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Abstract. Let Ω be a bounded C∞ domain in �n . The paper deals with inequalities of
Hardy type related to the function spaces Bs

pq(Ω) and F s
pq(Ω).
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1. Introduction, notation, definitions

Let Ω be a bounded C∞ domain in �n and let

(1) d(x) = inf
y∈∂Ω

|x− y| where x ∈ Ω

be the distance to the boundary ∂Ω of Ω. Let s ∈ � and 1 < p < ∞. Then there is
a constant c > 0 with

(2)
∫
Ω
d(x)−sp |f(x)|p dx � c

∑
|α|�s

∫
Ω
|Dαf(x)|p dx

for all (complex-valued) f ∈ D(Ω) = C∞
0 (Ω). This is a very well known version of

Hardy’s inequality. Let

0 < s < 1, 1 < p <∞, s �= 1
p
.

Then there is a constant c > 0 with

(3)
∫
Ω
d−sp(x) |f(x)|p dx � c

∫
Ω×Ω

|f(x)− f(y)|p
|x− y|n+sp

dxdy + c
∫
Ω
|f(x)|p dx
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for all f ∈ D(Ω). This is the well known fractional counterpart of (2). If s = 1
p

then there is no c > 0 with (3) for all f ∈ D(Ω). Both assertions are covered by
[9], pp. 319–320. Of course, the righthand sides of (2) and (3) are the pth powers of
the norms in the Sobolev space Hs

p(Ω) and in the Besov space B
s
pp(Ω), respectively.

By some real and complex interpolation one can extend (2) and (3) to all Sobolev
spaces Hs

p(Ω) and all (special) Besov spaces B
s
pp(Ω) with

(4) 1 < p <∞, s > 0, s− 1
p
�∈ �0

(and f ∈ D(Ω)). If one asks for inequalities of type (2) or (3) with respect to the
spaces F s

pq(Ω) and B
s
pq(Ω), then (avoiding limiting cases) there is a natural restriction

of the parameters s, p, q given by

(5) 0 < p <∞, 0 < q <∞, s > σp = n
(1
p
− 1

)
+
.

As for F s
pq(Ω), we proved in [13] the corresponding Hardy inequalities. Inequalities

of this type in Bs
pq(Ω) with p > 1 and q � 1 have been discussed in [9], p. 319. It is

the aim of this paper to complement these results and to prove a theorem which has

a rather final character (with the exception of the limiting cases).
We assume that the reader is familiar with the basic notation of the spaces Bs

pq(�
n )

and F s
pq(�

n ) on �n . We refer to [8, 10, 11]. We only mention thatHs
p(�

n ) = F s
p,2(�

n )

are the (fractional) Hardy-Sobolev spaces. Recall that Ω is a bounded C∞ domain
in �n . Then Bs

pq(Ω) and F
s
pq(Ω) have the usual meaning: the restriction of B

s
pq(�

n )

and F s
pq(�

n ) to Ω, respectively. Let
◦
Bs

pq(Ω) and
◦
F s

pq(Ω) be the completion of D(Ω)

in Bs
pq(Ω) and F

s
pq(Ω), respectively. Finally, let

(6) B̃s
pq(Ω) = {f ∈ Bs

pq(�
n ) : supp f ⊂ Ω}

with the quasinorm

(7) ‖f ∣∣B̃s
pq(Ω)‖ = ‖f ∣∣Bs

pq(�
n )‖.

Similarly, F̃ s
pq(Ω) is defined. We may assume from the very beginning that p, q, s are

restricted by (5). Then without any ambiguity, one may consider B̃s
pq(Ω) and F̃

s
pq(Ω)

either as subspaces of S′(�n ) or of D′(Ω). We refer to [13] for a discussion of the
matter.
If

(8) 0 < p <∞, 0 < q <∞, s > σp, and s− 1
p
�∈ �0 ,
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then

(9) F̃ s
pq(Ω) =

◦
F s

pq(Ω) and B̃s
pq(Ω) =

◦
Bs

pq(Ω).

The first assertion coincides with [13], Theorem 2.4.2. As for the B-spaces with

1 < p < ∞, 1 � q < ∞ we refer to [9], Theorem 4.3.2/1, pp. 317–318. However, the
extension of the technique used there to all p, q, s with (8) is covered by the F -case

and the real interpolation formula (27) below. (First one proves this assertion for
n = 1, then one can reduce the case n > 1 to the onedimensional case by using [10],

Theorem 2.5.13, p. 115). Hence we take (8), (9) for granted. An extension of (9) to
values s− 1

p ∈ �0 is not possible in general. We refer to [9], p. 319, formula (10), for

the B-case (restricted to 1 < p < ∞, 1 < q < ∞) and to [13], 2.4.4, formula (2.74),
for the F -case (restricted to 1 < p < ∞, 0 < q < ∞). We will not need (8), (9) in
the sequel, but it illustrates the well known exceptional role of the parameters s, p
with s− 1

p ∈ �0 in inequalities of Hardy type.

Finally, let

(10) Ωt = {x ∈ Ω: d(x) < t} where t > 0.

2. Results and comments

2.1. Theorem. Let p, q, s be given by (5).
(i) There is a constant c > 0 such that

(11)
∫
Ω
d−sp(x)|f(x)|p dx � c‖f ∣∣F̃ s

pq(Ω)‖p

for all f ∈ F̃ s
pq(Ω).

(ii) There is a constant c > 0 such that

(12)
∫ ∞

0
t−sq

(∫
Ωt

|f(x)|p dx
) q

p dt
t

� c‖f ∣∣B̃s
pq(Ω)‖q

for all f ∈ B̃s
pq(Ω).

2.2. ������. Part (i) coincides essentially with [13], Proposition 2.2.5. Part

(ii), restricted to 1 < p < ∞, 1 � q � ∞, may be found in [9], p. 319. In other
words, compared with what is known, the theorem extends (12) to the full scale

of parameters given by (5). Maybe one can do this by following the rather tricky
arguments in [13] now armed with the characterization of all the spaces Bs

pq(�
n ) by

differences as in [10], Theorem 2.5.12, p. 110. However, our intention is different. We
prove part (ii) for all parameters admitted by real interpolation of part (i).
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2.3. ����	�
 �����. If p = q then (12) coincides with

(13)
∫
Ω
d−sp(x) |f(x)|p dx � c‖f ∣∣B̃s

pp(Ω)‖p

for all f ∈ B̃s
pp(Ω). Recall that H

s
p = F s

p,2 are the Hardy-Sobolev spaces. If p, q, s

are given by (8), then we have (9) and, hence, there is a number c > 0 such that

(14)
∫
Ω
d−sp(x) |f(x)|p dx � c‖f ∣∣Hs

p(Ω)‖p

and

(15)
∫
Ω
d−sp(x) |f(x)|p dx � c‖f ∣∣Bs

pp(Ω)‖p

for all f ∈ D(Ω). This generalizes (2) and (3).

2.4. �
����	���
 �����. It is well known in the theory of function spaces

that the spaces Bs
pq, and F

s
pq , with

(16) 0 < p <∞, 0 < q <∞, s > σp, s− 1
p
∈ �0 ,

play a special role. Restricted to 1 � p � ∞, 1 � q � ∞ in case of the B-spaces and
to Hs

p = F
s
p,2 with 1 < p <∞ we refer to [5, 6, 9] and, more recently, [7]. In [13] we

treated F -spaces with (16). Also the boundary behaviour of functions belonging to
the Bs

pq-spaces or F
s
pq-spaces with (16) is somewhat delicate. Final assertions may

be found in [8], p. 83, due to J. Franke, [4]; see also [13]. We mention only a rather
special case which will be useful later on. Let I = (0, 1) be the unit interval. Then,

for 1 < p <∞,

(17)
◦
B
1
p
pp(I) = B

1
p
pp(I) and

◦
H

1
p
p (I) = H

1
p
p (I),

whereas B̃
1
p
pp(I) does not coincide with B

1
p
pp(I) and H̃

1
p
p (I) does not coincide with

H
1
p
p (I). One may ask for substitutes of (14), (15) in these exceptional cases. Let

Ap(I) be either B
1
p
pp(I) or H

1
p
p (I), and let A1p(I) be either B

1+ 1p
pp (I) or H

1+ 1p
p (I). Let

log be taken with respect to base 2.

2.5. Proposition. Let 1 < p <∞ and 0 < δ < 1
4 .

(i) If � > 1, then there is a constant c > 0 such that

(18)
∫ δ

0

|f(x)|p
x|log x|p log�|log x| dx � c‖f ∣∣Ap(I)‖p
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and

(19)
∫ δ

0

|f(x)|p
xp+1|log x|p log� | log x| dx � c‖f ∣∣A1p(I)‖p

for all f ∈ D(I).
(ii) Let � < 0. There exists a function

(20) f0 ∈
◦
B
1
p
pp(I) ∩

◦
H

1
p
p (I)

such that the lefthand side of (18) (with f0 in place of f) is infinite (divergent
integral) and there exists a function

(21) f1 ∈
◦
B
1+ 1p
pp (I) ∩

◦
H
1+ 1p
p (I)

such that the lefthand side of (19) (with f1 in place of f) is infinite (divergent
integral).

2.6. ������. There is a gap between the sufficient condition � > 1 in (i) and
the necessary condition � � 0 in (ii). Otherwise x|log x|p and x1+p|log x|p is the
appropriate replacement of dsp(x) in (14), (15) in the exceptional cases s = 1

p and
s = 1 + 1p , respectively.

2.7. �������. Both (11) and (12) are sharp in the following sense. If

(22) 0 < p <∞, 0 < q <∞, s > n

(
1

min(p, q)
− 1

)
+

then

(23) ‖f ∣∣F̃ s
pq(Ω)‖p ∼ ‖f ∣∣F s

pq(Ω)‖p +
∫
Ω
d−sp(x) |f(x)|p dx

(equivalent quasinorms), [13], Theorem 2.2.8. If

(24) 1 < p <∞, 1 � q <∞, s > 0,

then

(25) ‖f ∣∣B̃s
pq(Ω)‖q ∼ ‖f ∣∣Bs

pq(Ω)‖q +
∫ ∞

0
t−sq

(∫
Ωt

|f(x)|p dx
) q

p dt
t
,

(equivalent quasinorms), [9], p. 319. There is hardly any doubt that (25) holds for

all p, q, s with (5).
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3. Proofs

3.1. ����� �� ������� 2.1. As said above, part (i) is covered by [13],

Proposition 2.2.5. We use this assertion to prove part (ii). Let 0 < θ < 1 and

(26) 0 < p <∞, 0 < q <∞, s1 > s0 > σp, s = (1− θ)s0 + θs1.

Then we have by real interpolation

(27)
(
F̃ s0

pp (Ω), F̃
s1
pp (Ω)

)
θ,q
= B̃s

pq(Ω).

Without ∼ this is a well known interpolation formula, [10], 2.4.2, p. 64. Recall
F s

pp = Bs
pp. Then (27), restricted to 1 < p < ∞, 1 � q � ∞, is covered by [9],

Theorem 4.3.2/2, p. 318. Using the techniques developed in [10], one can extend the

proof in [9] from 1 < p <∞, 1 � q � ∞ to 0 < p <∞, 0 < q <∞. In particular, we
have (27) with (26). Let 0 < p < ∞ and let Lp(Ω, d−s) be the quasi-Banach space,

quasinormed by

(28)
(∫
Ω
|f(x)|p d−sp(x) dx

) 1
p

.

Let p, q, s1, s0, s be given by (26). Then

(29)
(
Lp(Ω, d−s0 ), Lp(Ω, d−s1 )

)
θ,q

is a quasi-Banach space with the quasinorm

(30)

[∫ ∞

0
λθ q

p

(∫
d(x)�λ

1
(s0−s1)p

|f(x)|p d−s0p(x) dx

) q
p dλ
λ

] 1
q

.

We refer to [1], p. 127. With t = λ
1

(s0−s1)p the quasinorm (30) is equivalent to

(31)

[∫ ∞

0
t−θ(s1−s0)q

(∫
d(x)�t

|f(x)|p d−s0p(x) dx

) q
p dt
t

] 1
q

.

Using the (apparently crude) estimate

(32) t−s0p

∫
Ωt

|f(x)|p dx �
∫
Ωt

|f(x)|p d−s0p(x) dx

it follows that (31) can be estimated from below by

(33)

[∫ ∞

0
t−sq

(∫
Ωt

|f(x)|p dx
) q

p dt
t

] 1
q

.

This observation together with (11), (27) and (29), (30), and the interpolation prop-
erty prove (12). �
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3.2. ������. As noted above, the estimate (32) seems to be rather crude. But

this is not the case in the above context. If one discretizes (31) via t = 2−j , say,
with j ∈ �0 , some calculations prove that (33) is even an equivalent quasinorm in
the space in (29). By (25) this is not a surprise.

3.3. ����� �� ������	�	�� 2.5.

���� �� We prove (18). Let 1 < p < q < ∞. Based on [12] we proved in [3],
p. 90,

(34)

(∫ 1

0
|f(x)|q dx

) 1
q

� c q(1−
1
p ) ‖f ∣∣Ap(I)‖,

where c > 0 is independent of q and, of course, of f ∈ Ap(I) (but may depend on p).
We may assume δ = 2−J with J ∈ � large. Then

(35)

∫ δ

0

|f(x)|p
x|log x|p log� | log x| dx

� c1

∞∑
j=J

2jj−p(log j)−�
∫ 2−j

2−j−1
|f(x)|p dx

� c2

∞∑
j=J

2jj−p(log j)−�
(∫ 2−j

2−j−1
|f(x)|j dx

) p
j

2−j(1− p
j )

� c3

∞∑
j=J

j−p(log j)−�j(1−
1
p )p‖f ∣∣Ap(I)‖p.

(18) follows from (35) and � > 1.
���� �� We prove (19). By [2] we have for some c > 0,

(36) |f(x)| � c |x| |log x|1− 1
p ‖f ∣∣A1p(I)‖ for all f ∈ D(I).

Inserting this estimate in the lefthand side of (19) and using again � > 1 we arrive

at (19).
���� �� We prove part (ii). Let σp = 1 − � > 1. By [12] or [3], 2.7.1, p. 82,

and (17) we may choose for f0 in (20) the function

(37) f0(x) = |log x|1− 1
p log−σ|log x|ψ(x), 0 < x < δ,

where ψ(x) is a C∞ function with support in (−δ, δ) and ψ(0) = 1. As for f1 in (21)
we may choose

(38) f1(x) = ψ(x)
∫ x

0
f0(y) dy � cx | log x|1− 1

p log−σ|log x|ψ(x),
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0 < x < δ, again with σp = 1 − � > 1. Here c > 0 is a suitable constant. As for

the last estimate we refer to [2]. Otherwise, f1 ∈ A1p(I) is clear in both versions of
A1p(I). Finally, the boundary value f1(0) = 0 is sufficient for (21). This is covered
by [4] or [8], p. 83. �
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