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CIRCULAR DISTANCE IN DIRECTED GRAPHS
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Abstract. Circular distance d°(z,y) between two vertices z, y of a strongly connected
directed graph G is the sum d(z,y) + d(y, z), where d is the usual distance in digraphs. Its
basic properties are studied.
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In an undirected graph the distance between two vertices is usually defined as the
length of the shortest path connecting these vertices. This distance is a metric on
the vertex set of the graph. Analogously in a directed graph (usually the strong
connectedness is supposed) the distance d(z,y) from a vertex x to a vertex y is
defined as the length of the shortest directed path from z to y. In general, d(z,y)
thus defined is not a metric, because it is not symmetric. In this paper we define a
certain distance in a digraph which is a metric.

Let G be a strongly connected directed graph, let x, y be two vertices of G. The
circular distance d°(z,y) between the vertices x, y in the graph G is defined as

d°(z,y) = d(z,y) + d(y, z),

where d denotes the usual distance in digraphs (see above). In other words, d°(z,y)
is the length of the shortest directed walk going from x to y and then back to x.
Note that in the walk mentioned, vertices and edges may repeat. In the graph in
Fig. 1 such shortest walk for = and y contains all edges of the graph and the edge e
occurs twice in it.
The following proposition is evident.

Proposition 1. The circular distance d°(z,y) is a metric on the vertex set V(QG)
of the graph G.
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Fig. 1

The properties of the circular distance are considerably different from the proper-
ties of the usual distance in graphs.

The length of the shortest cycle (directed circuit) in the graph G will be called
the directed girth of G and denoted by ¢(G).

Proposition 2. Let x, y be two distinct vertices of a strongly connected graph
G, let g(G) be the directed girth of G. Then

d°(z,y) > 9(G).

Proof. Let P; (or P) be the shortest path from z to y (or from y to =z,
respectively). The circular distance d°(z,y) is equal to the sum of lengths of P; and
P5,. The union of P; and P, must contain a cycle; the length of this cycle is greater
than or equal to g(G) and less than or equal to the sum of lengths of P; and P»; this
implies the assertion. O

Analogously as for the usual distance, we may introduce the circular radius ¢°(G)
and the circular diameter 6°(G). For each vertex z of G we define the circular elonga-
tion e°(x) as the maximum of d°(z,y) for all y € V(G). Then the minimum of e°(z)
for all z € V(G) is the circular radius ¢°(G) of G. The set of vertices = for which
e®(z) = 0°(G) is called the circular center C°(G) of G. The maximum of d°(z,y)
over all pairs z, y of vertices of G is the circular diameter 6°(G) of G.

In the case of infinite graphs it may happen that the maximum of d°(z,y) does
not exist. Then we put 6°(G) = oo and also ¢°(G) = oo. In the sequel we shall
consider only finite radii and diameters.

The following proposition can be proved in the same way as the analogous state-
ment for the usual distance in graphs; it follows from the triangle inequality.
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Proposition 3. For the circular radius ¢°(G) and the circular diameter §°(G) of
a strongly connected directed graph G the following inequality holds:

0°(G) < 6°(G) < 20°(G).

Now we have a theorem.

Theorem 1. Let r, d be positive integers, 2 < 7 < d < 2r. Then there exists a
r,d

strongly connected directed graph G such that ¢°(G) = °(G) =d.

Proof. If r =d, then G is the cycle of length r. In it d°(z,y) = r for any two
distinct vertices x, y.

If d = r + 1, distinguish the cases r = 2 and r > 3. If r = 2, then let V(G) =
{u,v1,v2} and let the edges of G be uvy, viu, uvy, vou, vive (Fig. 2). We have
d°(u,v1) = d°(u,v9) = 2, d°(vy,v9) = 3, €°(u) = 2, e®°(vy) = e°(vy) = 3 and thus
0°(G) =2, 6°(G) = 3. If r > 3, then let V(G) = {vg,v1,...,v.—1,w}. Let the edges
be v;viyp1 for i =0, ..., r — 2, v,_1vg, vow and wy; for i =1, ..., r — 1. (Fig. 3 for
r =8.) We have d°(v1,w) =r+1=d, d°(vi,v) =1, d°(v1,v;) =rfori=2, ...,
r — 1. Further we have d°(vo,w) =3 < r, d°(v;,w) =r—i+2 < rfori=2, ...,
r — 1. Finally, d°(v;,v;) < r for any ¢ and j, because vy, ..., v,—1 form a cycle of
length r. We have e°(v1) = e®(w) = d, €°(vg) = e°(v;) =rfori=2, ..., r—1. Hence
0°(G) =d, 0°(G) =r.
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If d > r+2, let the graph G consist of two cycles Cy, Cy with exactly one common
vertex a; let the length of Cy be r and let the length of Cs be d—r. Let uy (or us) be
an arbitrary vertex of C; (or Cs, respectively) different from a. Then d°(a,u;) = r,
d°(a,uz) =d —r < r, d°(u1,uz) = d. This implies e®°(a) = r, e°(u1) = €°(u2) = d
and again 0°(G) =d, ¢°(G) =r. O
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If to the graph G for the case d = r 4+ 1, r > 3 we add the edge wvy (Fig. 4), we
obtain a graph G’ such that the circular center C°(G’) = {vg,v1,...,v,—1}, while
the center C'(G") for the usual distance d(z,y) is {w} and thus C°(G') N C(G') = 0.
We have a proposition.

(%) vt

U1 Vg

V2 5

U3 V4

Fig. 4

Proposition 4. The circular center C°(G) and the usual center C(G) of a digraph
G may be disjoint.

Note that always d°(x,y) # 1; this follows from the definition. Evidently also
0°(G) # 1 and 6°(G) # 1.

Theorem 2. Let (M, m) be a metric space such that the set M is finite and the
metric m attains only integral values. Then there exists a strongly connected directed
graph G such that M C V(G) and d°(z,y) = m(x,y)+1 for any two distinct vertices
x, y of M. Moreover, all vertices of V(G) — M have indegree 1 and outdegree 1.

Proof. Choose an arbitrary total ordering < on M. For any two vertices z, y
of M such that z < y we form the edge xy; in this way we obtain a tournament
with the vertex set M. Further, for any = and y of M such that x < y we add a
directed path P(z,y) of length m(z,y) from y to z. The inner vertices of any path
P(z,y) are not in M and any two such paths have no inner vertex in common. The
graph thus obtained is G. We see that all vertices of V(G) — M have indegree 1 and
outdegree 1. Consider two vertices x, y of M such that x < y and let d denote the
usual distance in a digraph. Then evidently d(z,y) = 1. The path P(z,y) is the
shortest path from y to x, because any other path from y to x must contain at least
one vertex z € M; then its length is at least m(y, z) + m(z,z) and by the triangle
inequality this is greater than or equal to m(y,z). Therefore d(y, z) = m(z,y) and
d°(z,y) = m(z,y) + 1. O

A certain analogue of trees are directed cacti. A directed cactus is a graph in
which each block is a cycle [1].
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The following proposition is easy to prove.

Proposition 5. Let x, y be two distinct vertices of a directed cactus G. Then
there exists exactly one directed path P(z,y) from x toy in G.

Now we prove a theorem.

Theorem 3. Ifz, y are two distinct vertices of a directed cactus G, then d°(z,y)
is equal to the sum of lengths of all cycles in G which have common edges with the
path P(z,y).

Proof. We will proceed by induction according to the number k of blocks which
contain edges of P(z,y). If k = 1, then x and y are in the same block (cycle) B and
this block is the (edge-disjoint) union of P(z,y) and P(y,z), therefore d°(z,y) is
equal to the length of the cycle B. Now let k£ > 2 and suppose that for £k — 1 the
assertion is true. Let the first edge of P(z,y) be in the block B; and let a be the
terminal vertex of the last edge of P(z,y) being in B;. Then a is an articulation
between B; and another block By which contains the edge of P(z,y) outgoing from
a. The path P(a,y) is part of P(z,y) and there are k — 1 blocks containing edges
of P(a,y), namely all those containing edges of P(z,y) except B;. By the induction
hypothesis d°(a,y) is the sum of lengths of these blocks. Not only P(z,y), but also
P(y, ) goes through a and therefore d°(z,y) = d°(z, a) + d°(a, y), which is the sum
of lengths of all cycles which contain edges of P(z,y). d

Now we prove a theorem which concerns circular centers of directed cacti.

Theorem 4. The circular center of a finite directed cactus G either consists of
one vertex, or is equal to the vertex set of one block of G.

Proof. Let ¢°(G) = r. First suppose that the circular center C°(G) contains
two vertices uy, us which are not contained in the same block. Then there exists an
articulation a of G which separates (in the same sense as in an undirected graph) the
vertices uy, uz. By Vi (or V5) we denote the set of vertices of G which are separated
by a from us and not from uy (or from u; and not from g, respectively). By V3 we
denote the set of vertices of G which are separated by a from both wu;, uz. Suppose
that there exists a vertex v such that d°(a,v) > r. If v € V; U V3, then

d°(ug,v) = d°(ug,a) + d°(a,v) > d°(uz,a) +r > r;

we have a contradiction with the assumption that r is the circular radius and us €
C°(G). If v € Vo U V3, then

d°(u1,v) = d°(w,a) + d°(a,v) > d°(u1,a) +r > r;
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again we have a contradiction. Evidently V(G) = V4 U V2 U V3 U {a} and therefore
d°(a,z) < r for all x € V(G). Then ¢°(G) < r, which is again a contradiction. We
have proved that C°(G) must be a subset of the vertex set of a block of G. Let B be
such a block; it is a cycle. Let its length be b. If B = G, then evidently each vertex
of B belongs to the circular center and C°(G) = G = B. If not, then r > b. For each
x € V(B) let W(z) be the set of all vertices of G which are separated by z from all
other vertices of B. The sets W(z) for all x € V(B) and the set V(B) are pairwise
disjoint and their union is V(G). Let p be the number of vertices z € V(B) with the
property that there exists a vertex y € W(z) such that d°(z,y) > r — b. Suppose
p=0.Let v e C°(G) C V(B), let z € V(G). If x = v, then d°(v,z) =0 < r. If
x € V(B) —{v}, then d°(v,z) = b < r. If z € W(v), then d°(v,z) < r according to
the assumption. If z € V(G) — (V/(B) UW(v)), then there exists y € V(B) — {v}
such that x € W(y). Then

do(v,:t) = do(vay) +do(yax) = b+do(y7$) < b—|—’f‘7b =T

This is a contradiction with the assumption that C°(G) C V(B). Therefore p # 0.
Suppose p = 1 and let w be a vertex of V(B) such that there exists y € W(w)
for which d°(w,y) > r — b. We may assume that y is the vertex of W(w) with
the maximum circular distance from w. If d°(w,y) > r — b, then each vertex of
V(B) — {w} has the circular distance from y equal to b+ d°(w,y) > r. As we have
supposed C°(G) C V(B), we have C°(G) = {w}. If d°(w,y) = r—b, then the circular
distance of each vertex of W (w) from w is at most r — b and the circular distance of
any other vertex from w is less than r; we have a contradiction with the assumption
that ¢0°(G) = r. Finally, suppose p > 2. Let w1, ws be two distinct vertices of V(B)
such that there exist vertices y1, y» with d°(wq,y1) = r — b, d°(wa,y2) = r —b. If
d°(u1,y1) > r — b, then only wy can be in C°(G). The case d°(ws,y2) > r — b is
analogous. Therefore d°(wy,y1) = d°(ws,y2) = r — b and there exists no vertex in
W (w1) with the circular distance from w; greater than r —b and no vertex in W (w,)
with the circular distance from ws greater than r—b. For each vertex u € V(B)—{w, }
we have d°(wy,u) = r and for each vertex u € V(B) — {w2} we have d°(wq,u) = 7.
In no set W (z) for x € V(B) there is a vertex whose circular distance from x would
be greater than r — b; this can be proved in the same way as for £ = w;. Therefore
for each v € V(G) and u € V(B) we have d°(u,v) < r and C°(G) = V(B). O

In Fig. 5 we see a directed cactus in which the circular center is a one-element set;
in Fig. 6 we see a directed cactus in which the circular center is the vertex set of a
block. In both the figures the vertices of the circular center are black.
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