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A NOTE ON CONGRUENCE KERNELS IN ORTHOLATTICES
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Abstract. We characterize ideals of ortholattices which are congruence kernels. We show
that every congruence class determines a kernel.
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The problem whether an ideal of a lattice L is a kernel of a congruence θ on

L was solved by J. Hashimoto in the 50-ties, [2]. By his result, every ideal of L is
a kernel of some θ ∈ ConL if and only if L is distributive. However, ortholattices and
orthomodular lattices are distributive if and only if they are Boolean algebras. Hence,
for determining whether an ideal I of an ortholattice L is a congruence kernel we
cannot adopt Hashimoto’s result. We are going to characterize such ideals by means
of closedness with respect to suitable terms.
In accordance with [1], [3], by an ortholattice we mean an algebra

L = (L,∨,∧,⊥ , 0, 1)

such that (L,∨,∧, 0, 1) is a bounded lattice and ⊥ is the unary operation of or-
thocomplementation, i.e. ⊥ is order-reversing with respect to the lattice order and
satisfying the following identities:

(x⊥)⊥ = x,

x ∧ x⊥ = 0 and x ∨ x⊥ = 1,

(x ∧ y)⊥ = x⊥ ∨ y⊥ and (x ∨ y)⊥ = x⊥ ∧ y⊥,

0⊥ = 1 and 1⊥ = 0.
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Roughly speaking, ortholattices satisfy all axioms of Boolean algebras except dis-

tributivity.
By an ideal I of an ortholattice L we mean the lattice ideal of (L,∨,∧), i.e. ∅ �=

I ⊆ L with

a, b ∈ I ⇒ a ∨ b ∈ I

a ∈ I, x ∈ L ⇒ a ∧ x ∈ I.

An example of an ortholattice which is neither distributive nor modular is shown
in Fig. 1:
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Fig. 1.

Let θ be a congruence on an ortholattice L. By a kernel of θ we mean the set

Ker θ = {a ∈ L ; 〈a, 0〉 ∈ θ}.

�������. (1) An ideal of an ortholattice L need not be a kernel of any con-
gruence on L. For example, I(x) = {x, 0} is an ideal of the ortholattice in Fig. 1 but
it is not a kernel of any θ ∈ ConL; if 〈x, 0〉 ∈ θ for θ ∈ ConL then also 〈y, 0〉 ∈ θ

but y /∈ I(x).

(2) If an ideal I of an ortholattice L is a kernel of some θ ∈ ConL then θ need

not be unique. For example, {0} is an ideal of L in Fig. 1 but it is the kernel of
the identity congruence on L as well as of the congruence given by the partition
{0}, {x, y}, {x⊥, y⊥}, {1}.
For characterizing the ideals which are congruence kernels in ortholattices we recall

the well-known result of A. I. Mal’cev [4]:

Proposition. Let A = (A, F ) be an algebra, ∅ �= B ⊆ A. B is a class of some

congruence on A if and only if for every c, d ∈ B and each unary polynomial τ(x)
over A, τ(c) ∈ B ⇒ τ(d) ∈ B.
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Recall that by a unary polynomial τ(x) over A = (A, F ) we mean a unary function

τ : A → A such that there exists an (n+1)-ary term function t(y, x1, . . . , xn) of type
F and elements a1, . . . , an ∈ A such that τ(x) = t(x, a1, . . . , an).

We are ready to formulate our first result:

Theorem 1. An ideal I of an ortholattice L is a kernel of some θ ∈ ConL if and
only if for each (n + 1)-ary term t, for every a1, . . . , an ∈ L and every i1, i2, i3 ∈ I

we have (i⊥1 ∧ t(i2, a1, . . . , an))⊥ ∧ t(i3, a1, . . . , an) ∈ I.

����	. Let I be a kernel of some θ ∈ ConL, let t be an (n + 1)-ary term of
L and a1, . . . , an ∈ L, i1, i2, i3 ∈ I. Since 0 ∈ I we have 〈i1, 0〉 ∈ θ, 〈i2, 0〉 ∈ θ,

〈i3, 0〉 ∈ θ. Moreover,

(0⊥ ∧ t(0, a1, . . . , an))
⊥ ∧ t(0, a1, . . . , an) = 0,

whence, by the substitution property of θ, also

〈(i⊥1 ∧ t(i2, a1, . . . , an))
⊥ ∧ t(i3, a1, . . . , an), 0〉 =

〈(i⊥1 ∧ t(i2, a1, . . . , an))⊥ ∧ t(i3, a1, . . . , an),

(0⊥ ∧ t(0, a1, . . . , an))⊥ ∧ t(0, a2, . . . , an)〉 ∈ θ

i.e. (i⊥1 ∧ t(i2, a1, , . . . , an))⊥ ∧ t(i3, a1, . . . , an) ∈ Ker θ = I.

Conversely, let I be an ideal of an ortholattice L which satisfies the condition of
Theorem 1. Suppose i, j ∈ I and τ(i) ∈ I for a unary polynomial τ(x) over L. Hence,
τ(x) = t(x, a1, . . . , an) for some (n+1)-ary term t and some elements a1, . . . , an ∈ L.
Applying our condition for i1 = τ(i), i2 = i, i3 = j, we obtain

τ(j) = (τ(i)⊥ ∧ τ(i))⊥ ∧ τ(j) ∈ I.

By the Proposition, we are done since I is a 0-class of some θ ∈ ConL , i.e. I = Ker θ.
�

Theorem 2. Let L be an ortholattice. Then for each θ ∈ ConL, the kernel Ker θ
is determined by every class of θ.

����	. Let θ ∈ ConL and let C be an arbitrary class of θ. Define a subset I

of L as follows:
(∗) a ∈ I iff there exists c ∈ C such that a ∧ c = 0 and a ∨ c ∈ C. We prove that

I = Ker θ.

(i) 0 ∈ I since c ∧ 0 = 0 and c ∨ 0 = c ∈ C for each c ∈ C.
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(ii) Let a ∈ I. Denote d = a ∨ c. Then c, d ∈ C imply 〈c, d〉 ∈ θ and d ∧ a =

(a ∨ c) ∧ a = a whence 〈a, 0〉 = 〈d ∧ a, c ∧ a〉 ∈ θ, i.e. a ∈ Ker θ.
(iii) Suppose a ∈ Ker θ. Then 〈a, 0〉 ∈ θ, thus also 〈a⊥, 1〉 = 〈a⊥, 0⊥〉 ∈ θ. Hence,

for each c0 ∈ C we have 〈c0, a⊥ ∧ c0〉 = 〈1 ∧ c0, a
⊥ ∧ c0〉 ∈ θ, i.e. also a⊥ ∧ c0 ∈ C.

Further,

〈a⊥ ∧ c0, (a⊥ ∧ c0) ∨ a〉 = 〈(a⊥ ∧ c0) ∨ 0, (a⊥ ∧ c0) ∨ a〉 ∈ θ,

i.e. also (a⊥∧c0)∨a ∈ C. We can set c = a⊥∧c0. Then c ∈ C, c∧a = a⊥∧c0∧a = 0

and c ∨ a = (a⊥ ∧ c0) ∨ a ∈ C. By (∗) we have a ∈ I. Together, I = Ker θ, which
proves the assertion. �
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