ,

�
),

J = [t0,∞). Throughout the paper we shall suppose that (1) satisfies the uniqueness

property of solutions. The equation (1) can be written in the form

(1′) z′ = F (t, zt),

where F : J × C → �
is defined by

F (t, ψ) = a(t)ψ(0) + b(t)ψ(0) +A(t)ψ(−r) +B(t)ψ(−r) + g(t, ψ(0), ψ(−r))

and zt is an element of C defined by the relation zt(θ) = z(t+ θ), θ ∈ [−r, 0]. Instead

of the case lim inf
t→∞

(|a(t)| − |b(t)|) > 0 investigated in [1], we will consider a case

lim inf
t→∞

(|Im a(t)| − |b(t)|) > 0.
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The last inequality is equivalent to the existence of T > t0 + r and µ > 0 such that

(2) |Im a(t)| > |b(t)| + µ for t > T − r.

Denote

(3) γ̃(t) = Im a(t) +
√

(Im a(t))2 − |b(t)|2 sgn(Im a(t)), c̃(t) = −ib(t).

As |γ̃(t)| > |Im a(t)| and |c̃(t)| = |b(t)|, the inequality

(4) |γ̃(t)| > |c̃(t)| + µ

holds for t > T − r. It can be easily verified that γ̃, c̃ ∈ ACloc([T − r,∞),
�
). Notice

that, instead of the function γ from [1], the function γ̃ need not be positive. A simple

example ensuing Theorem 1 shows that, in some cases, our results can be applicable

more often than those given in [1].

The equation (1) will be studied subject to suitable subsets of the following as-

sumptions:

(i) The numbers T > t0 + r and µ > 0 are such that (2) holds.

(ii) There exist functions � , κ, % : [T,∞) → �
such that

|γ̃(t)g(t, z, w) + c̃(t)g(t, z, w)| 6 � (t)|γ̃(t)z + c̃(t)z|
+ κ(t)|γ̃(t− r)w + c̃(t− r)w| + %(t)

for t > T , z, w ∈ � , where % is continuous on [T,∞).

(iin) There exist numbers Rn > 0 and functions � n, κn : [T,∞) → �
such that

|γ̃(t)g(t, z, w) + c̃(t)g(t, z, w)| 6 � n(t)|γ̃(t)z + c̃(t)z| + κn(t)|γ̃(t− r)w + c̃(t− r)w|

for t > τn > T , |z| > Rn, |w| > Rn.

(iii) β ∈ ACloc([T,∞),
� 0
−

) is a function satisfying

(5) β(t) 6 −λ(t) a.e. on [T,∞),

where λ is defined by

(6) λ(t) = κ(t) + (|A(t)| + |B(t)|) |γ̃(t)| + |c̃(t)|
|γ̃(t− r)| − |c̃(t− r)|

for t > T .
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(iiin) βn ∈ ACloc([T,∞),
� 0
−

) is a function satisfying

(7) βn(t) 6 −λn(t) a.e. on [τn,∞),

where λn is defined by

(8) λn(t) = κn(t) + (|A(t)| + |B(t)|) |γ̃(t)| + |c̃(t)|
|γ̃(t− r)| − |c̃(t− r)|

for t > T .

(ivn) Λ̃n : [T,∞) → �
is a locally Lebesgue integrable function satisfying the

inequalities β′

n(t) > Λ̃n(t)βn(t), Θ̃n(t) > Λ̃n(t) for almost all t ∈ [τn,∞), where Θ̃n

is defined by (9).

Obviously, if A, B, κ are locally absolutely continuous on [T,∞) and λ(t) > 0, the

choice β(t) = −λ(t) is admissible in (iii). Similarly, if A, B, κn are locally absolutely

continuous on [T,∞) and λn(t) > 0, the choice βn(t) = −λn(t) is admissible in (iiin).

Throughout the paper we denote

(9)

ϑ̃(t) =
Re(γ̃(t)γ̃′(t) − ¯̃c(t)c̃′(t)) − |γ̃(t)c̃′(t) − γ̃′(t)c̃(t)|

γ̃2(t) − |c̃(t)|2 ,

Θ̃(t) = Re a(t) + ϑ̃(t) − � (t),

Θ̃n(t) = Re a(t) + ϑ̃(t) − � n(t) + βn(t).

The assumption (i) implies that

|ϑ̃| 6
|Re(γ̃γ̃′ − ¯̃cc̃′)| + |γ̃c̃′ − γ̃′c̃|

γ̃2 − |c̃|2 6
(|γ̃′| + |c̃′|)(|γ̃| + |c̃|)

γ̃2 − |c̃|2

=
|γ̃′| + |c̃′|
|γ̃| − |c̃| 6

1

µ
(|γ̃′| + |c̃′|),

therefore the function ϑ̃ is locally Lebesgue integrable on [T,∞) under this assump-

tion. If relations βn ∈ ACloc([T,∞),
�
− ), � n ∈ Lloc([T,∞),

�
) and β′

n(t)/βn(t) 6

Θ̃n(t) for almost all t > τn together with the conditions (i), (iin) are satisfied, then

we can choose Λ̃n(t) = Θ̃n(t) for t ∈ [T,∞) in (ivn).

In the proof of Theorem 1 below, we shall need

Lemma 1. Let a1, a2, b1, b2 ∈ � , |a2| > |b2|. Then

Re
a1z + b1z

a2z + b2z
>

Re(a1ā2 − b1b̄2) − |a1b2 − a2b1|
|a2|2 − |b2|2

for z ∈ � , z 6= 0.

The proof is similar to that of Lemma in [7], p. 131.
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Theorem 1. Let the assumptions (i), (ii0), (iii0), (iv0) be satisfied for some

τ0 > T . Suppose there exist t1 > τ0 and ν ∈ (−∞,∞) such that

(10) inf
t>t1

[ ∫ t

t1

Λ̃0(s) ds− ln(|γ̃(t)| + |c̃(t)|)
]

> ν.

If z(t) is any solution of (1) satisfying

(11) min
s∈[t1−r,t1]

|z(s)| > R0, ∆(t1) > R0e
−ν ,

where ∆(t) = (|γ̃(t)| − |c̃(t)|)|z(t)|+ β0(t) max
s∈[t−r,t]

|z(s)|
∫ t1

t1−r
(|γ̃(s)|+ |c̃(s)|) ds, then

(12) |z(t)| >
∆(t1)

|γ̃(t)| + |c̃(t)| exp

[ ∫ t

t1

Λ̃0(s) ds

]

for all t > t1 for which z(t) is defined.

�������
	
. Let z(t) be any solution of (1) satisfying (11). Consider the function

(13) V (t) = U(t) + β0(t)

∫ t

t−r

|γ̃(s)z(s) + c̃(s)z(s)| ds,

where

(14) U(t) = |γ̃(t)z(t) + c̃(t)z(t)|.

For brevity we shall denote w(t) = z(t − r) and write a function of the variable t

simply without indicating the variable, for example, γ̃ instead of γ̃(t).

In view of (13) we have

(15) V ′ = U ′+β′

0

∫ t

t−r

|γ̃(s)z(s)+ c̃(s)z(s)| ds+β0|γ̃z+ c̃z|−β0|γ̃(t−r)w+ c̃(t−r)w|

for almost all t > t1 for which z(t) is defined and U
′(t) exists. Put K = {t >

t1 : z(t) exists, |z(t)| > R0}. Clearly U(t) 6= 0 for t ∈ K. The derivative U ′(t) exists

for almost all t ∈ K. Hence we obtain

UU ′ = Re[(γ̃z + ¯̃cz)(γ̃′z + γ̃z′ + c̃z′ + c̃′z)]

= Re{(γ̃z + ¯̃cz)[γ̃ (az + bz +Aw +Bw + g)

+ c̃(āz + b̄z + Āw +Bw + g) + γ̃ ′z + c̃′z]}
= Re{(γ̃z + ¯̃cz)[(γ̃a+ c̃b̄)z + (γ̃b+ c̃ā)z + γ̃(Aw +Bw + g)

+ c̃(Āw +Bw + g) + γ̃ ′z + c̃′z]}
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for almost all t ∈ K. As
(γ̃a+ c̃b̄)c̃ = (γ̃b+ c̃ā)γ̃,

we get

UU ′ = Re
{
(γ̃z + ¯̃cz)(γ̃a+ c̃b̄)

(
z +

c̃

γ̃
z
)}

+ Re{(γ̃z + ¯̃cz)(γ̃(Aw +Bw) + c̃(Āw +Bw))}
+ Re{(γ̃z + ¯̃cz)(γ̃g + c̃g)} + Re{(γ̃z + ¯̃cz)(γ̃′z + c̃′z)}.

Consequently,

(16) UU ′ > U2 Re
(
a+

c̃

γ̃
b̄
)
−U |Aw+Bw|(|γ̃|+ |c̃|)−U |γ̃g+ c̃g|+U 2 Re

γ̃′z + c̃′z

γ̃z + c̃z

for almost all t ∈ K. Since Lemma 1 ensures

Re
γ̃′z + c̃′z

γ̃z + c̃z
> ϑ̃,

hence using (8) with n = 0, the relation Re
(
a+ c̃

γ̃
b̄
)

= Re a and the assumption (ii0),

we obtain

UU ′ > U2(Re a+ ϑ̃− � 0) − U(|A| + |B|)|w|(|γ̃| + |c̃|)
− Uκ0|γ̃(t− r)w + c̃(t− r)w|

> U2(Re a+ ϑ̃− � 0) − Uλ0|γ̃(t− r)w + c̃(t− r)w|.

Therefore

(17) U ′
> U(Re a+ ϑ̃− � 0) − λ0|γ̃(t− r)w + c̃(t− r)w|

for almost all t ∈ K. Combining relations (15) (17), we get

V ′ > U(Re a+ ϑ̃− � 0 + β0) − |γ̃(t− r)w + c̃(t− r)w|(λ0 + β0)

+ β′

0

∫ t

t−r

|γ̃(s)z(s) + c̃(s)z(s)| ds.

Using (7) and (9) for n = 0, we obtain

V ′(t) > U(t)Θ0(t) + β′

0(t)

∫ t

t−r

|γ̃(s)z(s) + c̃(s)z(s)| ds.
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Hence, in view of (iv0), we have

(18) V ′(t) − Λ̃0(t)V (t) > 0

for almost all t ∈ K. Multiplying (18) by exp
[
−

∫ t

t1
Λ̃0(s) ds

]
and integrating over

[t1, t], we get

V (t) exp

[
−

∫ t

t1

Λ̃0(s) ds

]
− V (t1) > 0

on any interval [t1, ω) where the solution z(t) exists and satisfies the inequality

|z(t)| > R0. Now, with respect to (13), (14) and β0 6 0, we have

(|γ̃(t)| + |c̃(t)|)|z(t)| > V (t) > V (t1) exp

[∫ t

t1

Λ̃0(s) ds

]
> ∆(t1) exp

[∫ t

t1

Λ̃0(s) ds

]
.

If (11) is fulfilled, there is an R > R0 such that ∆(t1) > Re−ν . By virtue of (10) and

(11) we can easily see that

|z(t)| >
∆(t1)

|γ̃(t)| + |c̃(t)| exp

[ ∫ t

t1

Λ̃0(s) ds

]
> Re−νeν = R

for all t > t1 for which z(t) is defined. �

In the next example we give an equation of the form (1) to which Theorem 2 of

[1] is not applicable, nonetheless Theorem 1 of the present paper can be applied.

� ��
��������
1. Consider the equation (1) where a(t) ≡ 8 + 6i, b(t) ≡ 5, A(t) ≡ 0,

B(t) ≡ 0, r > 0, g(t, z, w) = 6z+2e−tw. Suppose t0 = 1 and T > 1+r. Then γ(t) =

|a(t)| +
√
|a(t)|2 − |b(t)|2 ≡ 10 + 5

√
3, c(t) = ā(t)b(t)/|a(t)| ≡ 4 − 3i, γ̃ ≡ 6 +

√
11,

c̃(t) ≡ −5i. Further,

|γ(t)g(t, z, w) + c(t)g(t, z, w)| 6 6|γ(t)z + c(t)z| + 2e−t|γ(t− r)w + c(t− r)w|,
|γ̃(t)g(t, z, w) + c̃(t)g(t, z, w)| 6 6|γ̃(t)z + c̃(t)z| + 2e−t|γ̃(t− r)w + c̃(t− r)w|.

Following Theorem 2 of [1] we obtain � (t) ≡ 6, κ(t) = 2e−t, ϑ(t) ≡ 0, α(t) ≡ 1/2,

Λ0(t) 6 Θ0(t) = −2 + β0(t) 6 −2 < 0 and we see that Theorem 2 of [1] is not

applicable, because the relation (10) in [1] cannot be fulfilled. On the other hand,

taking � 0(t) ≡ 6, κ0(t) ≡ 2e−t, τ0 = T , R0 = 0, ϑ̃(t) ≡ 0, λ0(t) = 2e−t, β0(t) =

−2e−t, Λ̃0(t) = Θ̃0(t) = 2 − 2e−t (> 0) in Theorem 1 of the present paper, we have

β0(t) 6 −λ0(t), β
′

0(t) > Θ̃0(t)β0(t) for t ∈ [T,∞) and Theorem 1 is applicable to the

equation considered.
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Corollary 1. Let the assumptions of Theorem 1 be fulfilled with R0 > 0. If

(19) lim inf
t→∞

[ ∫ t

t1

Λ̃0(s) ds− ln(|γ̃(t)| + |c̃(t)|)
]

= ς > ν,

then for any ε, 0 < ε < R0e
ς−ν , there is a t2 > t1 such that

(20) |z(t)| > ε

for all t > t2 for which z(t) is defined.

�������
	
. Without loss of generality we can assume ε > R0. Choose χ, 0 < χ < 1

such that R0 < ε < χR0e
ς−ν . In view of (19) there is a t2 > t1 such that

∫ t

t1

Λ̃0(s) ds− ln(|γ̃(t)| + |c̃(t)|) > ς + lnχ

for t > t2. Hence

∫ t

t1

Λ̃0(s) ds− ln(|γ̃(t)| + |c̃(t)|) > ν + ln
ε

R0

for t > t2. The estimate (12) together with (11) now yields

|z(t)| > R0e
−νeν ε

R0
= ε

for all t > t2 for which z(t) is defined. �

Corollary 2. Let the assumptions of Theorem 1 be fulfilled with R0 > 0. If

lim
t→∞

[ ∫ t

t1

Λ̃0(s) ds− ln(|γ̃(t)| + |c̃(t)|)
]

= ∞,

then for any ε > 0 there exists a t2 > t1 such that (20) holds for all t > t2 for which

z(t) is defined.

In the proof of the next theorem we shall use results of K.P.Rybakowski [9] on

a Ważewski topological principle for retarded functional differential equations of

Carathéodory type.
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Theorem 2. Let the conditions (i), (ii), (iii) be fulfilled and let Λ̃ be a continuous

function satisfying the inequality Λ̃(t) 6 Θ̃(t) a.e. on [T,∞), where Θ̃ is defined

by (9). If ξ : [T − r,∞) → �
is a continuous function such that

(21) Λ̃(t) + β(t) exp

[
−

∫ t

t−r

ξ(s) ds

]
− ξ(t) > %(t)C−1 exp

(
−

∫ t

T

ξ(s) ds

)

for t ∈ [T,∞] and some constant C > 0, then there exists a t2 > T and a solution

z0(t) of (1) satisfying

(22) |z0(t)| 6
C

|γ̃(t)| − |c̃(t)| exp

[ ∫ t

T

ξ(s) ds

]

for t > t2.

�������
	
. Consider the equation (1) written in the form (1′). Let τ > T . Put

Ũ(t, z, z) = |γ̃(t)z + c̃(t)z| − ϕ(t),

ϕ(t) = C exp

[ ∫ t

T

ξ(s) ds

]
,

Ω0 = {(t, z) ∈ (τ,∞) × � : Ũ(t, z, z) < 0},
Ω �

U
= {(t, z) ∈ (τ,∞) × � : Ũ(t, z, z) = 0}.

Clearly Ω0 is a polyfacial set generated by functions Û(t) = τ − t, Ũ(t, z, z) (see

Rybakowski [9, p. 134]) and Ω �
U
⊂ ∂Ω0. Since (|γ̃(t)| + |c̃(t)|)|z(t)| > |γ̃(t)z + c̃(t)z|,

we have

|z| >
ϕ(t)

|γ̃(t)| + |c̃(t)| =
C

|γ̃(t)| + |c̃(t)| exp

[ ∫ t

T

ξ(s) ds

]
> 0

for (t, z) ∈ Ω �
U
. Further,

D+Û(t) =
∂

∂t
(τ − t) = −1 < 0.

Let (t∗, ζ) ∈ Ω �
U
and let φ ∈ C be such that φ(0) = ζ and (t∗ + θ, φ(θ)) ∈ Ω0 for all

θ ∈ [−r, 0). If (t, ψ) ∈ (τ,∞) × C, then

D+Ũ(t, ψ(0), ψ(0)) := lim sup
h→0+

(1/h)[Ũ(t+ h, ψ(0)

+ hF (t, ψ), ψ(0) + hF (t, ψ)) − Ũ(t, ψ(0), ψ(0))]

=
∂Ũ(t, ψ(0), ψ(0))

∂t
+
∂Ũ(t, ψ(0), ψ(0))

∂z
F (t, ψ)

+
∂Ũ(t, ψ(0), ψ(0))

∂z
F (t, ψ).
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Hence

D+Ũ(t, ψ(0), ψ(0)) = |γ̃(t)ψ(0) + c̃(t)ψ(0)|Re
γ̃′(t)ψ(0) + c̃′(t)ψ(0)

γ̃(t)ψ(0) + c̃(t)ψ(0)
− ϕ′(t)

+ 1
2 |γ̃(t)ψ(0) + c̃(t)ψ(0)|−1 × Re{[γ̃(t)(γ̃(t)ψ(0) + ¯̃c(t)ψ(0))

+ ¯̃c(t)(γ̃(t)ψ(0) + c̃(t)ψ(0))]F (t, ψ)

+ [c̃(t)(γ̃(t)ψ(0) + ¯̃c(t)ψ(0)) + γ̃(t)(γ̃(t)ψ(0)

+ c̃(t)ψ(0))]F (t, ψ)}

provided the derivatives γ̃ ′(t), c̃′(t) exist and ψ(0) 6= 0.

Similarly to the proof of Theorem 5 of [1] we obtain

D+Ũ(t, ψ(0), ψ(0)) > (Re a(t) + ϑ̃(t) − � (t))|γ̃(t)ψ(0) + c̃(t)ψ(0)|
− λ(t)|γ̃(t− r)ψ(−r) + c̃(t− r)ψ(−r)| − %(t) − ϕ′(t)

> Θ̃(t)|γ̃(t)ψ(0) + c̃(t)ψ(0)| + β(t)|γ(t− r)ψ(−r) + c(t− r)ψ(−r)| − %(t) − ϕ′(t)

> Λ̃(t)|γ̃(t)ψ(0) + c̃(t)ψ(0)| + β(t)|γ̃(t− r)ψ(−r) + c̃(t− r)ψ(−r)| − %(t) − ϕ′(t)

for almost all t ∈ (τ,∞) and for ψ ∈ C sufficiently close to φ. Replacing t and ψ in
the last expression by t∗ and φ, respectively, we get

Λ̃(t∗)|γ̃(t∗)φ(0) + c̃(t∗)φ̄(0)| + β(t∗)|γ̃(t∗ − r)φ(−r)
+ c̃(t∗ − r)φ̄(−r)| − %(t∗) − ϕ′(t∗)

> Λ̃(t∗)|γ̃(t∗)ζ + c̃(t∗)ζ | + β(t∗)ϕ(t∗ − r) − %(t∗) − ϕ′(t∗)

> Λ̃(t∗)ϕ(t∗) + β(t∗)ϕ(t∗ − r) − %(t∗) − ϕ′(t∗)

= Λ̃(t∗)C exp

[ ∫ t∗

T

ξ(s) ds

]
+ β(t∗)C exp

[∫ t∗−r

T

ξ(s) ds

]

− %(t∗) − Cξ(t∗) exp

[ ∫ t∗

T

ξ(s) ds

]

=

{
Λ̃(t∗) + β(t∗) exp

[
−

∫ t∗

t∗−r

ξ(s) ds

]
− ξ(t∗)

}
C exp

[ ∫ t∗

T

ξ(s) ds

]
− %(t∗) > 0,

where the last inequality follows from (21). Therefore, in view of the continuity,

D+Ũ(t, ψ(0), ψ(0)) > 0 holds for ψ sufficiently close to φ and almost all t sufficiently

close to t∗. Hence Ω0 is a regular polyfacial set with respect to (1′).

Choose Z =
{
(t2, z) ∈ Ω0 ∪Ω �

U

}
, where t2 > τ+r is fixed. It can be easily verified

that Z ∩Ω �
U
is a retract of Ω �

U
, but Z ∩Ω �

U
is not a retract of Z. Let η ∈ C be such

that η(0) = 1 and 0 6 η(θ) < 1 for θ ∈ [−r, 0). Define a mapping p : Z → C for
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(t2, z) ∈ Z by the relation

p(t2, z)(θ) =
ϕ(t2 + θ)η(θ)

(γ̃2(t2 + θ) − |c̃(t2 + θ)|2)ϕ(t2)
[(γ̃(t2)γ̃(t2 + θ) − ¯̃c(t2)c̃(t2 + θ))z

+ (γ̃(t2 + θ)c̃(t2) − γ̃(t2)c̃(t2 + θ))z].

The mapping p is continuous and

p(t2, z)(0) = z for (t2, z) ∈ Z, p(t2, 0)(θ) = 0 for θ ∈ [−r, 0].

Since

γ̃(t2 + θ)p(t2, z)(θ) + c̃(t2 + θ)p(t2, z)(θ) =
ϕ(t2 + θ)η(θ)

ϕ(t2)
(γ̃(t2)z + c̃(t2)z),

we have

|γ̃(t2)z + c̃(t2)z| < ϕ(t2)

and

(23)
∣∣γ̃(t2 + θ)p(t2, z)(θ) + c̃(t2 + θ)p(t2, z)(θ)

∣∣ < ϕ(t2 + θ)

for (t2, z) ∈ Z ∩ Ω0 and θ ∈ [−r, 0]. Clearly, the inequality (23) holds also for

(t2, z) ∈ Z ∩Ω �
U
and θ ∈ [−r, 0).

Using the topological principle for retarded functional differential equations (see

Rybakowski [9, Theorem 2.1]), we infer that there is a solution z0(t) of (1) such that

(t, z0(t)) ∈ Ω0 for all t > t2 for which the solution z0(t) exists. Obviously z0(t) exists

for all t > t2 and

(|γ̃(t)| − |c̃(t)|)|z0(t)| 6 |γ̃(t)z0(t) + c̃(t)z0(t)| 6 ϕ(t) for t > t2.

Hence

|z0(t)| 6
ϕ(t)

|γ̃(t)| − |c̃(t)| for t > t2.

�

������
����
1. If η1(t)Λ̃(t) > |β(t)| + C−1%(t) > 0, where 0 < η1(t) 6 1, the

functions η1, Λ̃ are continuous on [T,∞) and Λ̃(t) 6 Θ̃(t) a.e. on [T,∞), then the

choice ξ(t) = η1(t)Λ̃(t) + β(t)−C−1%(t) is possible in (21). Moreover, the condition

|β(t)| + C−1%(t) > 0 can be omitted if Theorem 2 is used. Indeed, the identity

|β(t)| + C−1%(t) ≡ 0 implies β(t) ≡ 0, %(t) ≡ 0 and consequently, in view of (5),

(6), (ii), we have λ(t) ≡ 0, κ(t) ≡ 0, A(t) ≡ 0, B(t) ≡ 0, g(t, 0, 0) ≡ 0. Thus the

equation (1) has the trivial solution z0(t) ≡ 0 in this case.

316



Corollary 3. Let the assumptions of Theorem 2 be satisfied. If

lim sup
t→∞

[
1

|γ̃(t)| − |c̃(t)| exp

( ∫ t

T

ξ(s) ds

)]
<∞,

then there is a bounded solution z0(t) of (1). If

lim
t→∞

[
1

|γ̃(t)| − |c̃(t)| exp

( ∫ t

T

ξ(s) ds

)]
= 0,

then there is a solution z0(t) of (1) such that

lim
t→∞

z0(t) = 0.

Theorem 3. Suppose that the hypotheses (i), (ii), (iin), (iii), (iiin), (ivn) are

fulfilled for τn > T and n ∈ � , where Rn > 0, inf
n∈ � Rn = 0. Let Λ̃ be a continuous

function satisfying the inequality Λ̃(t) 6 Θ̃(t) a.e. on [T,∞), where Θ̃ is defined

by (9). Assume that ξ : [T − r,∞) → �
is a continuous function such that

(24) Λ̃(t) + β(t) exp

[
−

∫ t

t−r

ξ(s) ds

]
− ξ(t) > %(t)C−1 exp

(
−

∫ t

T

ξ(s) ds

)

for t ∈ [T,∞) and some constant C > 0. Suppose

lim sup
t→∞

[ ∫ t

T

(Λ̃n(s) − ξ(s)) ds+ ln
|γ̃(t)| − |c̃(t)|
|γ̃(t)| + |c̃(t)|

]
= ∞,(25)

lim
t→∞

[
βn(t) max

s∈[t−r,t]

exp
[∫ s

T
ξ(σ) dσ

]

|γ̃(s)| − |c̃(s)|

∫ t

t−r

(|γ̃(s)| + |c̃(s)|) ds

]
= 0,(26)

inf
τn6s6t<∞

[ ∫ t

s

Λ̃n(σ) dσ − ln(|γ̃(t)| + |c̃(t)|)
]

> ν(27)

for n ∈ � , where ν ∈ (−∞,∞). Then there exists a solution z0(t) of (1) such that

(28) lim
t→∞

min
s∈[t−r,t]

|z0(s)| = 0.

�������
	
. Using Theorem 2 we observe that there is a t2 > T and a solution z0(t)

of (1) with the property

(29) |z0(t)| 6
C

|γ̃(t)| − |c̃(t)| exp

[ ∫ t

T

ξ(s) ds

]
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for t > t2. Suppose that (28) is not satisfied. Then there is ε0 > 0 such that

lim sup
t→∞

min
s∈[t−r,t]

|z0(s)| > ε0.

Choose N ∈ � such that

max
{
RN ,

2

µ
RNe−ν

}
< ε0.

Then

(30) min
s∈[τ−r,τ ]

|z0(s)| > max
{
RN ,

2

µ
RNe−ν

}

for some τ > max{T, τN , t2}. In view of (26) we can suppose that

(31) |βN (τ)|C max
s∈[τ−r,τ ]

exp
[∫ s

T
ξ(σ) dσ

]

|γ̃(s)| − |c̃(s)|

∫ τ

τ−r

(|γ̃(s)| + |c̃(s)|) ds <
1

2
RNe−ν .

Hence, taking into account (4), (29), (30), (31) and the nonpositiveness of βN , we

have

(|γ̃(τ)| − |c̃(τ)|)|z0(τ)| + βN(τ) max
s∈[τ−r,τ ]

|z0(s)|
∫ τ

τ−r

(|γ̃(s)| + |c̃(s)|) ds

> (|γ̃(τ)| − |c̃(τ)|)|z0(τ)| + βN (τ)C max
s∈[τ−r,τ ]

exp
[∫ s

T
ξ(σ) dσ

]

|γ̃(s)| − |c̃(s)|

∫ τ

τ−r

(|γ̃(s)| + |c̃(s)|) ds

> µ
2

µ
RNe−ν − 1

2
RNe−ν > RNe−ν .

Moreover, (27) implies

inf
τ6t<∞

[ ∫ t

τ

Λ̃N(s) ds− ln(|γ̃(t)| + |c̃(t)|)
]

> ν > −∞.

By Theorem 1 we obtain the estimate

|z0(t)| >
Ψ(τ)

|γ̃(t)| + |c̃(t)| exp

[∫ t

τ

Λ̃N(s) ds

]

for all t > τ , Ψ being defined by

Ψ(τ) = (|γ̃(τ)| − |c̃(τ)|)|z0(τ)| + βN (τ) max
s∈[τ−r,τ ]

|z0(s)|
∫ τ

τ−r

(|γ̃(s)| + |c̃(s)|) ds.
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(29) together with (32) yield

Ψ(τ)

|γ̃(t)| + |c̃(t)| exp

[ ∫ t

τ

Λ̃N(s) ds

]
6

C

|γ̃(t)| − |c̃(t)| exp

[ ∫ t

T

ξ(s) ds

]
,

i.e.

∫ t

T

[Λ̃N (s) − ξ(s)] ds+ ln
|γ̃(t)| − |c̃(t)|
|γ̃(t)| + |c̃(t)| 6

∫ τ

T

Λ̃N (s) ds− ln[C−1Ψ(τ)]

for t > τ . However, the last inequality contradicts (25) and Theorem 3 is proved. �
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