A NOTE ON CONGRUENCE KERNELS IN ORTHOLATTICES

IVAN CHAJDA, Olomouc

(Received January 28, 1998)

Abstract. We characterize ideals of ortholattices which are congruence kernels. We show that every congruence class determines a kernel.

Keywords: ortholattice, congruence, kernel, ideal *MSC 2000*: 06C15, 06B10

The problem whether an ideal of a lattice \mathcal{L} is a kernel of a congruence θ on \mathcal{L} was solved by J. Hashimoto in the 50-ties, [2]. By his result, every ideal of \mathcal{L} is a kernel of some $\theta \in \text{Con }\mathcal{L}$ if and only if \mathcal{L} is distributive. However, ortholattices and orthomodular lattices are distributive if and only if they are Boolean algebras. Hence, for determining whether an ideal I of an ortholattice \mathcal{L} is a congruence kernel we cannot adopt Hashimoto's result. We are going to characterize such ideals by means of closedness with respect to suitable terms.

In accordance with [1], [3], by an *ortholattice* we mean an algebra

$$\mathcal{L} = (L, \lor, \land, ^{\perp}, 0, 1)$$

such that $(L, \lor, \land, 0, 1)$ is a bounded lattice and $^{\perp}$ is the unary operation of *or*thocomplementation, i.e. $^{\perp}$ is order-reversing with respect to the lattice order and satisfying the following identities:

$$\begin{split} (x^{\perp})^{\perp} &= x, \\ x \wedge x^{\perp} &= 0 \quad \text{and} \quad x \vee x^{\perp} = 1, \\ (x \wedge y)^{\perp} &= x^{\perp} \vee y^{\perp} \quad \text{and} \quad (x \vee y)^{\perp} = x^{\perp} \wedge y^{\perp}, \\ 0^{\perp} &= 1 \quad \text{and} \quad 1^{\perp} = 0. \end{split}$$

This research is supported by the grant agency Aktion Östereich-Tschechische Republik, grant No. 19p14 "Ordered algebraic structures and applications".

169

Roughly speaking, ortholattices satisfy all axioms of Boolean algebras except distributivity.

By an *ideal* I of an ortholattice \mathcal{L} we mean the lattice ideal of (L, \lor, \land) , i.e. $\emptyset \neq I \subseteq L$ with

$$a, b \in I \implies a \lor b \in I$$
$$a \in I, \ x \in L \implies a \land x \in I.$$

An example of an ortholattice which is neither distributive nor modular is shown in Fig. 1:

Let θ be a congruence on an ortholattice \mathcal{L} . By a *kernel* of θ we mean the set

$$\operatorname{Ker} \theta = \{ a \in L; \ \langle a, 0 \rangle \in \theta \}$$

R e m a r k s. (1) An ideal of an ortholattice \mathcal{L} need not be a kernel of any congruence on \mathcal{L} . For example, $I(x) = \{x, 0\}$ is an ideal of the ortholattice in Fig. 1 but it is not a kernel of any $\theta \in \operatorname{Con} \mathcal{L}$; if $\langle x, 0 \rangle \in \theta$ for $\theta \in \operatorname{Con} \mathcal{L}$ then also $\langle y, 0 \rangle \in \theta$ but $y \notin I(x)$.

(2) If an ideal I of an ortholattice \mathcal{L} is a kernel of some $\theta \in \operatorname{Con} \mathcal{L}$ then θ need not be unique. For example, $\{0\}$ is an ideal of \mathcal{L} in Fig. 1 but it is the kernel of the identity congruence on \mathcal{L} as well as of the congruence given by the partition $\{0\}, \{x, y\}, \{x^{\perp}, y^{\perp}\}, \{1\}.$

For characterizing the ideals which are congruence kernels in ortholattices we recall the well-known result of A. I. Mal'cev [4]:

Proposition. Let $\mathcal{A} = (A, F)$ be an algebra, $\emptyset \neq B \subseteq A$. *B* is a class of some congruence on \mathcal{A} if and only if for every $c, d \in B$ and each unary polynomial $\tau(x)$ over $\mathcal{A}, \tau(c) \in B \Rightarrow \tau(d) \in B$.

170

Recall that by a unary polynomial $\tau(x)$ over $\mathcal{A} = (A, F)$ we mean a unary function $\tau: A \to A$ such that there exists an (n+1)-ary term function $t(y, x_1, \ldots, x_n)$ of type F and elements $a_1, \ldots, a_n \in A$ such that $\tau(x) = t(x, a_1, \ldots, a_n)$.

We are ready to formulate our first result:

Theorem 1. An ideal I of an ortholattice \mathcal{L} is a kernel of some $\theta \in \text{Con }\mathcal{L}$ if and only if for each (n + 1)-ary term t, for every $a_1, \ldots, a_n \in L$ and every $i_1, i_2, i_3 \in I$ we have $(i_1^{\perp} \wedge t(i_2, a_1, \ldots, a_n))^{\perp} \wedge t(i_3, a_1, \ldots, a_n) \in I$.

Proof. Let I be a kernel of some $\theta \in \text{Con }\mathcal{L}$, let t be an (n + 1)-ary term of \mathcal{L} and $a_1, \ldots, a_n \in L$, $i_1, i_2, i_3 \in I$. Since $0 \in I$ we have $\langle i_1, 0 \rangle \in \theta$, $\langle i_2, 0 \rangle \in \theta$, $\langle i_3, 0 \rangle \in \theta$. Moreover,

$$(0^{\perp} \wedge t(0, a_1, \dots, a_n))^{\perp} \wedge t(0, a_1, \dots, a_n) = 0,$$

whence, by the substitution property of θ , also

$$\begin{split} \langle (i_1^{\perp} \wedge t(i_2, a_1, \dots, a_n))^{\perp} \wedge t(i_3, a_1, \dots, a_n), 0 \rangle = \\ \langle (i_1^{\perp} \wedge t(i_2, a_1, \dots, a_n))^{\perp} \wedge t(i_3, a_1, \dots, a_n), \\ (0^{\perp} \wedge t(0, a_1, \dots, a_n))^{\perp} \wedge t(0, a_2, \dots, a_n) \rangle \in \theta \end{split}$$

i.e. $(i_1^{\perp} \wedge t(i_2, a_1, \dots, a_n))^{\perp} \wedge t(i_3, a_1, \dots, a_n) \in \operatorname{Ker} \theta = I.$

Conversely, let I be an ideal of an ortholattice \mathcal{L} which satisfies the condition of Theorem 1. Suppose $i, j \in I$ and $\tau(i) \in I$ for a unary polynomial $\tau(x)$ over \mathcal{L} . Hence, $\tau(x) = t(x, a_1, \ldots, a_n)$ for some (n+1)-ary term t and some elements $a_1, \ldots, a_n \in L$. Applying our condition for $i_1 = \tau(i), i_2 = i, i_3 = j$, we obtain

$$\tau(j) = (\tau(i)^{\perp} \wedge \tau(i))^{\perp} \wedge \tau(j) \in I.$$

By the Proposition, we are done since I is a 0-class of some $\theta \in \operatorname{Con} \mathcal{L}$, i.e. $I = \operatorname{Ker} \theta$.

Theorem 2. Let \mathcal{L} be an ortholattice. Then for each $\theta \in \text{Con } \mathcal{L}$, the kernel Ker θ is determined by every class of θ .

Proof. Let $\theta \in \operatorname{Con} \mathcal{L}$ and let C be an arbitrary class of θ . Define a subset I of \mathcal{L} as follows:

(*) $a \in I$ iff there exists $c \in C$ such that $a \wedge c = 0$ and $a \vee c \in C$. We prove that $I = \operatorname{Ker} \theta$.

(i) $0 \in I$ since $c \land 0 = 0$ and $c \lor 0 = c \in C$ for each $c \in C$.

171

(ii) Let $a \in I$. Denote $d = a \lor c$. Then $c, d \in C$ imply $\langle c, d \rangle \in \theta$ and $d \land a = (a \lor c) \land a = a$ whence $\langle a, 0 \rangle = \langle d \land a, c \land a \rangle \in \theta$, i.e. $a \in \operatorname{Ker} \theta$.

(iii) Suppose $a \in \text{Ker }\theta$. Then $\langle a, 0 \rangle \in \theta$, thus also $\langle a^{\perp}, 1 \rangle = \langle a^{\perp}, 0^{\perp} \rangle \in \theta$. Hence, for each $c_0 \in C$ we have $\langle c_0, a^{\perp} \wedge c_0 \rangle = \langle 1 \wedge c_0, a^{\perp} \wedge c_0 \rangle \in \theta$, i.e. also $a^{\perp} \wedge c_0 \in C$. Further,

$$\langle a^{\perp} \wedge c_0, (a^{\perp} \wedge c_0) \vee a \rangle = \langle (a^{\perp} \wedge c_0) \vee 0, (a^{\perp} \wedge c_0) \vee a \rangle \in \theta,$$

i.e. also $(a^{\perp} \wedge c_0) \lor a \in C$. We can set $c = a^{\perp} \wedge c_0$. Then $c \in C$, $c \wedge a = a^{\perp} \wedge c_0 \wedge a = 0$ and $c \lor a = (a^{\perp} \wedge c_0) \lor a \in C$. By (*) we have $a \in I$. Together, $I = \text{Ker }\theta$, which proves the assertion.

References

- [1] Beran L.: Orthomodular lattices. Algebraic Approach. Academia, Praha, 1984.
- [2] Hashimoto J.: Ideal theory for lattices. Math. Japon. 2 (1952), 149–186.
- [3] Kalmbach B.: Orthomodular Lattices. London Math. Soc. Monographs 18, Academic Press, London, 1983.
- [4] Mal'cev A. I.: On the general theory of algebraic systems. Mat. Sb. 35(77) (1954), 3–20. (In Russian.)

Author's address: Ivan Chajda, Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: chajda@risc.upol.cz.