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1. INTRODUCTION

The aim of our paper is to give some conditions for existence of Kneser solutions

of the differential equation

(L) L(y) =0,
where
L) = Loy + Y Pelt) Ly + Polt) f(0),
k=1
LOy t) = y(t)a

(Eay(®)) = pa() 28,

(Li—1y(t)) for k=2.3,...,n—1,
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n is an arbitrary positive integer, n > 2, Pi(t), k = 0,1,....n — 1, p;(t), i =
1,2,...,n—1 are real-valued continuous functions on the interval I, = [a, 00), —00 <
a < oo; f(t) is a real-valued function continuous on E; = (—o0, 00).

If n = 1, then L(y) = Liy + Po(t)f(y) = v + Po(t)f(y), Po(t) and f(t) are
real-valued continuous functions on I, and on FE1, respectively.

It is assumed throughout that
(A) Pp(t) <0,pi(t) >0forallt € I,, k=0,1,...,n—1,i=1,2...,n—1; £(0) # 0,

f(t) = 0 for all t € Ey; Py(t) is not identically zero in any subinterval of I; n
is an arbitrary positive integer, n > 2. If n = 1, then Py(¢t) < 0 and f(t) > 0
for all t € I, and FE1, respectively.

The problems of existence of monotone or Kneser solutions for third order ordinary
differential equations with quasi-derivatives were studied in several papers ([5], [7],
[8], [10]). The equation (L), where p;(t) = 1, i = 1,2,3 (n = 4) was studied, for
example, in ([6], [9], [12]). Equations of the fourth order with quasi-derivatives were
also studied, for instance, in ([1], [3], [13]).

Existence of monotone solutions for n-th order equations with quasi-derivatives
was studied in [4].

In our paper, Theorem 1 and Theorem 2 give sufficient conditions for existence of a
Kneser solution of (L) on [a, o0) for n an even number or for an odd one, respectively.

Now we explain the concept of a Kneser solution, and other useful ones:

Definition 1. A nontrivial solution y(¢) of a differential equation of the n-th
order is called a Kneser solution on I, = [a,c0) iff (y(t) > 0, (—1)*Ly(t) = 0) or
(y(t) <0, (=1)*Lyy(t) <0) forallt € I, k=1,2,...,n— L.

Definition 2. Let J be an arbitrary type of an interval with endpoints t1, ts,
where —oo < t1 < ty < 00. The interval J is called the maximum interval of existence
of u: J — EJ', where u(t) is a solution of the differential system v’ = F (¢, u) iff u(t)
can be continued neither to the right nor to the left of J.

Definition 3. Let ¢ = U(t,y) be a scalar differential equation. Then yq(t) is
called the maximum solution of the Cauchy problem

(*) y' =U(t,y), y(to) = vo

iff yo(t) is a solution of (x) on the maximum interval of existence and if y(t) is
another solution of (x), then y(t) < yo(¢) for all ¢ belonging to the common interval
of existence of y(t) and yo(t).

We give some preliminary results.
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Lemma 1. Let A(t,s) be a nonpositive and continuous function for a < t <
s < tg. If g(t), ¥(t) are continuous functions in the interval [a, tg] and

t

W) > g(t) + / A(t, s)b(s)ds  for t € [a, to],

to

then every solution y(t) of the integral equation

v =90+ [ A s)uls)as

to
satisfies the inequality y(t) < ¥(t) in [a, to].

Proof. See [6], page 331. O

Lemma 2. (Wintner) Let U(t,u) be a continuous function on a domain ty <
t<tg+a, a>0,u>0,let u(t) be a maximum solution of the Cauchy problem
u =Ul(t,u), u(ty) =up = 0 (v = U(t,u) is a scalar differential equation) existing on
[to, to + «; for example, let U(t,u) = ¢ (u), where 1(u) is a continuous and positive
function for u > 0 such that

> du

¥(u)
Let us assume f(t,y) to be continuous on ty < t < to + «, y € E}, y arbitrary, and
to satisfy the condition

[F(& )l < U lyl)-

Then the maximum interval of existence of a solution of the Cauchy problem

y/ = f(tu y)7 y(to) = Yo,

where |yo| < uo, is [to, to + .

Proof. See [2], Theorem IIL.5.1. O

Lemma 3. Let (A) hold, and let there exist real nonnegative constants ai, as
such that f(t) < a1|t| + aq for all t € Ey. Let initial values Lyy(a) = by be given for
k =0,1,...,n — 1. Then there exists a solution y(t) of (L) on [a,0), which fulfils
these initial conditions.

Proof. See [4], Lemma 3. O
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2. RESULTS

Lemma 4. Let us assume ¢(t, z) to be continuous on ty—« < t < tg, @ a positive
constant, z € ET, z is arbitrary and satisfies a condition

lg(t, 2)| < (=),
where 1)(t) is a continuous and positive function for t > 0 such that

o dt

¥(t)

Then the maximum interval of existence of a solution of the Cauchy problem
2 = g(ta Z)a Z(tﬂ) = 20,

is [to — Q, t(]}.

Proof. Let us consider the Cauchy problem
(u) u' = p(u), u(—tg) = up = |20|.

According to the assumptions, the problem (u) admits a single solution wug(t) on
[0, 00), where
’U.O(t) = R_l(t + to)

and R: [ug,0) — [0,00), R(u) = fQZ] %dt, R_1(R(u)) = u, u € [ug,0). Let us

consider the Cauchy problems

(U) o' =U(t,u) =9(u), u(—to) =uo = |20l (t,u) € [~to, —to +af x [0,00),
I(t) = g(—t’ 7y)7 y(ftO) = —Z0, (tay) € [7t07 7t0 + a] X E??
! g(t, 2), z(tg) = z0, (t,2) € [to — a, tg] x ET.

Then ug(t) = R_1(t + tp) is the maximum solution of (U) on the maximum interval
of existence [—tg, —to + @]. According to Lemma 2 there exists a solution yo(t) of (y)
on [—tg, —to+ ]. Then the Cauchy problem (z) admits the solution z(t) = —yo(—t)
on [ty — a, tg] because of

20(t) = yo(=t) = g(t, —yo(—1)) = g(t, z0(t))
on [tg — a, tg]. So the maximum interval of existence of (z) is [to — v, to]- O
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Lemma 5. Let (A) hold, and let there exist nonnegative real constants aj, as
such that f(t) < a1|t| + as for all t € E;. Let initial values Ly(to) = by be given for
k=0,1,...,n—1, tg > a. Then there exists a solution y(t) of (L) on [a, c0), which
fulfils these initial conditions.

Proof. According to Lemma 3 there exists a solution of (L) on [tg, o0) such
that the initial conditions hold. To prove our lemma we need to prove existence of
a solution y(t) of (L) on [a, ty] satisfying the given initial conditions. Consider now
the following system (S), which corresponds to the equation (L):

_ Ukt (t)
pr(t)

(1) = — 3 Pultuen () — Polt)f(wa (1),
k=1

(1)

k=1,2,...,n—1,
(S)

where ui(t) = Lp—1y(t), k = 1,2,...,n, fr = ups1/pk, k = 1,...,n =1, f, =
*Zpkulﬂ»l *Pﬂf(ul); F = (flaf2:"'afn)a u = (ulaUQa"'aun)a u' = (ullauIQw"a
up), |ul = 32 Jukl, [F| = 32 [fel, (t,u) € [a, to] x EY. Then

k=1 k=1

n—1 n—1
u
\F(t,u)| = Z’ Bl ‘ N ’_}:pkukﬂ — Pyf(us)
k=1 k=1

Pk
n—1
1
< Pt | = Polarfur] +a2) < Kalul + K = w(jul),
k=1

where K7, K5 are appropriate positive real constants. It is obvious that

> ds

¥(s)

for s € Eq, s > 0. Lemma 4 yields existence of a solution of (S) on [a, tp]. This fact
implies existence of a solution y(t) of the equation (L) on [a, o] which satisfies the
given initial conditions. The lemma is proved. O

Lemma 6. Let (A) hold, and let y(t) be a solution of (L) on [t1,00), where
t1 > a. Let (B) hold, where (sg = s)

n—1
(B) S (DMt s) 0, Nu(t) <0, n>2
k=1
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and

S 81 Sk—2

My (t,s) = / dss / LN / Poonloio) g,
/ pn72(51) / pn73(52) / pnfl(s)
Mi(ts) = — Pacs(s), /Z Pui(5)Gi(s)) ds
ta
1 d81 2
Gr(s) = Lp—ky(t2) + (—1) Lp—g41y(t2) | —————— + (—1)" Lp—r12y(t2)
Pn—k+1(51)
t2 d to d
51 52 k—2
X +...4+ (-1 L, sy(t
/pn—k+1(51) /pn—k+2(82) ( ) Qy( 2)
s S1
to to ta
X/ d81 / d82 / dsk,g
pn—k+1(51) pn—k+2(82) o pn—2(8k—2)
s S1 Sk—3

fork=2/3,....,.n—1,G1(s) =0
a) Let n be an even number and ty € (t;,00) such that (—1)*Lyy(tz) > 0 for
k=0,1,...,n—1. Then (—1)*Lyy(t) > 0 for t € [t1,ts], k=0,1,...,n— 1.
b) Let n be an odd number and ty € (t;,00) such that (—1)¥Lyy(ts) < 0 for
k=0,1,...,n— 1. Then (—1)*Lyy(t) <0 for t € [t1,t5], k=0,1,...,n — 1.

Proof. Letn > 2. Integration of the identity L,y = (L,_1y)’ over [t2,t], where
t1 <t <tz (n can be an even number as well as an odd one) yields

Ln71y<t)
—Ln 1 tz P L dS* PO( )f( (8))(18
= Lo_ay(t2) + | (~Po(s)f(y(s))) ds + £(5)La—xy(s)) ds.
1Y(t2 /t2 /2k ‘ kY

t
Let us denote the expression L, 1y(t2) + [(—Po(s)f(y(s)))ds by K,(t). It is

to
obvious that K, (t) <0 for all ¢ € [t1,t3]. We have

tn 1
L, 1yt / (8)Lp—ry(s))ds.
t2 k=1
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It can be proved that

Ln—ky(s)

s d51
= Lyp_ry(ta) + Ly— t / _
n ky( 2) n k+1y( 2) ., pnfk+1(51)

® ds1 5 dss
+ Ly—ky2y(ta / / +
wbr2y(ta) ty Pn—kt+1(51) Jy, Pn-ki2(52)

5 dSl 51 d52 Sk—3 dSk,Q
+Ln,2yt2/ / / _dska
(t2) ts Pn—k+1(51) Ji, Pn—kt2(52) ts Pn—2(Sk—2)

n /s ds; /81 dsy /52 dss /Sk*2 Ly 1y(sg—1)dsk_1
to pnfk:+1(51) to pn7k+2(52) to pn7k+3(53) to pnf1(8k71)

for k = 2,3,...,n — 1. By interchanging the upper and the lower bounds in the

previous integrals, we have

Lnfky(s)

1 b2 d81
= L,_,y(t2) + (=1) Lp—r+1y(t2)
S

pn—k+1(81)
t2 d81 b2 dSQ

+ (=1)%L,, & t / / +...

( ) Iv+2y( 2) s pnfk+l(51) s1 pnkar?(SQ)

t2 ds t2 ds b2 dsp_

+(—1)k*2Ln,2y(t2)/ ! / 2 / k2
s pn*kJrl(Sl) s1 pn—k+2(52) Sk—3 pn*Q(Sk*Q)

s DPn—kt+1(51) Js, Pn—kt2(s2) se_s  Pn-1(Sk-1)

Denoting the last (k — 1)-dimensional integral by Ij(s), the previous sum by Gp(s),
Ii(s) = Lp_1y(s), Gi(s) =0 for k =1,2,...,n—1 (so = s) we obtain

Ly 1y(s) = Gr(s) + (=1)* I (s).

Hence
Ln—ly(t)
tn—1
= Kn(t) +/ (—Pak(8)[Gr(s) + (—=1)* " Li(s)]) ds
2 =1
= K, (t) +/ (P ()G (s)) ds + i(—Pn,k(s)(—mk*lzk(s)) ds
t2 g=1 t2 =1
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(=1)k=11.(s)) ds by (=1) =1 J,(t) we have

n—1
Denoting K, (¢) + fttz > (—Pu—k(s)Gr(s))ds by gn(t) and denoting fttz (—Pp_k(s) x
k=1

n—1

Lu-1y(t) = ga(t) + Y (=1)* 1k (2),

k=1

where Ji(t) is the k-dimensional integral

t2 b2 d81 b2 dSQ
J t:f/ —P, k(s ds/ /
k( ) t ( k( )) s pn7k+1(51) s1 pn7k+2(52)

/t2 Lp—1y(sg—1) dsk—1
a Sk_2 pnfl(skfl)

ta

for k=2,3,...,n—1and Ji(t) = — [,"(—Pn-1(5)Ln_1y(s)) ds.
By changing the notation of the variables we have

ta

b2 dsk_2 t2 dsg_3
Jtz—/ —P,_r(sk_ ds,/ /
k( ) t ( k( g 1)) et Sk—1 pn—k+1(5k—2) Sk—_2 pn7k+2(3k73)
/t2 L,_1y(s)ds
a S1 pnfl(S) '

Ji(t) is a k-dimensional integral on a k-dimensional domain. This domain can be
described as an elementary domain in the following way:

t<sp—1 <t
Sk—1 < Sg—2 < t2
Sk—2 < Sg—3 < t2
S2 < 81 K 12
81 < 8 < ta,
as well as like
t<s< o
t<s;<s
t <82 <81
t < Sg—2 < Sk-3
t < 8g-1 < Sk2
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for k=2,3,...,n— 1. Hence

Ji(t)
to s s1 Sk—2 _p _
= —/ L, _1y(s) ds/ dss / dss . / G/ dsg_1.
t t pn72(31) t pn73(32) t pnfl(s)

The last integral can be rewritten into the form

to t
—/ My (t,s)Lp—1y(s)ds = / My (t,s)Ly—1y(s) ds,
t t2

where

S S1 Sk—2 _P _ o
My(t,s) = / dss / ds2 / Puor(sk1) g
t pn72(51) t pn73(52) t pnfl(s)

for k=2,3,...,n—1, My(t,s) = —P,_1(s). Hence

Ln 12/(75)

n—1

= gnl(t +Z DR (8) = gn(t) + > (-1 kl/Mkts)Ln 1y(s)ds

k=1

(1)k1jbfk(t,s)}Ln 1y(s) / An(t, 8)Ly—1y(s) ds,

1

—gn(t)+/t:EZ

=1

where A, (t,s) = Y (=1)*"1M(t,s). We note that s < ta, s; < ta, t < s,
k=1
t<s;fori=1,2,...,n— 3. According to the assumptions of the lemma, we have

gn(t) = Kn(t) + Np(t) and g,(t) < 0, An(t,s) < 0. According to Lemma 1 we have
L, _1y(t) <0 for all t € [t1,t3]. By virtue of

Ln—2y(t) :Ln_gy(tQH/%

to

dS 2 Ln—Qy(t2) 2 07

we have L, _2y(t) > 0 on [t1,t2]. By using of a similar procedure (n can be an even
number or an odd one), we get for n > 2:

a) (—1)*Lyy(t) = 0 on [ty,tz] for k =0,1,...,n — 1, for n an even number,
b) (—=1)*Ly(t) < 0 on [t1,ts] for k =0,1,...,n — 1, for n an odd number.
If n = 1, then the assertion of the lemma is obvious. O
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Lemma 7. Consider a solution y(t) of (L) on [t1,00), t1 > a such that (A)
holds, let n be an even number and ty € (t1,00) such that (—1)¥Lyy(t) > 0 for
k=0,1,...,n—1. Let Py(t) =0 on [t1,t3] for all odd integers k € [1,n]. Then (B)
holds.

Proof. Wehave Gj(s) > 0 for all even numbers k € [1,n], and G(s) < 0 for all
odd ones. If k is an odd number then n — k is an odd number too, and P,,_(t) =0

on [t1,t2]. Therefore N, ( f Z _1(8)Gk(s))ds < 0. Similarly, My(¢,s) =0

nfl

for all odd k < n. So A,(t,s) = > (—=1)*"1M,(t,s) < 0 because My(t,s) > 0 for
k=1

alk=1,2,...,n— 1. O

Lemma 8. Consider a solution y(t) of (L) on [t1,00), t1 > a such that (A)
holds, let n > 1 be an odd number and t» € (t1,00) such that (—1)*Liy(t2) < 0 for
k=0,1,...,n—1. Let P(t) = 0 on [t1, 2] for all even integers k € [1,n]. Then (B)
holds.

Proof. The proof is similar to the proof of the previous lemma, so it is omitted.
|

Lemma 9. Let {ym(t)}2

_n, be a sequence of solutions of (L) on [tg, c0), where

a < ty < ng, n is an even number, and Lyy,,(m) = (=1)F for all m > ng, k =
0,1,...,n—1. Let (A ) hold, and let Py (t) = O on [a o0) for all odd integer numbers

k € [1,n]. Let 00<ng Jds =P <0, ka >—1fork=12...,n—1,

let P, be nondecreasing functions for k = 0,1,...,n — 1, f 1/pr(s)ds < % for

r=1,2,...,n—1, and let K be a real positive constant such that 0< f(t) < K for
t € (—o0, oo). Then there exists a subsequence of {y,,(t)}55_,,, which converges to

@o(t). This function yo(t) is a solution of (L) on [tg,00), and (—1)*Lipo(t) = 0 on
[to,0) for k =0,1,...,n—1.

Proof. Because L,ym(t) > 0 on [tg,m] for m = ng,no + 1,... (this follows
from Lemma 7 and Lemma 6, part a)), we have that L, _1y,,(t) is nondecreasing
and negative on [tg, ng] for m > ng. If we prove that L,_1ym(to) is bounded from
below, it means L, _1y;,(t) is uniformly bounded on [tg,ng]. Using the expression
(C) several times, where

(C)  Liym(s) = Liym(m) + /S (Lk+1p2::1(2)

)dsfork:O,l,...,n—Z,
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we obtain forn > 3,2 < k<n—1 (sg = 9):

Liym(s) = Lgym(m) + Ligt1ym(m) / dis(l)

Pr+1(51
S d S1 d
S1 S92
+ L m / /
k+2ym( ) pk+1(31) pk+2(82)
(D) s S1 Sn—k—3
dSl d82 dSn,k,Q
Al . B
n=2y ( ) Pk+1(81) pk+2(82) pn72(8n7k72)
S d S1 d 5n7k72L
+/ S1 / 52 / nflym(snfkfl) dSn,kfl.
pk+1(81) pk+2(82) pnfl(snfkfl)
m m m

Integration of (L) over [tg, m] yields

Lnflym(tO)

= L)+ [ B0 m () ds+ Y [ P L (s)
t k=1 "o

0

= Lucsmlm) + [ P m (o) s+ 3 [ Por(s)[Bai(s) + Con(s)) s,
k=1 “*o

to

where Cj(s) is the last integral in (D) and Bi(s) is the rest of the right-hand side of
m

(D). Let us denote the expression Ly, _1ym(m) + [ Po(s)f(ym(s)) ds by Fp,. Then
to

Ln—lym (tO)

-1 m
—Fat Y / Poi(s) Bo(s) ds +
k=1 v1o

31 m
z Fn + Z / Po(s)Bak(s) ds + Ln—1ym/(to)
k=1 "t0

31 m s s Sp_2k—
d 1 d n—2k—2 d o
X E / P2]c(8) {/ 51 / 52 / %} ds
1 “to m P2k+1(51) S P2r+2(s2) m Pn-1(Sn—2k-1)

|3

22_:1 /tom Psy;(8)Cax(s)ds

k=

1

>Fpn+ Y [ Par(s)Ba(s)ds + Ly_1ym(to)
k=1 "o
=1 oo oo oo
d d dsy,—ak—
Dl R O B e e i B I
1 7to to P2k+1(51) to Pak+2(52) to Pn-1(Sn—2k-1)
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(We have used the fact that the last integral has the dimension n — 2k, which is an
even number, and tp < s; <m <oofori=1,2,...,n—2k—2,t) < s < m < o).

An easy arrangement yields

21
: & & d81 & d82
Ly 1ym(to) |1+ / Pasds/ /
Y (0)[ ; to 24 (%) to P2k+1(81) to P2k+2(52)

oo dg %_1 "
/ Sl 15 p Z/ Par(s)Bax(s) ds.
0 ) k=1 "to

pn71(5n72k71

According to the assumptions, the expression in the parentheses above is a positive

21 00 21
number because of Y [[—=Pax(s)]ds... [ % < X (3)" % < 1. There-
k=1 tg io Pn—1(Sn—2k—1 =1

fore
271 m
Foo+ > [ Pa(s)Bak(s)ds
k=1k
Ly 1ym(to) > ra—— o: = .
dsy dsy,_ok_1
1+ kzl tf Py (s) dstf o) tf P Cop—
- 0 0 0
We have
Fo = Lcagm(m) + [ o) f(om(s)) ds > ~1+ [ Rulo)f () ds
to tO
>-1+K /Po(s) ds=—-14+KP,
to
/ d81 / d81
Boy.(8) = Logym(m) + Lopr1ym(m /7+...+Ln, m(m /7
%( ) 2y ( ) 2kl ( ) p2k+1(81) 2 ( ) p2k+1(81)
Sn—2k—3 d m d m d
pn—Q(Sn—Qk—Z) p2k+1(81) p2k+1(81)
m S S
i s, an. 1
/ S22 14 (n-2k—2)=<n
Pn—2k—2(Sn—2k—2) 2
Sn—2k—3
because of s <m, s; <mfori=1,2,...,n— 2k — 3. So we have
%_1 m %_1 m
Pyi(8)Bak(s)ds = n Z Py (s)ds
k=1 Yto k=1 "to

-1 1

n
>n Por(s)ds > —n(Z — 1)=.
nki1 /to vi(s) ds n(2 )2
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Hence

S+ KP-2(2—1)

Lnflym(to) 2 %71 ~ o 2 o
ds dsp—op—1
1+ kz: f ng(s) ds f p2k+11(51) T f Pr—1(Sn—286-1)
=1 to to to

for n > 3. If n =2, then L, _1ym(to) = Frn 2 —1+ KP € (—00,0). It implies that
{Ln—1ym(to) 55—, is bounded from below for any fixed even number n > 2. So we

have
L Z1Ym(s) /OO ds
0< Ly—2Ym(to) = Lpn—2ym(m +/n7ds<1—Ln, m (T
2Y (0) 2y ( ) pn—l(s) 1Y (0) pn_1(8)
to to
T od
S
gl*snf/ = On-2 € 0,00,
L (e~ Sz €00
to
L (s) T od
—Lin—2Ym(Ss S
0> Lp_s3ym(to) = Ln_ mm+/;ds>flf[/n, o (t /
3Y (0) 3Y ( ) pnfz(s) 2Y (0) pn,g(s)
to to
7 od
S
> 18, /725,1, € (—o0,0).
2 | o)~ S €00

to

Similarly, it can be proved that {Lxym(to)}ss—,, is bounded for £ =0,1,...,n — 1.
However,

0 < Lpym(t) = = ) Pog(t) Laym(t) — Po(t) f(ym(t))

=1

©l3

x>

21

> Poilto)Larym(to) — Polto) K

k=1

n_q

< - Z Py (to)Sar — Po(to) K = Sy € (0,00),
k=1

N
|

and this implies that {L,ym(t)}n=p, is uniformly bounded on [ty, ng] for m > ng
and so L,,_1Ym(t) are uniformly equicontinuous on [tg, ng] for m > ng. According to
Arzela-Ascoli theorem, there exists a subsequence { L, 1k, } oo OF { Ln—1Ym foa—no

such that { L, 1Y, }yv=n, converges uniformly on [tg, no] to, for example, a function
Pn—1(t).
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To ensure uniform convergence of {L, 2yk,, }oe—y, o0 [to,n0] to, for instance, a
function ¢, 2(t), it suffices to show convergence of { L,, 2yr,, }1—pn, at an inner point
of [to,ng]. This follows from the fact that L,_oyk,, (to + &) < Lp—2Yk,, (to) < Sn—2
for ¢ > 0, e <mng —to. Then there exists a convergent subsequence { L, 2y, (to +
€)toeno Of {Ln—2yk,, (to + €)}o_,, and therefore {L, oyk, }ni_,, converges uni-
formly to ¢n_2(t) on [to,no]. It is obvious that L,_1yr, = @n—1 on [to, no], too.
In a similar way we can prove uniform convergence of a subsequence {y;,, }nv—n, of
{Ym}m=n, such that Ly, (t) = @k (t) on [te, ng] for k=0, 1,...,n. Due to the fact
that uniform convergence makes changing of the order of limit processes possible

(a quasi-derivative is a certain kind of limit), we have

0= lim Ly, (1)
2

= lim Ly, (1) + Y Pa(t) im Logyr, (t) + Po(6)f( lim y,,, (1))
m—o0o =1 m—00 m—oQ

21

= on(t) + Y Par(t)par(t) + Po(t)f(o(t))

k=1

for all ¢ € [tg, nol.

But ¢i(t) = lim Lyyy, (t) = Li( lim yr, () = Li( im_ Loy, (t)) = Leo(t),
50 q(t) fulfils (L) on [tg, ng]. It is important that we are able to continue (t) on
[to, no+1] in such a way that ¢o(t) be a solution of (L) on [tg, no+1]. Indeed, it suffices
to repeat the whole previous part of the proof with the sequence vy, for m > ng +1
instead of y,,, for m > ny. Now it is obvious that ¢q(t) can be continued on [tg, ng+v]
(v is an arbitrary integer greater than 1) and therefore ¢ (t) fulfils (L) on [tg, c0).
Now let us take an arbitrary point t; € [tg,0c). Then there exists mgy € {1,2,...},
ty < mg and a subsequence {ys,, }ov—pn, Of {¥m}re_,, such that Lrys, = Lirpo(t)
on [tg,mg]. But (—1)*Lyys,, (t) > 0 on [tg,mo]. Therefore (—1)*Lypo(t1) = 0. It
implies that (—1)*Lio(t) =0 for all t > tg, k=0,1,...,n— 1. O

Lemma 10. Let {y,,(t)}55-,, be a sequence of solutions of (L) on [tg,00),
where a < to < ng, n is an odd number, and Lyym,(m) = (—1)*=1 for all m > ny,
k=0,1,...,n—1. Let (A) hold, and let Py(t) = 0 on [a,0c) for all even integers

k€ [l,n]. Let —0o < [ Py(s)ds =P <0, [Py(s)ds > —5 fork=1,2,....,n—1,
to to

[ee]
let P, be nondecreasing functions for k = 0,1,...,n — 1, [1/p,(s)ds < % for
i

0
r=1,2,...,n—1, and let K be a real positive constant such that 0 < f(t) < K for

t € (—00,00). Then there exists a subsequence of {y.,(t)} which converges to

o
m=ngo
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¢o(t). This function py(t) is a solution of (L) on [tg, 00), and (—1)¥ Lipo(t) < 0 on
[to,00) for k =0,1,...,n— 1.

Proof. The proof is similar to the proof of Lemma 9 (instead of Lemma 6,
part a), and Lemma 7 we use Lemma 6, part b) and Lemma 8, respectively), so it is
omitted. 0

Theorem 1. Let n be an even number. Let (A) hold, and let Py (t) =0 on [a, 00)
for all odd integers k € [1,n]. Let Py(t) be nondecreasjng functions on [a, c0) such

thatka Jds > —oco fork =0,1,...,n 1f1/p,, Jds < oo forr =1,2,...,n—1,

and Iet K be a real positive constant such that 0< f(t) < K for all t € (—o0,00).
Then (L) admits a Kneser solution y(t) on [a,c0), i.e. y(t) > 0, (—=1)*Lyy(t) > 0 on
[a,00) for k=1,2,...,n—1.

Proof. Let ustakety € (a,00) such that ka f 1/pr(s) ds < & for

k=1,2,....n—1;r=1,2,...,n—1. Accordln%; to Lemma 5, there exists a sequence
{ym (t)}5_,, of solutions of (L) on [tg,00) such that Ly, (m) = (1) for all m >
ng >tg, k=0,1,...,n—1. Lemma 7 ensures validity of (B), and Lemma 6, part a),
yields that {y,(t)}yx—,, has the required properties from Lemma 9. According to
the last-mentioned lemma, there exists a function y(¢) such that L(y(t)) = 0 on
[to,00), (=1)*Liy(t) > 0 on [tg,00) for k = 0,1,...,n — 1. This solution y(¢) of
(L) on [tg,00) can be continued onto [a,00) by Lemma 5. According to Lemma 6,
part a), y(t) is a Kneser solution of (L) on [a,c0) because y(t) > 0 on [a,00) (this

follows from f(0) # 0). O

Theorem 2. Letn be an odd number. Let (A) hold, and let Py (t) = 0 on [a, 00)
for aH even integers k € [1,n]. Let Py(t) be nondecreasing functions on [a, c0) such

thatka )ds > —o0 fork =0,1,...,n—1, fl/pr Yds < oo forr=1,2,...,n—1
and let K be a real positive constant such L‘hat 0< f(t) < K for all t € (—00,0).

Then (L) admits a Kneser solution y(t) on [a,0), i.e. y(t) < 0, (—=1)*Liy(t) < 0 on
[a,00) for k=1,2,...,n— 1.

Proof. The proof is similar to that of the previous theorem (instead of
Lemma 6, part a) and Lemma 9 we will use Lemma 6, part b) and Lemma 10,
respectively) and so it is omitted. O
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3. EXAMPLES

Example 1. The equation

1 72 1296
t4t3t2////__t3t2// e 14 ¢—18 =0
(YY) = FEE) + G = VIS
admits a Kneser solution y(¢) = ¢t on [1,00) according to Theorem 1 because

o0
J(1/pr(t))dt < oo for r = 1,2,3, Py(t) is nonpositive and nondecreasing on |1, c0),
1

[ Pe(t)dt > —oc for k=0,1,2,3,0 < 1/y/T+ 42 < 1, f(0) # 0.
1

Example 2. The equation of the n-th order (n is an even number)

21

Lyy + Z Poy,(t) Lary + Po(t) f(y) =0,
k=1

where Py(t) = —t72*=2 for k = 0,1,...,2 =1, p(t) =3 for r = 1,2,...,n— 1,
f(t) = e " admits a Kneser solution on [1,00) according to Theorem 1 because
o0

if(l/pr(t))dt<ooforr:l,Q...,n—l, {ng(t)dt>—oo for k =0,1,....% -1,

0< e <1, f(0) £0.

Example 3. The equation

Vit
V1t oyt

where p,(t) = t"t! for r = 1,2,3,4 admits a Kneser solution y(t) = —t~12 < 0 on
[1,00) according to Theorem 2 because [(1/p,(t))dt < oo for r = 1,2,3,4, Py(t)
1

1 1
Loy — 5 Lay — 5 Ly + (12713 4+ 1188t 12 — 14256t 3) 0,

o0
is nonpositive and nondecreasing on [1,00), [ Py(t)dt > —oo for k = 0,1,2,3,4,
1

os—ﬁsl,f@)#o-
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