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EXAMPLES FROM THE CALCULUS OF VARIATIONS

II. A DEGENERATE PROBLEM
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Abstract. Continuing the previous Part I, the degenerate first order variational integrals
depending on two functions of one independent variable are investigated.
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Degenerate variational integrals have been (with the only exception of the para-
metrical case) entirely neglected in all monographs and we should like to discover
the reasons here. To this aim, the simplest possible degenerate density

(1) α = f(x, w10 , w
2
0 , w

1
1 , w

2
1) dx, f1111 f

22
11 = (f

12
11 )
2

in the underlying space M(2) equipped with the contact diffiety Ω(2) will be ana-
lyzed. (In elementary terms, we shall deal with the first order degenerate integrals
depending on two variable functions w10 , w20 of one independent variable x. Recall

that the subscripts denote the order of derivatives.) We shall see that in spite of some
quite explicit results, too many rather discomposing events may occur and a complete

discussion of them is hardly possible at the present time. In this sense, the difficul-
ties that appear might bring some new stimuli into the development of a somewhat

uniform calculus of variations. Concerning the notation and terminology, we refer to
Part I.

Determined extremals

1. First order problems, see I 3. We recall the spaceM(m) with diffiety Ω(m).
Let us consider a density α = f(x, w10 , . . . , w

m
0 , w11 , . . . , w

m
1 ) dx. Owing to I (81),
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there are initial forms πi ≡ ωi
0 (i = 1, . . . , m) and one can find the (well-known)

classical PC form ᾰ = f dx+
∑

f i
1ω

i
0. Then

(2) dᾰ =
∑

eiωi
0 ∧ dx+

∑
aijωi

0 ∧ ωj
0 +

∑
f ij
11ω

i
1 ∧ ωj

0

with E L coefficients ei ≡ f i
0 − Xf i

1 and aij ≡ 1
2 (f

ij
01 − f ij

10). Recall that f ij
01 ≡

∂2f/∂wi
0∂wj

1 and f ij
11 = ∂2f/∂wi

1∂wj
1 in accordance with the notation I 3 for the

contact diffieties. One can observe that the forms

(3)
∑

eiωi
0,

∑
f ij
11ω

j
0, ei dx+

∑
aijωj

0 −
∑

f ij
11ω

j
1

generate the submodule Adj dᾰ ⊂ Φ(M(m)) defined (in full generality) in I (4).
In this article, we will be interested in the degenerate case when det(f ij

11) = 0 and

m = 2. So we shall deal with density (1). Since the particular f linear in variables
w11 , w21 seems to be quite easy to investigate, we shall moreover suppose f1111 �= 0
from now on.

2. The generic degenerate problem. One can verify the formula

(4) dᾰ = eω20 ∧ dx+ ω0 ∧ ξ

with abbreviations

e = e2 − be1,

ωs ≡ ω1s + bω2s ,

ξ = e1 dx+ aω20 − f1111ω1

where a = f2110 − f2101 (= 2a
12), b = f1211 /f1111 (= f2211 /f1211 if f1211 �= 0). It follows that

Adj dᾰ is generated by forms e dx, eω20, ω0, ξ. The E L conditions e1 = e2 = 0
are clearly equivalent to e1 = e = 0 where e is of the first order at most (easy

verification).

Let us deal with the function e in more detail.

Employing dωi
s ≡ dx ∧ ωi

s+1, dωs ≡ dx ∧ ωs+1 + db ∧ ω2s , one can obtain the

congruence

(5) 0 = d2ᾰ ∼= (de+ aω1 + e1 db) ∧ ω20 ∧ dx − f1111 db ∧ ω20 ∧ ω1 (modω0)

hence

db ∧ ω20 ∧ ω1 ∼= 0 (moddx, ω0), de ∧ ω20 ∧ dx ∼= 0 (moddb, ω1)
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which yields

(6) db ∼= 0, de ∼= 0 (mod dx, ω0, ω
2
0 , ω1).

Let us assume de �= 0 for a moment. Then, in the domain where e �= 0, obviously

(7) Adj dᾰ = { dx, ω0, ω
2
0 , ω1} = { dx, dw10 , dw

2
0 , dw

1
1 + b dw21}

and therefore db, de ∈ Adj dᾰ, consequently d(w11 + bw21) ∈ Adj dᾰ. Note that
congruences (6) are equivalent to the identities

(8) b21 = b b11, e21 = be11

which will be of frequent use. They are valid in the total space (even at points where

e = 0).
In principle, e need not depend on variables w11 , w

2
1 . This is the case if and only

if e11 = (e
2 − be1)

1
1 = 0 which (expressed in terms of coefficient f) is a rather clumsy

result. However, a more explicit identity e11 = f1111Xb − b11e
1 − a easily follows from

(5) by looking at the summands ω1 ∧ ω20 ∧ dx and yields a simplified but equivalent
formula

e11 = f1111 (bx + w11b
1
0 + w21b

2
0)− b11(f

1
0 − f11x − w11f

11
10 − w21f

12
10 )− a.

It follows that e11 is identically vanishing only for exceptional densities (to be still

specified below).
Let us assume e11 �= 0 for a moment. Recall that the C -curves satisfy the equations

e1 = 0 and e = 0, hence Xe = 0. It follows that also the function f1111Xe/e11 + e1

briefly denoted by

ẽ =
f1111
e11
(ex + w11e

1
0 + w21e

2
0) + f10 − f11x − w11f

11
10 − w21f

12
10

of the order at most one (use (82)) vanishes on all C -curves.

Let us deal with the function ẽ in more detail.
To this aim, using developments of the kind

(9) dg = Xg dx+ g10ω0 + (g
2
0 − bg10)ω

2
0 + g11ω1 + (g

2
1 − bg11)ω

2
1 + . . . ,

formula (4) can be rewritten as

(10) dᾰ = eω20 ∧ dx+ ω0 ∧
(
ẽdx+Aω20 −

f1111
e11
de

)
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where A = a+ f1111 (e
2
0 − be10)/e11. On the subspace where e = 0 is satisfied, clearly

0 = d2ᾰ = dω0 ∧ (ẽ dx+Aω20)− ω0 ∧ ( dẽ ∧ dx+ dA ∧ ω20 +Adx ∧ ω21).

By inserting dω0 = ω1 ∧ dx + db ∧ ω20 and the developments (9) for the functions
g = ẽ, g = A, g = b, one can obtain the identities

(11) ẽ21 − bẽ11 = A, A21 − bA11 = 0 (when e = 0).

In general A �= 0 and then (111, 82) imply de ∧ dẽ �= 0 (moddx, ω0, ω
2
0). It follows

that the system e = ẽ = 0 is equivalent to the primary E L equations e1 = e2 = 0

and can be uniquely brought into the shape

(12) w11 = g1(x, w10 , w
2
0), w21 = g2(x, w10 , w

2
0)

with derivatives separated on the left. We have assumed e11 �= 0, A �= 0 in this generic
case.

3. The extremality in the generic case, see also I 5 (iv) and I 6. Since the
E L subspace e : E ⊂ M (2) is defined by the equations Xk(wi

1 − gi) ≡ 0 with
the vector field I (8) where m = 2, the functions x, w10 , w20 may be used for the
coordinates on E. Let us consider a C -curve P(t) ∈ E(0 � t � 1). Let moreover

(13) Q(t) = (x(t), w10(t), w
2
0(t), w

1
1(t), w

2
1(t), . . .) ∈M(2), 0 � t � 1,

be a near A -curve (hence Q∗ωi
s ≡ 0) with the same end points Q(0) = P (0), Q(1) =

P (1). Denoting by

R(t) = (x(t), w10(t), w
2
0(t), r

1
1(t), r

2
1(t), . . .) ∈ E, 0 � t � 1,

its projection into E (hence ri
s ≡ Xs−1gi evaluated onQ(t)), then

(14)
∫

Q

α −
∫

P

α =
(∫

Q

α −
∫

R

ᾰ
)
+

(∫
R

ᾰ −
∫

P

ᾰ
)

(since
∫

P α =
∫

P ᾰ, cf. also I (25)) with the summands

(15)
∫

Q

α −
∫

R

ᾰ =
∫

E dx,

∫
R

ᾰ −
∫

P

ᾰ =
∫∫

Aω0 ∧ ω20

where

(16) E = f(. . . , w11 , w
2
1)− f(. . . , r11 , r

2
2)−

∑
f i
1(. . . , r

1
1 , r
2
1) (w

i
1 − ri

1)

190



(. . . = x, w10 , w
2
0 and the variable t is omitted) is the common Weierstrass function,

moreover the Green formula and (10) evaluated at e = ẽ = 0 were employed in (152).
One can observe that

(17) dᾰ = Aω0 ∧ ω20 = A( dw10 − g1 dx) ∧ ( dw20 − g2 dx) = du ∧ dv

in virtue of (10) with e = ẽ = 0 substituted, where u, v are appropriate first integrals

of the system (12).

Let us briefly look at the result. Concerning (151), the graph of the function

f = f(. . . , w11 , w
2
1) with . . . = x, w10 , w

2
0 kept fixed represents a surface in the space of

the variables f, w11 , w
2
1 , and the sense of E is well-known: it is the oriented vertical

distance between the surface and its tangent planes. A certain difficulty lies in the
fact that we have a developable surface (cf. (12)) therefore E = 0 is vanishing along

the generating lines. Otherwise the strong inequalities E > 0 or E < 0 can be
clearly ensured in favourable cases and then the constant sign of (151) is guaranteed.
Concerning the summand (152), it measures “the number of C -curves” going through

the loop which consists of the arc R(t) and the reversely oriented arc P (t); see (17)
and especially (174). One can therefore see that the value of this summand can be

made quite arbitrary by an appropriate choice of the curve Q(t); see also I 2 (even
with c = 1) for an analogous situation.

Altogether taken, the behaviour of each summand (15) is clear, alas, the sign of
the total sum (142) seems to be ambigous and neither the negative nor the positive

conjecture concerning the extremality can be stated at this place. We will return to
this remarkable problem in Part III.

4. Non-generic densities (1) such that either e11 = 0, or e11 �= 0 but A = 0 can

occur, see the next Section for the realization.

In more detail, assuming e11 = 0 but e = e(x, w10 , w
2
0) �= 0 then the (possible) C -

curves explicitly given by e = 0 must also satisfy the equation e1 = 0. It seems that

they are very exceptional and rather mysterious. On the contrary, the case when
e = 0 is identically vanishing will be discussed in more detail below: then the E L

system is underdetermined and consists of the single second order equation e1 = 0
for two unknown functions w10 , w

2
0 .

Assuming e11 �= 0 but A = 0, it is necessary to distinguish the subcases when
either ẽ �= 0 or ẽ = 0 on the subspace of M (2) given by the equation e = 0. Both

subcases may actually occur. The first seems to be rather unpleasant and we are not
able to state any reasonable result, however, the second leads to an underdetermined

E L system consisting of the single first order equation e = 0 which can be easily
investigated.
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5. The realization problems. If we wish to find examples of various kind of
degenerate densities, it is not appropriate to start from the primary formula (1) since
it gives rather complicated requirements for the coefficient f . Instead, it is better to
deal with the relevant PC form ᾰ and use the results of Section 2.

We shall suppose de �= 0 this time. Then dᾰ can be expressed by means of
four adjoint functions x, w10 , w

2
0 and a certain z = z(x, w10 , w

2
0 , w

1
1, w

2
1) where dz is

proportional to either of forms

ξ ∼= ω1 ∼= dw11 + b dw21 (mod dx, dw10 , dw
2
0)

as follows from (7). (It would be possible to choose either of the functions b, e, w11 +
bw21 for this z. More precisely, dᾰ can be expressed in this manner in the subdomain

where e �= 0, the behaviour at e = 0 easily follows by the continuity argument.) So
we may assume the formula

(18) ᾰ = P dx+Q dw10 +R dw20 + S dz − dW,

where P, . . . , W are functions of x, w10 , w
2
0 , z. Then a comparison with (1) implies

S = ∂W/∂z, so we may suppose S =W = 0 in (18) by a mere change of notation.
Let us find conditions for the remaining coefficients P, Q, R ensuring that the right

hand side of (18) indeed is a PC form. By virtue of condition I (12) with i = 1, 2
and πi ≡ ωi

0, it is necessary to ensure dᾰ ∼= 0 (modΩ∧Ω, ω10 , ω
2
0). This is a possible

approach but instead we shall follow an alternative and quite simple method.
Inserting z = z(x, w10 , w

2
0 , w

1
1, w

2
1) into formula (18) with S = W = 0, one can

obtain the expression

(19) ᾰ = f dx+ qω10 + rω20 (f = p+ qw11 + rw21)

in terms of primary variables and contact forms. The change of the type of letter
denotes here the results of substitution, e.g.,

p = P (x, w10 , w
2
0 , z(x, w10 , w

1
1, w

2
1))

and analogously with q and r. Clearly (19) is aPC form if and only if q = f11 and r =

f21 . One can verify that these conditions are equivalent to the identity

(20) P ′ +Q′w11 +R′w21 = 0 (′= ∂/∂z).

So we have a rather explicit view of all densities (1): the functions P, Q, R can

be arbitrarily chosen, and (20) may be regarded as the implicit definition of the
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function z (assuming P ′′ + Q′′w11 + R′′w21 �= 0, hence not all P ′′, Q′′, R′′ vanishing,
for certainty). Since we are interested in densities (1) with f1111 = q11 �= 0, the
condition Q′ �= 0 should be satisfied.

6. Continuation: the genericity. Using the explicit representation (192) of
the coefficient f of the density (1), one can then directly find the formulae

e1 = P 10 +R10w
2
1 − Qx − Q20w

2
1 − Q′Xz,(21)

e2 = P 20 +Q20w
1
1 − Rx − R10w

1
1 − R′Xz,(22)

e = P 20 − Rx + b(Qx − P 10 ) + c(R10 − Q20), b = R′/Q′, c = P ′/Q′,(23)

ẽ =
Q′

E′ (Ex + E10w
1
1 + E20w

2
1) + P 10 − Qx + (R10 − Q20)w

2
1 ,(24)

A = R10 − Q20 +
1
E′ (Q

′E20 − R′E10).(25)

More precisely, z = z(x, w10 , w
2
0 , w

1
1 , w

2
1) should be moreover inserted into the right

hand sides of (21–25) to obtain full accordance of variables. In particular, the func-
tion E = E(x, w10 , w

2
0 , z) may be exactly identified with the right hand side of (23),

and then e = E(x, w10 , w
2
0 , z(x, . . . , w11)) follows by the substitution. Recall that we

have assumed e11 �= 0 (hence E′ �= 0) in (24, 25).
Owing to these results, the existence of various kinds of densities satisfying A = 0

(either identically, or along the subspace where E = 0) immediately follows. The

reasoning can be a little simplified by an appropriate choice of the function z.

For instance, let us choose z = Q, hence Q′ = 1, Qx = Q01 = Q02 = 0. Then the

condition A = 0 reads R10E
′ = E20−R′E10 and admits a lot of solutions. For this case,

one can moreover observe an interesting fact: assuming e11 = 0 (hence E′ = 0) then
E20 = R′E10 which means e20 = be10 (use R′ = b) and consequently (Xe)21 = b(Xe)11.
This is like (82) and it follows that the function

(26) ˜̃e =
f1111
e10

X2e+ e1

(a substitute for ẽ which does not exist) of the order at most one vanishes on all
C -curves.

Recall that e11 �= 0 but ẽ = 0 identically vanishing (possibly only along the subspace
where e = 0) implies A = 0. In this a little peculiar but favourable case, using (14)

with the last summand vanishing, the extremal properties become quite clear.
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Underdetermined extremals

7. The realization once more. We shall suppose e = 0 identically vanishing

from now on. Then Adj dᾰ = {ω0, ξ} = {du, dv} for appropriate adjoint functions
u, v. Moreover,

(27) dᾰ = ω0 ∧ ξ = du ∧ dv, ᾰ = u dv − dW

in the space of independent variables x, w10 , w
2
0 , w

1
1, w

2
1 . Since (272) may be regarded

as a particular case of (18), the results of the preceding Section 5 remain true. In

particular, (23) gives the relevant condition

(28) 0 = Q′(P 20 − Rx) +R′(Qx − P 10 ) + P ′(R10 − Q20)

for the coefficients ensuring e = 0. Choosing z = Q, one can find a lot of solutions

but we shall mention a more effective method below. On this occasion, let us note
that (28) can be expressed in a very concise manner: denoting ᾰ′ = P ′ dx+Q′ dw10+
R′ dw20 , clearly ᾰ′ ∧ dᾰ = Q′E dx∧ dw10 ∧ dw20, hence (28) means that ᾰ′ ∧ dᾰ = 0.
We are passing to a better alternative method. Employing (27), the requirement

dᾰ ∼= 0(modΩ ∧Ω, ω10, ω
2
0) ensuring that we deal with a PC form yields the condi-

tions

(29) u11Xv − v11Xu = u21Xv − v21Xu = 0

for the sought functions u, v. Then the top order terms of (29) imply u11v
2
1 = v11u

2
1,

so we may assume v = V (x, w10 , w
2
0 , u). With this assumption, (29) reduces to the

single requirement

(30) Vx + w11V
1
0 + w21V

2
0 = 0.

Choosing V = V (x, w10 , w
2
0 , u) quite arbitrary, then (30) may be regarded as the

implicit equation determining u, and (272) with this function v = V and a (little

specialized) W =W (x, w10 , w
2
0, u) gives the sought density α = f dx where

(31) f = uVx − Wx + w11(uV 10 − W 1
0 ) + w21(uV 20 − W 2

0 ).

the function W must be chosen such that u∂V/∂u = ∂W/∂u, hence

(32) W =
∫

uVu du = uV −
∫

V du
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in quite explicit terms.

Altogether, formulae (30–32) provide all densities (1) with e = 0 identically van-
ishing (at the same time we have resolved the equation ᾰ′ ∧ dᾰ = 0). Note that the
result can be directly verified: both e1 and e2 are proportional to Xu, hence the E L

system is equivalent to the single equation u =const.

∗8.The parametrical subcase. Choosing in particular V = V (w10 , w
2
0 , u) inde-

pendent of the variable x, then (30) clearly determines a function u homogeneous of
zeroth order in variables w11 , w

2
1 , and (31, 32) determine a function f homogeneous

of the first order in w11 , w
2
1 . (More explicitly: the well-known identities

(33)

f(w10 , w
2
0 , λw11 , λw21) = λf(w10 , w

2
0 , w

1
1 , w

2
1),

w11f
1
1 + w21f

2
1 = f,

w11f
11
11 + w21f

12
11 = w11f

12
11 + w21f

22
11 = 0

are satisfied.) So we have the familiar parametrical integrals. It may be interesting

to mention the relevant PC form:

ᾰ = f11 dw
1
0 + f21 dw

2
0 ,

dᾰ = (dw10 + b dw20) ∧ (a dw20 − f1111 ( dw
1
1 + b dw21))

by easy calculation. It follows that e1 = aw21−f1111 (w
2
2+bw21) and e = 0 by comparison

with (4, 53).

The results can be carried over to more general integrals (1) with the function
f = F (g, h, Xg, Xh), where g = g(x, w10 , w

2
0), h = h(x, w10 , w

2
0) and F is homogeneous

of the first order in the variables Xg, Xh.

9. On the Jacobi least action principle. Let us mention a Riemannian mani-
fold with the first fundamental form g. Then (in rough terms) the geodesics are

C -curves for the parametric (hence degenerate) variational integral
∫
(g)1/2 dx, and

at the same time, geodesics are C -curves for the nondegenerate (kinetic energy) vari-

ational integral
∫

g dx. The parametrization is uncertain in the first approach, unlike
the second where the resulting parameter is proportional to the length. The gener-

alization in mechanics of conservative systems is also well-known as the Maupertuis
principle. We shall however carry this result over to many other variational integrals

(1) with e = 0 identically vanishing (which includes the parametrical case and much
more).

Since we shall deal with several variational integrals at the same time, let us made
our notation more precise: for a given density (11), we will write ei[f ], e[f ], and so
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like (instead of previous simpler ei, e) to point out the dependence on the coefficient

f . Then

(34)

ei[F (f)] = F (f)i0 − XF (f)i1

= F ′(f)F i
0 − X(F ′(f)f i

1)

= F ′(f)(f i
0 − Xf i

1)− f i
1XF ′(f)

= F ′(f)ei[f ]− f i
1XF ′(f)

for the “composed“ density β = F (f) dx. Assuming degeneracy (12), the new density
β need not be a degenerate one. In more detail

F (f)1111F (f)
22
11 − (F (f)1211)

2
= (f1111 f

2
1 − f1211 f

1
1 )
2
F ′′(f)F ′(f)/f1111

after easy verification, hence β is degenerate if either F ′′ = 0 or f1111 f
2
1 = f1211 f

1
1 is

satisfied. One can find that the second condition implies that the primary density

α is of a rather particular kind: then f = f(. . . , w11 , w
2
1) with . . . = x, w10 , w

2
0 kept

fixed is a cylindrical surface with the axis parallel to the w11 , w
2
1 plane.

Passing to our intention, let us take a degenerate but “non-cylindrical” density
α = f dx with e[f ] = 0 vanishing, and put β = F (f) dx with nonlinear F .

Then the C -curves to the density α satisfy e1[f ] = e2[f ] = 0, however, the sin-
gle equation e1[f ] = 0 is enough. Moreover the C -curves to the density β sat-

isfy e1[F (f)] = e2[F (f)] = 0 but using (34), this system is equivalent to e1[f ] =
XF ′(f) = 0, hence equivalent to

(35) e1[f ] = 0, F ′(f) = const.

The first equation means that we deal with C -curves to the primary density α, the

second can be interpreted as a specification of the independent variable x.
�������: the C -curves to the density F (f) dz are just the C -curves to the

density f dx with the independent variable satisfying (352).∗

10. The extremality for the case e = 0 does not make any difficulties. The E L

subspace e : E ⊂M(2) is defined by equations

Xke1 = Xk(f10 − Xf11 ) = . . .+ (w1k+2 + bw2k+2)f
11
11 ≡ 0,

hence the functions x, w10 , w11 , w2s (s = 0, 1, . . .) can be taken for the coordinates
for E. Since the form dᾰ can be expressed by two variables, the Lagrange subspace
l : L ⊂ E is of codimension one and we shall assume x, w10 , w2s (s = 0, 1, . . .)
for coordinates on L. Closely simulating I 6, we consider an embedded C -curve
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P (t) ∈ L(0 � t � 1), an arbitrary A -curve (14) with the same end points, and its

projection

R(t) = (x(t), w10(t), w
2
0(t), r

1
1(t), w

2
1(t), . . .) ∈ L, 0 � t � 1,

into L. Then the decomposition (14) can be employed with the second summand
on the right vanishing (since dᾰ = 0 onL), and the first summand (151) with E =

f(w11)−f(e11)−f11 (r
1
1)(w

1
1−r11) where the variables x, w10 , w

2
2 are omitted for brevity.

The inequalities E � 0 or E � 0 permit a quite reasonable geometric interpretation
and resolve the problem analogously as in the nondegenerate case.

�����	
�. We cannot refer to any literature except for the parametrical sub-

case of Section 8. Then the function f does not depend on variable x, the reasonings
of Section 10 can be repeated with alternative coordinates w10 , w20 on L, and the
resulting achievement is the only one which is (rather thoroughly) discussed in all
textbooks. Main contribution of this article consists in explicit realization of various

kinds of degenerate problems and in transparent clarification of difficulties concern-
ing the extremality. It should be noted that already the arrival at E L systems

causes serious difficulties in the optimal control theory, see [3]. Many interesting
results are referred in [1], alas, they are rather general and of quite different kind.
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