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THE DIRECTED DISTANCE DIMENSION OF ORIENTED GRAPHS
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Abstract. For a vertex v of a connected oriented graph D and an ordered set W =
{w1, w2, ..., w} of vertices of D, the (directed distance) representation of v with respect
to W is the ordered k-tuple r(v | W) = (d(v,w1),d(v,w2),...,d(v,wy)), where d(v,w;) is
the directed distance from v to w;. The set W is a resolving set for D if every two distinct
vertices of D have distinct representations. The minimum cardinality of a resolving set for
D is the (directed distance) dimension dim(D) of D. The dimension of a connected oriented
graph need not be defined. Those oriented graphs with dimension 1 are characterized. We
discuss the problem of determining the largest dimension of an oriented graph with a fixed
order. It is shown that if the outdegree of every vertex of a connected oriented graph D of
order n is at least 2 and dim(D) is defined, then dim(D) < n — 3 and this bound is sharp.
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1. INTRODUCTION

For an oriented graph D of order n, an ordered set W = {wy,ws,...,w} of
vertices of D, and a vertex v of D, the k-vector (ordered k-tuple)

r(v | W) = (d(v,wy),d(v,ws),...,d(v,wg))

is referred to as the (directed distance) representation of v with respect to W, where
d(z,y) denotes the directed distance from x to y, that is, the length of a shortest
directed = — y path in D. Since directed x — y paths need not exist in D, even if
D is connected (its underlying graph is connected), the vector r(v | W) need not
exist as well. If (v | W) exists for every vertex v of D, then the set W is called a
resolving set for D if every two distinct vertices of D have distinct representations.
A resolving set of minimum cardinality is called a basis for D and this cardinality is
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the (directed distance) dimension dim(D) of D. Of course, not every oriented graph
has a dimension. An oriented graph of dimension k is also called k-dimensional.

To determine whether an ordered set W = {wy,ws,...,wi} of vertices in an
oriented graph D is a resolving set, we need only show that the representations of
the vertices of V(D) — W are distinct since 7(w; ’ W) is the only representation
whose ith coordinate is 0.

The directed distance dimension of an oriented graph is a natural analogue of
the metric dimension of a graph that was introduced independently by Harary and
Melter [2] and Slater [3], [4]. This concept was also investigated in [1] as a result of
studying a problem in pharmaceutical chemistry.

U

w

D
Figure 1. An oriented graph D with dimension 2

In the oriented graph D of Figure 1, let W; = {u,v}. The five representations
of the vertices of D with respect to Wi are r(u | wh) = (0,2), r(v ’ wh) = (1,0),
r(w | Wi) = (2,1), r(z | W1) = (2,1), and r(y | W) = (1,3). Since z and w have
the same representation, Wj is not a resolving set for D.

The five representations of the vertices of D with respect to Wa = {u,v,w} are

r(u| Wa) =(0,2,2), r(v|Wz)=(1,0,3), r(w|Ws2)=(21,0),
r(z | Wa) = (2,1,1), r(y | W2) =(1,3,3)

Since these five 3-vectors are distinct, W5 is a resolving set for D. However, W;
is not a basis for D. To see this, let W5 = {z,y}. Then r(u | W3) = (1,3),
r(v | Ws) = (2,1), r(w | W3) = (3,1), r(z | W3) = (0,2), and r(y | W3) = (2,0),
which are distinct as well. So W3 is a resolving set for D. Since there is no 1-element
resolving set for D, it follows that W3 is a basis and dim(D) = 2.

Now let T be the tournament shown in Figure 2. Table 1 gives all 2-element
choices for W and shows that for each such choice, there exist two equal 2-vectors,
thus showing that dim(7) > 3. However, dim(T") = 3 since {v1, vs,v6} is a basis
for T. Figure 3 shows an oriented graph D containing T" as an induced subdigraph.
The set W = {x,y} is a basis of D, so dim(D) = 2. Hence we have the possibly
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unexpected property that the 3-dimensional tournament 7' is an induced subdigraph
of the 2-dimensional oriented graph D.

Figure 3. The digraph D

There is a fundamental question here—one whose answer is not known to us, but
one which deserves further study. What is a necessary and sufficient condition for
the dimension of a digraph D to be defined? Certainly, if D is strong, then dim(D) is
defined. Also, if D is connected and contains a vertex such that D — v is strong, then
dim(D) is defined. This last statement follows because if od v > 0, then V(D) — {v}
is a resolving set; while if id v > 0, then V(D) is a resolving set. There are numerous
other sufficient conditions for dim(D) to be defined.
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W equivalent vectors

{v1,v2} r(vs | W) =r(vr | W) = (1,2)
{v1,v3} r(ve | W) =r(vr | W) = (1,1)
{v1, va} r(vs | W) =r(vr | W) = (1,2)
{v1,vs} r(ve | W) =r(vr | W) = (1,2)
{v1,v6} r(vg | W) =r(vs | W) =(2,2)
{v1,v7} r(vs | W) =r(ve | W) = (1,1)
{vz2, vs} r(vn | W) =r(vs | W) = (1,1)
{v2, va} r(vs | W) =r(vr | W) = (2,2)
{va,v5} r(vy | W) =r(vs | W) = (1,2)
{vz2, ve} r(va | W) =r(vs | W) =(2,1)
{vz2, v} r(va | W) =r(vs | W) = (2,1)
{vs,v4} r(vy | W) =r(ve | W) = (1,1)
{vs,v5} r(ve | W) =r(vr | W) = (1,2)
{vs, ve} r(or | W) =r(vz | W) = (1,2)
{vs, v} r(vg | W) =r(vs | W) = (1,1)
{vg,v5} r(vg | W) =r(vs | W) = (1,1)
{vg, v6} r(vy | W) =r(ve | W) = (1,2)
{va, v} r(on | W) =r(vs | W) = (1,2)
{vs, ve} r(vg | W) =r(vs | W) = (1,2)
{vs,v7} r(vg | W) =r(vg | W) = (1,1)
{vg, v7} r(vg | W) =r(vs | W) = (1,1)
Table 1.

2. 1-DIMENSIONAL ORIENTED GRAPHS

In this section we characterize those oriented graphs having dimension 1. We also
describe some properties of bases for 1-dimensional oriented graphs.

Theorem 2.1. Let D be a nontrivial oriented graph of order n. Then dim(D) =1
if and only if there exists a vertex v in D such that

(i) D contains a hamiltonian path P with terminal vertex v such that idp v = 1;
and

(ii) if the hamiltonian path P in (i) is of the form

Un—1,Un—-2,...,V1,7,

then, for each pair i, j of integers with 1 < ¢ < j < m — 1, the digraph D — E(P)
contains no arc of the form (v;,v;).
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Proof. Assume that dim(D) = 1. Let W = {v}, v € V(D), be a basis
of D. Then the distance d(u,v) from w to v is defined for each vertex u in D
and the set {d(u,v); v € V(D)} = {0,1,...,n — 1}. Thus, we may assume that
V(D) = {v,v1,v2,...,Up—1} where d(v;,v) =i (1 < i < n—1). Clearly, idv =
1. Since d(vy,—1,v) = n — 1, there exists a hamiltonian path in D, namely P:
Up—1,Un—2,...,01,0, so (i) holds. Furthermore, if there exists a pair ¢,j of in-
tegers (1 < i < j < n — 1) such that the arc (v;,v;) is in D — E(P), then
Jj # i+ 1 and d(vj,v) = d(vit1,v) (shown in Figure 4). This contradicts the fact
that {d(u,v); u € V(D)} consists of n distinct integers, so (ii) holds.

vj Vi4+1

<O

Ui Uil Uim2 01
Figure 4.

Conversely, assume that there is a vertex v in D such that (i) and (ii) hold.
We show that W = {v} is a resolving set of D. Since d(u,v) is defined for each
u € V(D), it suffices to show that the set {d(v;,v); 1 <i<n—1} consists of n —1
distinct integers. Suppose that this is not the case. Then there exist integers i, j
(1 <i<j<n-—1)such that d(vj,v) = d(v;,v) = ¢. Let P; be a v; — v path and P,
a v; —v path in D such that P, and P, have the same length ¢. Since idv = 1, there
exists a vertex v # v in D that belongs to both P; and P,. Assume that vy is the
vertex with largest index k such that the path vg,vg—1,...,v1,v is on both P; and
P, (see Figure 5).

Uk
Uy 2

<O

VL V-1 U1
y
J
'Uk1
Figure 5.

Let (vg,,vx) € E(Py) and (vk,,vr) € E(P2) where (vk,,vg) # (Vk,,vk). Clearly,
k1 > k and ko > k. It follows that at least one of these arcs is in D — E(P), but this

is a contradiction to (ii). O

We now present some facts concerning bases in 1-dimensional oriented graphs.

Theorem 2.2.  Let D be a digraph of order n with dim(D) = 1. Furthermore,
let v and vy be distinct vertices of D with d(vy,ve) = 2 such that both {v1} and
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{va} are bases of D. If v is a vertex of D such that (v1,v), (v,v2) € E(D), then {v}
is also a basis of D.

Proof. To show that {v} is a basis of D, we show that for each u € V(D), the
distance d(u,v) is defined and the set {d(u,v); u € V(D)} consists of n distinct
integers.

First notice that idv = 1, for otherwise there exist distinct vertices = and y of D
such that d(x,v) = d(y,v) = 1. Since id vy = 1, by Theorem 2.1, we have

d(z,v2) = d(y,v2) = d(z,v) +1 =2

This contradicts the fact that {vs} is a basis of D.

Furthermore, suppose that there exist vertices w,w in D such that d(u,v) =
d(w,v). Since idv = 1, each u — v path contains the arc (v1,v) as its terminal
arc, as does each w — v path, so

d(uavl) = d(wavl) = d(“?”) -1
Again, this contradicts the fact that {v;} is a basis of D. O

We now have an immediate consequence of Theorem 2.2.

Corollary 2.3. If D is a 1-dimensional oriented graph of order n > 3 such that
{v} is a basis of D for every vertex v in D, then D is a directed cycle.

Proof. Let V(D) = {v1,v2,...,v,}. By Theorem 2.2, idv = 1 for every vertex
v of D. Moreover, D contains a hamiltonian path P. We can assume that

P: Un,Un—1,---,02,V1
Next, we show that D contains the cycle
Cn: Un, Un—1,-..,02,V1,Un

Since id v, = 1, there exists a unique vertex v such that (v,v,) € E(D). If v # vy,
then (v;,v,) € E(D) for some ¢ (2 < i <n—1). Since {v,} is a basis of D, there
exists a hamiltonian path in D with terminal vertex v,,. However, since every vertex
has indegree 1, the only possible path in D with v,, as its terminal vertex is

/
P Un—1,Un—2,.-.,Vit+1, Vi, Un

Since P’ has length n— i, it is not a hamiltonian path. This contradicts the fact that
{vn} is a basis. So D contains the cycle C,,. Furthermore, since idv = 1, D cannot
contain any arc except those in C),. So D = C),. (]
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We can improve Corollary 2.3 slightly.
Corollary 2.4. If D is a 1-dimensional oriented graph of order n > 3 such that
{v; {v} is a basis of D}| > n — 1

then D is a directed cycle.

Proof. Let V(D) = {v,v1,v2,...,0,_1}. Without loss of generality, we assume
that {v;} is a basis of D for 1 < ¢ < n— 1. By Corollary 2.3, it suffices to show that
{v} is a basis as well.

We claim that odv > 0. Suppose that this is not the case. Then for each vertex
u (# v), the distance d(v, ) is not defined, which contradicts the fact that {u} is
a basis of D. Hence, there is a vertex x (# v) such that (v,z) € E(D). Since {x}
is also a basis of D, then by Theorem 2.1(i), D contains a hamiltonian path with
terminal vertex x and id x = 1. This implies that there exists a vertex y distinct from
x and v such that (y,v) € E(D). It follows that d(y,x) = 2 and by Theorem 2.2,
{v} is also a basis of D. O

The bound in Corollary 2.4 cannot be improved in general. For example, con-
sider the oriented graph D of order n in Figure 6. Since {v;} is a basis for D for
1 <i<n-—2,dim(D) = 1. However, neither {v,_1} nor {v,} is a basis D. So
{v; {v} is a basis of D}| =n — 2 and D is not a directed cycle.

U3 V4

Cp)

U1
Un,

Un—1
Un—2
Figure 6. An oriented graph with (n — 2) 1-element bases

There is only one 1-dimensional oriented tree of every order.

Theorem 2.5.  For every oriented tree T, dim(T) = 1 or dim(T") is undefined.
Furthermore, if dim(T") = 1, then T is a directed hamiltonian path.
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Proof. There are certainly oriented trees whose dimension is undefined, for
example, any orientation of a star K+, where ¢t > 3. Now let T" be an oriented tree
whose dimension is defined. Since T contains no cycles, for every pair x, y of vertices,
whenever d(x,y) is defined, d(y,z) is undefined. Thus dim(7") = 1.

If dim(T") = 1, then, by Theorem 2.1, T' contains a hamiltonian path P and so
T=P. O

3. ON ORIENTED GRAPHS WITH LARGE DIMENSION

We have characterized those oriented graphs with dimension 1. But how large can
the dimension of an oriented graph of order n be? In this section, we describe upper
bounds for the dimension of a connected oriented graph in terms of lower bounds for
the outdegrees of its vertices. The outdegree of every vertex in the oriented graph
D of Figure 7 is 2, yet dim(D) is undefined. Such examples exist regardless of the
outdegrees.

Figure 7. The oriented graph D

Theorem 3.1. If D is a connected oriented graph of order n > 3 withodv > 1
for all v € V(D) such that dim(D) is defined, then dim(D) < n — 2.

Proof. Let D be an oriented graph satisfying the hypothesis of the theorem.
Certainly dim(D) < n — 1. Assume, to the contrary, that dim(D) = n — 1. Let
W = {v1,v2,...,0n_1} be a basis for D and let V(D) — W = {z}. Since odz > 1,
assume, without loss of generality, that x is adjacent to v;. Also, since odv; > 1,
we may assume that v; is adjacent to vo. Since dim(D) =n —1, r(v; | W — {v;}) =
r(x } W —{v;}) for 1 < i < n— 1. Since z is adjacent to vy, it follows that vy is
adjacent to vy, but this contradicts the fact that D is an oriented graph. O

We now describe a class of oriented graphs. For k > 2, let Dy be an oriented
graph with vertex set
V(Dg) = {u,v,wy,wa, ..., wg}

and let E(Dy,) consist of the arc (u,v) and the arcs (v, w;) and (w;,u) for 1 < j < k.
The oriented graph Dy is shown in Figure 8. Then Dy has order n = k + 2 and
odv > 1 for all v € V(D). We claim that dim(Dy) = n — 3.
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Figure 8. The oriented graph Dj with minimum outdegree 1

First we show that dim(Dy) < n — 3. Let W = {wo,ws,...,w}, where then
|W| = n — 3. The distances d(u,ws) = 2, d(v,w2) =1, and d(w;,w2) = 3 show that
W is a resolving set for Dy and so dim(Dy) < n — 3. On the other hand, at least
k — 1 of the vertices wy,ws, ..., w; must belong to every resolving set of Dy since
the distance from any two of these vertices to every other vertex of Dy is the same.
Hence dim(Dy) > n — 3 and so dim(D) = n — 3. Of course, this does not show that
sharpness of the bound in Theorem 3.1, except that if Dy is the directed 3-cycle,
then dim(D;) =1=n—2.

We can, however, improve the bound in Theorem 3.1 if we require that the out-
degree of every vertex is at least 2.

Theorem 3.2. If D is a connected oriented graph of order n > 5 with odv > 2
for all v € V(D) such that dim(D) is defined, then dim(D) < n — 3.

Proof. Suppose, to the contrary, that D contains a basis B of cardinality n — 2.
Let B = {v1,v2,...,0n—2}, and V(D) — B = {z,y}. For each i (1 < i < n — 2),
B —{v;} is not a resolving set. Hence for each such i, some two of the three vertices
x, Yy, v; have the same representations with respect to B — {v;}. We consider two
cases.

Case 1: For some i (1 <i<n—2),x and y have the same representations with
respect to B — {v;}. Assume, without loss of generality, that « and y have the same
representations with respect to W = B — {v,—2}. Then x and y have the same
out-neighbors in W. Since x and y have distinct representations with respect to 5,
exactly one of x and y is adjacent to v,_2; for if neither x nor y is adjacent to v,_a2,
then d(z,v,—2) = d(y, vn—2). Therefore, we may assume that y is adjacent to v, 2.

Let W = {v1,v2,...,0p—4,Un—2}. Two of z,y, and v,_3 have the same repre-
sentations with respect to W’. However, y is adjacent to v,_o and x is not, so z
and y do not have the same representations with respect to W’. Thus there are two
possibilities.
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Subcase 1.1: m(x | W) = r(v,—3 | W'). We claim that z is adjacent to at most one
of v1,va,...,v,_2. Suppose that this is not the case. Then we can assume without
loss of generality that x is adjacent to v; and va. Then r(vy | B — {v1}) =r(z | B —
{ni})orr(vy | B={v1}) =r(y | B—{v1}). Similarly, r(ve | B—{v2}) = r(z | B—{v2})
or r(ve | B—{v2}) = r(y | B—{v2}). Since the out-neighbors of y in W are the same
as the out-neighbors of x in W, we have that vs is an out-neighbor of v; and that v is
an out-neighbor of v5. Since D is an oriented graph, this is impossible, so, as claimed,
x is adjacent to at most one of v1,vs,...,v,_2. Now, since odz > 2, it follows that =
is adjacent to y and exactly one vertex from vy, vs,...,v,_2, say v;. However, since
for1<i<n=3,r(v; | B—{w}) =r(z|B-—{v})orr(v; | B={v;}) =r(y | B—{uv}),
it follows that vy is an out-neighbor of every vertex in the set {z,y, va, v3, ..., vn—_3},
so od vy < 1, which contradicts the assumption that every vertex in D has out-degree
at least 2.

Subcase 1.2: r(y | W') = r(v,—3 | W'). We first suppose that z is adjacent to
some vertex in W', say v;. Because of the assumptions in Case 1 and Subcase 1.2,
it follows that y and v, _3 are also adjacent to v;. However, since for 2 <i < n — 3,
r(vi | B={vi}) =r(x | B={v;}) or r(v; | B—{vi}) = r(y | B—{v;}), it follows that v,
is an out-neighbor of every vertex in the set {x, y, v2,vs, ..., Up_3,Un_2},s00d vy =0,
which is a contradiction. Therefore, x is not adjacent to any of v1,va, ..., Un_4, Vn_2.
Thus, since odx > 2, it follows that z must be adjacent to both y and v,_3. But
y is adjacent to v,_3 as well, because z and y have the same representations with

respect to W. Since x is not adjacent to any of vy, va,...,v,_4, it follows that y
is not adjacent to any of vi,va,...,Up—4. Now r(y | W) = r(ve—3 | W), so it
follows that v,_3 is not adjacent to any of vy, vs,...,v,_4. All of this implies that

odwv,_3 = 1, which is a contradiction.

Case 2: For every i (1 < i < n—2), z and y have distinct representations with
respect to B — {v;}. We next prove that every vertex of B is an out-neighbor of
x or y but at most one vertex of B is an out-neighbor of both =z and y. To prove
this, we first show that among the out-neighbors y1,ys2,...,yx of y in B, at most
one y; has the same representation as y with respect to B — {y;}. Suppose that
this is not the case. Then we may assume that r(y1 | B—{y1}) = r(y | B—{v1})
and that r(y2 | B — {y2}) = r(y | B — {y2}). The first equality tells us that y, is
an out-neighbor of y; and the second equality tells us that y; is an out-neighbor of
Y2, contradicting the fact that D is an oriented graph. Similarly, among the out-
neighbors x1,x2,...,2¢ of x in B, at most one x; has the same representation as x
with respect to B — {z;}.

Next, we show that for each i (1 < i < n—2), at least one of 2 and y is adjacent to
v;. This follows from the fact that if neither x nor y is adjacent to v;, then no other

164



vertex v; from B — {v;} can be adjacent to v; since r(v; | B—{v;}) =r(z | B—{v;})
or r(v; | B—{v;}) =r(y | B—{v;}). Thus id v; = 0, which is impossible since d(z, v;)
must be defined for all z € V(D). Finally, x and y are simultaneously adjacent to
at most one vertex v; (1 < i < n — 2), for if v, and v}, are distinct out-neighbors of
both x and y, then v, and v, are out-neighbors of each other, which is impossible.

This creates a natural partition of the vertices of B into either two or three subsets,
depending on whether there exists a vertex to which x and y are simultaneously
adjacent. We now consider these two subcases.

Subcase 2.1: There exists a unique common out-neighbor of x and y.

We assume, without loss of generality, that v,_o is an out-neighbor of both x
and y. Furthermore, we can assume, without loss of generality, that the set X =
{v1,v2,...,v;} consists of the out-neighbors of x and not y, and that the set ¥ =
{Vk+1,Vk+2,--.,Vn_3} consists of the out-neighbors of y and not x. We further
assume, without loss of generality, that the representations of y and v,,_» with respect
to B — {vn—2} are the same. Therefore, there is no vertex in v; € Y for which the
representations of y and v; with respect to 5 — {v;} are the same. Therefore, for
every v; € Y, the representations of x and v; with respect to B — {v;} are the same.

Since x is adjacent to every vertex in X, every vertex in Y is adjacent to every
vertex in X U{v,,_2}. Now, there is at most one v; € X for which the representations
of x and v; are the same with respect to B — {v;}. Therefore, if | X| > 2, there exists
at least one vertex v; € X for which the representations of y and v; with respect to
B —{v;} are the same. Hence, such a vertex v; is adjacent to every vertex in Y, but
this implies that D is not an oriented graph since for any v; € Y, there is an arc
from v; to v; and an arc from v; to v;. Therefore, | X| < 1. But if | X| =1, then v,
is the only vertex that could possibly be an out-neighbor of v,,_5. This contradicts
the assumption that the out-degree of every vertex in D is at least 2, so | X| = 0. We
have already seen that every vertex in Y U {z} is adjacent to vertex v,_z, so even if
|X| = 0, we have that od v,_2 = 0, which cannot occur.

Subcase 2.2: No vertex is a common out-neighbor of x and y.

We assume, without loss of generality, that the set X = {vy,vq,..., v} consists
of the out-neighbors of x and not y, and that the set Y = {vgy1,vk42,...,0n—2}
consists of the out-neighbors of y and not z. Recall that there is at most one v; € X
such that the representations of v; and = with respect to B — {v;} are equal and at
most one v; € Y such that the representations of v; and y with respect to B — {v;}
are equal. This produces three possibilities to consider.

Subcase 2.2.1: For every v; € X and v; € Y, the representations of v; and y with
respect to B —{v;} are the same and the representations of v; and x with respect to
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B —{v;} are the same. Then every vertex in Y is adjacent to every vertex in X,
and every vertex in X is adjacent to every vertex in Y. This contradicts the fact
that D is an oriented graph as long as X and Y are both nonempty. However, if X
or Y is empty, then odz < 1 or ody < 1, respectively, which is a contradiction.

Subcase 2.2.2: There is exactly one v; € X for which the representations of v;
and x with respect to B — {v;} are equal and there is no v; € Y for which v; and y
have the same representations with respect to B — {v;}. (Note that this subcase is
symmetric to the case when there is exactly one v; € Y for which the representations
of v; and y with respect to B — {v,} are equal and for which there is no v; € X such
that v; and = have the same representations with respect to B — {v;}.) Now every
vertex in Y has the same out-neighbors as =, namely the vertices in the set X. So if
Y # (0, then every vertex in Y is adjacent to every vertex in X. Furthermore, every
vertex in X — {v;} has the same out-neighbors as y. So if |X| > 2, then there is at
least one vertex in X which is adjacent to every vertex in Y. But this produces a
contradiction since D is an oriented graph. Note that if Y = (), then y is adjacent to
at most one vertex, namely x, and this is a contradiction.

Assume now that |X| < 1 (so |Y| > 2). If | X| = 1, then v; = v; and since every
vertex in Y is adjacent to v;, the vertex v; is adjacent to no vertex except possibly
y. Hence, od v; < 1, which is a contradiction. If X = (), then x has no out-neighbors
except possibly for y, but this contradicts the assumption that the out-degree of x
is at least 2.

Subcase 2.2.3: There exists exactly one v; € X for which the representations of v;
and x with respect to B — {v;} are the same and ezactly one v; € Y for which the
representations of v; and y with respect to B — {v;} are the same. First, suppose
that | X| > 2 and |Y| > 2. Then there exists at least one vertex v € X for which
the representations of v and y with respect to B — {v} are the same. Therefore, v is
adjacent to every vertex in Y. Similarly, there is at least one vertex w € Y for which
the representations of w and x with respect to B — {w} are the same. Therefore, w
is adjacent to every vertex in X. However, since v € X and w € Y, it follows that
v is adjacent to w and w is adjacent to v. This contradicts the fact that D is an
oriented graph.

Next suppose that |X| = 1, that |Y] > 2, and that X = {v;}. Then the out-
neighbors of x are y and v;. Furthermore, v; is an out-neighbor of every vertex in
Y — {v;}. The only possible out-neighbors of v; are y and v;. However, if v; is
adjacent to v;, then x is adjacent to v;, which contradicts the fact that v; ¢ X.
Therefore, od v; < 1, contradicting the fact that every vertex in D has out-degree at
least 2. The case where |Y| =1 and | X| > 2 is similar. O
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The sharpness of the bound in Theorem 3.1 is not illustrated by the digraph Dy,
shown in Figure 8 since the outdegrees of most vertices of Dy, are 1. We can, however,
show that the upper bound in Theorem 3.2 is sharp. Let F} be an oriented graph
with vertex set

V(Fy) = {u1,ug,v1,v2, w1, W, ..., Wy}

and let E(F}) consist of (1) the arcs (u;,v;) for 1 < 4,5 < 2 and (2) the arcs (v;, w;)
and (wj, u;) for 1 <4 < 2and 1< j < k. The oriented graph Fy, is shown in Figure 9.
Then Fj, has order n = k + 4 and the property that odv > 2 for all v € V(F). We
claim that dim(Fy) =n — 3.

Figure 9. The oriented graph Fj with minimum outdegree 2

First we show that dim(F;) < n — 3. Let W = {uy,v1,we,ws,...,w;}, where
then |W| = n — 3. The distances d(uz,ws) = 2, d(ve,w2) = 1, and d(w1,ws) = 3
show that W is a resolving set for Fj and so dim(Fy) < n — 3. Next we show that
dim(Fy) > n — 3. Let W be a resolving set for Fj. Certainly at least £ — 1 of the
vertices wi, wa, . .., w; must belong to W since the distance from any two of these
vertices to every other vertex of Fj is the same. Moreover, at least one of u; and
ug must belong to W since the distance from u; and us every other vertex of Fy is
the same. For the same reason, at least one of v; and v must belong to W. Hence
dim(Fy) > n — 3 and so dim(Fy) =n — 3.

No additional restriction on the outdegrees of the vertices of an oriented graph
yields an improved bound, however. Let » > 2 be an integer. In the oriented graph
of Figure 8, replace w1, ug by the r vertices uy, us, . . ., u, and vy, vo by the r vertices
v1,V2,...,v, and add the appropriate arcs. The resulting oriented graph Hj has
odv > r for all v € V(Hy), but dim(Hy) =n — 3.
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