REMARKS ON COMMUTATIVE HILBERT ALGEBRAS

RADOMÍR HALAŠ, Olomouc

(Received December 7, 2000)

Abstract. The paper shows that commutative Hilbert algebras introduced by Y.B. Jun are just J. C. Abbot's implication algebras.

Keywords: Hilbert algebra, implication algebra, Boolean algebra *MSC 2000*: 03B60

1. INTRODUCTION

Hilbert algebras are important tools for certain investigations in algebraic logic since they can be considered as fragments of any propositional logic containing a logical connective implication and the constant 1 which is considered as the logical value "true". As usual, the operation is denoted by "." instead of " \Rightarrow " although it has the same meaning.

The concept of Hilbert algebra was introduced in the 50-ties by L. Henkin and T. Skolem for investigations in intuitionistic and other non-classical logics. A. Diego [5] proved that Hilbert algebras form a variety which is locally finite.

They were studied from various points of view. Concerning congruence properties it is shown in [2] that Hilbert algebras form a congruence distributive variety the congruences in which are in a 1-1 correspondence with ideals [4]. Pseudocomplements as well as relative pseudocomplements of elements in lattices of ideals of Hilbert algebras were then described and studied in [3].

In [6] the notion of a commutative Hilbert algebra was introduced and studied. The aim of this short note is to show that this paper contains non-valid theorems as well as that commutative Hilbert algebras are exactly implication algebras treated by J. C. Abbott [1].

2. Preliminaries

Definition 1. A *Hilbert algebra* is a triplet $\mathcal{H} = (H; \cdot, 1)$, where H is a nonempty set, \cdot is a binary operation on H and 1 is a fixed element of H (i.e. a nullary operation) such that the following axioms hold in \mathcal{H} :

 $\begin{array}{l} ({\rm HA1}) \ x \cdot (y \cdot x) = 1, \\ ({\rm HA2}) \ (x \cdot (y \cdot z)) \cdot ((x \cdot y) \cdot (x \cdot z)) = 1, \\ ({\rm HA3}) \ x \cdot y = 1 \ {\rm and} \ y \cdot x = 1 \ {\rm imply} \ x = y. \end{array}$

For the proof of the following result, see e.g. [5].

Proposition 1. Every Hilbert algebra satisfies the following properties:

(1) $x \cdot x = 1$, (2) $1 \cdot x = x$, (3) $x \cdot 1 = 1$, (4) $x \cdot (y \cdot z) = (x \cdot y) \cdot (x \cdot z)$, (5) $x \cdot (y \cdot z) = y \cdot (x \cdot z)$, (6) $x \leq y \Rightarrow y \cdot z \leq x \cdot z$, (7) $x \leq y \Rightarrow z \cdot x \leq z \cdot y$.

It can be easily verified that the relation \leq defined in a Hilbert algebra $\mathcal{H} = (H; \cdot, 1)$ by

$$x \leq y$$
 if and only if $x \cdot y = 1$

is a partial order relation on H with 1 as the greatest element. This order relation is called the *natural ordering* on H.

Example 1. It is of great importance that every partially ordered set $(P, \leq, 1)$ with the greatest element 1 can be regarded as a Hilbert algebra, namely, if we define for $x, y \in P$

 $x \cdot y = 1$ whenever $x \leq y$, and $x \cdot y = y$ otherwise,

then $(P, \cdot, 1)$ is a Hilbert algebra the natural ordering on which coincides with the relation \leq .

Hilbert algebras generalize properties of implicative reducts of Boolean algebras (i.e. algebras corresponding to a classical logic), the so called implication algebras, treated by J. C. Abbott in [1]:

Definition 2. An *implication algebra* (IA) is an algebra $(A, \cdot, 1)$ of type (2,0) satisfying the following conditions:

Of course, since implication algebras are a special case of Hilbert algebras, one can define a natural ordering \leq on A in the same way as for Hilbert algebras.

Abbott has shown that implication algebras are a natural generalization of Boolean algebras in the following sense:

Proposition 2. (i) Let $(A, \cdot, 1)$ be an implication algebra. Then each interval [p, 1] in A is a Boolean algebra w.r.t. operations defined by

$$\begin{aligned} x \lor y &= (x \cdot y) \cdot y, \\ x \land y &= ((x \cdot p) \lor (y \cdot p)) \cdot p, \\ x' &= x \cdot p. \end{aligned}$$

(ii) Conversely, if (A, \vee) is a \vee -semilattice each interval in which is a Boolean algebra w.r.t. the induced order, then A with the operation \cdot defined by

$$x \cdot y = (x \lor y)^y$$

where $(x \lor y)^y$ is the relative pseudocomplement of $x \lor y$ in the Boolean algebra [y, 1], is an implication algebra.

Proposition 2 says that there is a 1-1 correspondence between implication algebras and join semilattices having Boolean algebras for intervals.

By [6], a Hilbert algebra \mathcal{H} is said to be *commutative* if it satisfies the axiom (I4). Hence \mathcal{H} is then an implication algebra if and only if also (I3) is satisfied in \mathcal{H} .

Theorem 3.3. in [6] claims that commutative Hilbert algebras are just those which are join semilattices w.r.t. the natural ordering. A simple inspection shows that this does not hold:

Example 2. Let us consider a 4-element Boolean algebra $A = \{0, 1, a, a'\}$ with the corresponding order relation \leq . By Example 1, the operation \cdot defined on A by

 $x \cdot y = 1$ if and only if $x \leq y, \ x \cdot y = y$ otherwise,

defines on A a Hilbert algebra which is surely a join semilattice. On the other hand, it is not commutative, since e.g. $1 = (a \cdot 0) \cdot 0 \neq (0 \cdot a) \cdot a = a$.

In the next section we will show by using Proposition 2 that commutative Hilbert algebras are just the implication ones.

3. Commutative Hilbert Algebras

First we show that commutative Hilbert algebras form a join semillatice w.r.t. the natural ordering:

Lemma 1. If $\mathcal{H} = (H, \cdot, 1)$ is a commutative Hilbert algebra then the natural ordering \leq on H is a semilattice and $x \lor y = (x \cdot y) \cdot y$.

Proof. According to (HA1) and commutativity it is clear that the element $(x \cdot y) \cdot y = (y \cdot x) \cdot x$ is an upper bound of x and y. Suppose that $x \leq q, y \leq q$ for some $q \in H$. Then Proposition 1(6) yields $q \cdot y \leq x \cdot y$ and $(x \cdot y) \cdot y \leq (q \cdot y) \cdot y = (y \cdot q) \cdot q = 1 \cdot q = q$, proving that $(x \cdot y) \cdot y$ is the least upper bound of x and y. \Box

Lemma 2. Let $\mathcal{H} = (H, \cdot, 1)$ be a commutative Hilbert algebra and let $a, b, p \in H$. Then

(1) $p \leq a$ yields $(a \cdot p) \cdot a = a$;

(2) $p \leq b$ yields $a \cdot b = (a \cdot p) \lor b$.

Proof. (1) Suppose $p \leq a$. Then $p \cdot a = 1$ and

$$(p \cdot a) \cdot a = 1 \cdot a = a = a \lor p = (a \cdot p) \cdot p$$

Hence

$$(a \cdot p) \cdot a = (a \cdot p) \cdot [(a \cdot p) \cdot p] = [(a \cdot p) \cdot (a \cdot p)] \cdot [(a \cdot p) \cdot p] = 1 \cdot [(a \cdot p) \cdot p] = a.$$

(2) We compute

$$(a \cdot p) \lor b = [b \cdot (a \cdot p)] \cdot (a \cdot p) = [a \cdot (b \cdot p)] \cdot (a \cdot p) = a \cdot [(b \cdot p) \cdot p] = a \cdot (b \lor p) = a \cdot b.$$

The foregoing theorem describes intervals in commutative Hilbert algebras:

Theorem. Let $\mathcal{H} = (H, \cdot, 1)$ be a commutative Hilbert algebra. For every $p \in H$ the interval [p, 1] is a Boolean algebra where for $a, b \in [p, 1]$ we have $a \lor b = (a \cdot b) \cdot b$, $a \land b = [a \cdot (b \cdot p)] \cdot p$, and the complement of a is $a^p = a \cdot p$.

Proof. The first assertion follows from Lemma 1. Let us prove that $a \wedge b = [a \cdot (b \cdot p)] \cdot p$. Evidently, $[a \cdot (b \cdot p)] \cdot p \in [p, 1]$. By Lemma 2(2) we have $a \cdot (b \cdot p) = (a \cdot p) \vee (b \cdot p)$. Since $a \cdot p \leq (a \cdot p) \vee (b \cdot p)$, by using Proposition 1(7) we get

$$[a \cdot (b \cdot p)] \cdot p = [(a \cdot p) \lor (b \cdot p)] \cdot p \leq (a \cdot p) \cdot p = a \lor p = a$$

thus $(a \cdot (b \cdot p)) \cdot p \leq a$. Analogously we can show $(a \cdot (b \cdot p)) \cdot p \leq b$ and hence $(a \cdot (b \cdot p)) \cdot p$ is a lower bound of both a and b. Suppose $q \in [p, 1]$, $q \leq a$, $q \leq b$. Then applying Proposition 1(6) again we have $a \cdot p \leq q \cdot p$, $b \cdot p \leq q \cdot p$, hence $(a \cdot p) \lor (b \cdot p) \leq q \cdot p$. Further, this gives

$$q \leqslant q \lor p = (q \cdot p) \cdot p \leqslant [(a \cdot p) \lor (b \cdot p)] \cdot p = [a \cdot (b \cdot p)] \cdot p,$$

thus $[a \cdot (b \cdot p)] \cdot p$ is the least upper bound of a and b in [p, 1]. Let us prove that $a^p = a \cdot p$ is a complement of $a \in [p, 1]$ in this interval. By Lemma 2(1) we have also

$$a \lor (a \cdot p) = [(a \cdot p) \cdot a] \cdot a = a \cdot a = 1.$$

Since $p \leq a \cdot p$, we have

$$a \wedge (a \cdot p) = [a \cdot ((a \cdot p) \cdot p)] \cdot p = (a \cdot a) \cdot p = 1 \cdot p = p.$$

Moreover,

$$a^{pp} = (a \cdot p) \cdot p = a \lor p = a.$$

If we prove that a^p is simultaneously a pseudocomplement of a in [p, 1], then by the previous property every element of this interval is Boolean and so [p, 1] is a Boolean algebra. Suppose that $b \in [p, 1]$ is such that $a \wedge b = p$, hence $[a \cdot (b \cdot p)] \cdot p = p$. Then

$$a^{p} = a \cdot p = a \cdot [(a \cdot (b \cdot p)) \cdot p] = [a \cdot (b \cdot p)] \cdot (a \cdot p) = a \cdot [(b \cdot p) \cdot p] = a \cdot (b \lor p) = a \cdot b,$$

henceforth $b \cdot a^p = b \cdot (a \cdot b) = 1$, or $b \leq a^p$.

Comparing this Theorem with Proposition 2 we immediately get

Corollary. Every commutative Hilbert algebra is an implication algebra.

References

- [1] Abott J. C.: Semi-Boolean algebras. Matem. Vestnik 4 (1967), 177-198.
- [2] Chajda I.: The lattice of deductive systems on Hilbert algebras. Southeast Asian Bull. Math. To appear.
- [3] Chajda I., Halaš R.: Annihilators in Hilbert algebras. Mult.-Valued Log. To appear.
- [4] Chajda I., Halaš R.: Congruences and ideals in Hilbert algebras. Kyungpook Mathem. J. 39 (1999), 429–432.
- [5] Diego A.: Sur algébres de Hilbert. Collect. Logique Math. Ser. A 21 (1967), 177-198.
- [6] Jun Y. B.: Commutative Hilbert algebras. Soochow J. Math. 22 (1996), 477–484.

Author's address: Radomír Halaš, Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: halas@risc.upol.cz.

529