CIRCULAR DISTANCE IN DIRECTED GRAPHS

BOHDAN ZELINKA, Liberec

(Received November 21, 1994)

Abstract. Circular distance $d^{\circ}(x,y)$ between two vertices x,y of a strongly connected directed graph G is the sum d(x,y)+d(y,x), where d is the usual distance in digraphs. Its basic properties are studied.

Keywords: strongly connected digraph, circular distance, directed cactus

MSC 1991: 05C38, 05C20

In an undirected graph the distance between two vertices is usually defined as the length of the shortest path connecting these vertices. This distance is a metric on the vertex set of the graph. Analogously in a directed graph (usually the strong connectedness is supposed) the distance d(x,y) from a vertex x to a vertex y is defined as the length of the shortest directed path from x to y. In general, d(x,y) thus defined is not a metric, because it is not symmetric. In this paper we define a certain distance in a digraph which is a metric.

Let G be a strongly connected directed graph, let x, y be two vertices of G. The circular distance $d^{\circ}(x, y)$ between the vertices x, y in the graph G is defined as

$$d^{\circ}(x, y) = d(x, y) + d(y, x),$$

where d denotes the usual distance in digraphs (see above). In other words, $d^{\circ}(x, y)$ is the length of the shortest directed walk going from x to y and then back to x.

Note that in the walk mentioned, vertices and edges may repeat. In the graph in Fig. 1 such shortest walk for x and y contains all edges of the graph and the edge e occurs twice in it.

The following proposition is evident.

Proposition 1. The circular distance $d^{\circ}(x,y)$ is a metric on the vertex set V(G) of the graph G.

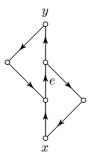


Fig. 1

The properties of the circular distance are considerably different from the properties of the usual distance in graphs.

The length of the shortest cycle (directed circuit) in the graph G will be called the directed girth of G and denoted by g(G).

Proposition 2. Let x, y be two distinct vertices of a strongly connected graph G, let g(G) be the directed girth of G. Then

$$d^{\circ}(x,y) \geqslant g(G)$$
.

Proof. Let P_1 (or P_2) be the shortest path from x to y (or from y to x, respectively). The circular distance $d^{\circ}(x,y)$ is equal to the sum of lengths of P_1 and P_2 . The union of P_1 and P_2 must contain a cycle; the length of this cycle is greater than or equal to g(G) and less than or equal to the sum of lengths of P_1 and P_2 ; this implies the assertion.

Analogously as for the usual distance, we may introduce the circular radius $\varrho^{\circ}(G)$ and the circular diameter $\delta^{\circ}(G)$. For each vertex x of G we define the circular elongation $e^{\circ}(x)$ as the maximum of $d^{\circ}(x,y)$ for all $y \in V(G)$. Then the minimum of $e^{\circ}(x)$ for all $x \in V(G)$ is the circular radius $\varrho^{\circ}(G)$ of G. The set of vertices x for which $e^{\circ}(x) = \varrho^{\circ}(G)$ is called the circular center $C^{\circ}(G)$ of G. The maximum of $d^{\circ}(x,y)$ over all pairs x, y of vertices of G is the circular diameter $\delta^{\circ}(G)$ of G.

In the case of infinite graphs it may happen that the maximum of $d^{\circ}(x,y)$ does not exist. Then we put $\delta^{\circ}(G) = \infty$ and also $\varrho^{\circ}(G) = \infty$. In the sequel we shall consider only finite radii and diameters.

The following proposition can be proved in the same way as the analogous statement for the usual distance in graphs; it follows from the triangle inequality.

Proposition 3. For the circular radius $\varrho^{\circ}(G)$ and the circular diameter $\delta^{\circ}(G)$ of a strongly connected directed graph G the following inequality holds:

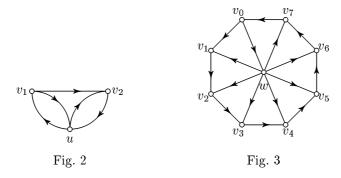
$$\varrho^{\circ}(G) \leqslant \delta^{\circ}(G) \leqslant 2\varrho^{\circ}(G).$$

Now we have a theorem.

Theorem 1. Let r, d be positive integers, $2 \le r \le d \le 2r$. Then there exists a strongly connected directed graph G such that $\varrho^{\circ}(G) = r$, $\delta^{\circ}(G) = d$.

Proof. If r = d, then G is the cycle of length r. In it $d^{\circ}(x, y) = r$ for any two distinct vertices x, y.

If d = r + 1, distinguish the cases r = 2 and $r \ge 3$. If r = 2, then let $V(G) = \{u, v_1, v_2\}$ and let the edges of G be $uv_1, v_1u, uv_2, v_2u, v_1v_2$ (Fig. 2). We have $d^{\circ}(u, v_1) = d^{\circ}(u, v_2) = 2$, $d^{\circ}(v_1, v_2) = 3$, $e^{\circ}(u) = 2$, $e^{\circ}(v_1) = e^{\circ}(v_2) = 3$ and thus $\varrho^{\circ}(G) = 2$, $\delta^{\circ}(G) = 3$. If $r \ge 3$, then let $V(G) = \{v_0, v_1, \ldots, v_{r-1}, w\}$. Let the edges be $v_i v_{i+1}$ for $i = 0, \ldots, r-2, v_{r-1}v_0, v_0w$ and wv_i for $i = 1, \ldots, r-1$. (Fig. 3 for r = 8.) We have $d^{\circ}(v_1, w) = r + 1 = d$, $d^{\circ}(v_1, v_0) = r$, $d^{\circ}(v_1, v_i) = r$ for $i = 2, \ldots, r-1$. Further we have $d^{\circ}(v_0, w) = 3 \le r$, $d^{\circ}(v_i, w) = r - i + 2 \le r$ for $i = 2, \ldots, r-1$. Finally, $d^{\circ}(v_i, v_j) \le r$ for any i and j, because v_0, \ldots, v_{r-1} form a cycle of length r. We have $e^{\circ}(v_1) = e^{\circ}(w) = d$, $e^{\circ}(v_0) = e^{\circ}(v_i) = r$ for $i = 2, \ldots, r-1$. Hence $\delta^{\circ}(G) = d$, $\varrho^{\circ}(G) = r$.



If $d \ge r+2$, let the graph G consist of two cycles C_1 , C_2 with exactly one common vertex a; let the length of C_1 be r and let the length of C_2 be d-r. Let u_1 (or u_2) be an arbitrary vertex of C_1 (or C_2 , respectively) different from a. Then $d^{\circ}(a, u_1) = r$, $d^{\circ}(a, u_2) = d - r \le r$, $d^{\circ}(u_1, u_2) = d$. This implies $e^{\circ}(a) = r$, $e^{\circ}(u_1) = e^{\circ}(u_2) = d$ and again $\delta^{\circ}(G) = d$, $\varrho^{\circ}(G) = r$.

If to the graph G for the case d = r + 1, $r \ge 3$ we add the edge wv_0 (Fig. 4), we obtain a graph G' such that the circular center $C^{\circ}(G') = \{v_0, v_1, \ldots, v_{r-1}\}$, while the center C(G') for the usual distance d(x, y) is $\{w\}$ and thus $C^{\circ}(G') \cap C(G') = \emptyset$. We have a proposition.

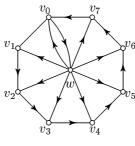


Fig. 4

Proposition 4. The circular center $C^{\circ}(G)$ and the usual center C(G) of a digraph G may be disjoint.

Note that always $d^{\circ}(x,y) \neq 1$; this follows from the definition. Evidently also $\varrho^{\circ}(G) \neq 1$ and $\delta^{\circ}(G) \neq 1$.

Theorem 2. Let (M, m) be a metric space such that the set M is finite and the metric m attains only integral values. Then there exists a strongly connected directed graph G such that $M \subseteq V(G)$ and $d^{\circ}(x, y) = m(x, y) + 1$ for any two distinct vertices x, y of M. Moreover, all vertices of V(G) - M have indegree 1 and outdegree 1.

Proof. Choose an arbitrary total ordering < on M. For any two vertices x, y of M such that x < y we form the edge xy; in this way we obtain a tournament with the vertex set M. Further, for any x and y of M such that x < y we add a directed path P(x,y) of length m(x,y) from y to x. The inner vertices of any path P(x,y) are not in M and any two such paths have no inner vertex in common. The graph thus obtained is G. We see that all vertices of V(G) - M have indegree 1 and outdegree 1. Consider two vertices x, y of M such that x < y and let d denote the usual distance in a digraph. Then evidently d(x,y) = 1. The path P(x,y) is the shortest path from y to x, because any other path from y to x must contain at least one vertex $z \in M$; then its length is at least m(y,z) + m(z,x) and by the triangle inequality this is greater than or equal to m(y,x). Therefore d(y,x) = m(x,y) and $d^{\circ}(x,y) = m(x,y) + 1$.

A certain analogue of trees are directed cacti. A directed cactus is a graph in which each block is a cycle [1].

The following proposition is easy to prove.

Proposition 5. Let x, y be two distinct vertices of a directed cactus G. Then there exists exactly one directed path P(x,y) from x to y in G.

Now we prove a theorem.

Theorem 3. If x, y are two distinct vertices of a directed cactus G, then $d^{\circ}(x, y)$ is equal to the sum of lengths of all cycles in G which have common edges with the path P(x, y).

Proof. We will proceed by induction according to the number k of blocks which contain edges of P(x,y). If k=1, then x and y are in the same block (cycle) B and this block is the (edge-disjoint) union of P(x,y) and P(y,x), therefore $d^{\circ}(x,y)$ is equal to the length of the cycle B. Now let $k \geq 2$ and suppose that for k-1 the assertion is true. Let the first edge of P(x,y) be in the block B_1 and let a be the terminal vertex of the last edge of P(x,y) being in B_1 . Then a is an articulation between B_1 and another block B_2 which contains the edge of P(x,y) outgoing from a. The path P(a,y) is part of P(x,y) and there are k-1 blocks containing edges of P(a,y), namely all those containing edges of P(x,y) except B_1 . By the induction hypothesis $d^{\circ}(a,y)$ is the sum of lengths of these blocks. Not only P(x,y), but also P(y,x) goes through a and therefore $d^{\circ}(x,y) = d^{\circ}(x,a) + d^{\circ}(a,y)$, which is the sum of lengths of all cycles which contain edges of P(x,y).

Now we prove a theorem which concerns circular centers of directed cacti.

Theorem 4. The circular center of a finite directed cactus G either consists of one vertex, or is equal to the vertex set of one block of G.

Proof. Let $\varrho^{\circ}(G) = r$. First suppose that the circular center $C^{\circ}(G)$ contains two vertices u_1 , u_2 which are not contained in the same block. Then there exists an articulation a of G which separates (in the same sense as in an undirected graph) the vertices u_1 , u_2 . By V_1 (or V_2) we denote the set of vertices of G which are separated by a from u_2 and not from u_1 (or from u_1 and not from u_2 , respectively). By V_3 we denote the set of vertices of G which are separated by a from both u_1 , u_2 . Suppose that there exists a vertex v such that $d^{\circ}(a, v) \geqslant r$. If $v \in V_1 \cup V_3$, then

$$d^{\circ}(u_2, v) = d^{\circ}(u_2, a) + d^{\circ}(a, v) \geqslant d^{\circ}(u_2, a) + r > r;$$

we have a contradiction with the assumption that r is the circular radius and $u_2 \in C^{\circ}(G)$. If $v \in V_2 \cup V_3$, then

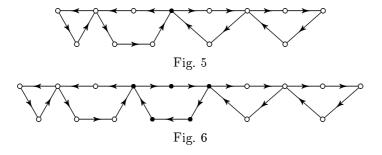
$$d^{\circ}(u_1, v) = d^{\circ}(u_1, a) + d^{\circ}(a, v) \geqslant d^{\circ}(u_1, a) + r > r;$$

again we have a contradiction. Evidently $V(G) = V_1 \cup V_2 \cup V_3 \cup \{a\}$ and therefore $d^{\circ}(a,x) < r$ for all $x \in V(G)$. Then $\varrho^{\circ}(G) < r$, which is again a contradiction. We have proved that $C^{\circ}(G)$ must be a subset of the vertex set of a block of G. Let B be such a block; it is a cycle. Let its length be b. If B = G, then evidently each vertex of B belongs to the circular center and $C^{\circ}(G) = G = B$. If not, then r > b. For each $x \in V(B)$ let W(x) be the set of all vertices of G which are separated by x from all other vertices of B. The sets W(x) for all $x \in V(B)$ and the set V(B) are pairwise disjoint and their union is V(G). Let p be the number of vertices $x \in V(B)$ with the property that there exists a vertex $y \in W(x)$ such that $d^{\circ}(x,y) \geqslant r - b$. Suppose p = 0. Let $v \in C^{\circ}(G) \subseteq V(B)$, let $x \in V(G)$. If x = v, then $d^{\circ}(v,x) = 0 < r$. If $x \in V(B) - \{v\}$, then $d^{\circ}(v,x) = b < r$. If $x \in W(v)$, then $d^{\circ}(v,x) < r$ according to the assumption. If $x \in V(G) - (V(B) \cup W(v))$, then there exists $y \in V(B) - \{v\}$ such that $x \in W(y)$. Then

$$d^{\circ}(v, x) = d^{\circ}(v, y) + d^{\circ}(y, x) = b + d^{\circ}(y, x) < b + r - b = r.$$

This is a contradiction with the assumption that $C^{\circ}(G) \subseteq V(B)$. Therefore $p \neq 0$. Suppose p=1 and let w be a vertex of V(B) such that there exists $y\in W(w)$ for which $d^{\circ}(w,y) \geq r-b$. We may assume that y is the vertex of W(w) with the maximum circular distance from w. If $d^{\circ}(w,y) > r - b$, then each vertex of $V(B) - \{w\}$ has the circular distance from y equal to $b + d^{\circ}(w, y) > r$. As we have supposed $C^{\circ}(G) \subseteq V(B)$, we have $C^{\circ}(G) = \{w\}$. If $d^{\circ}(w,y) = r - b$, then the circular distance of each vertex of W(w) from w is at most r-b and the circular distance of any other vertex from w is less than r; we have a contradiction with the assumption that $\varrho^{\circ}(G) = r$. Finally, suppose $p \geqslant 2$. Let w_1, w_2 be two distinct vertices of V(B)such that there exist vertices y_1, y_2 with $d^{\circ}(w_1, y_1) \geqslant r - b, d^{\circ}(w_2, y_2) \geqslant r - b$. If $d^{\circ}(u_1,y_1)>r-b$, then only w_1 can be in $C^{\circ}(G)$. The case $d^{\circ}(w_2,y_2)>r-b$ is analogous. Therefore $d^{\circ}(w_1,y_1)=d^{\circ}(w_2,y_2)=r-b$ and there exists no vertex in $W(w_1)$ with the circular distance from w_1 greater than r-b and no vertex in $W(w_2)$ with the circular distance from w_2 greater than r-b. For each vertex $u \in V(B)-\{w_1\}$ we have $d^{\circ}(w_1, u) = r$ and for each vertex $u \in V(B) - \{w_2\}$ we have $d^{\circ}(w_2, u) = r$. In no set W(x) for $x \in V(B)$ there is a vertex whose circular distance from x would be greater than r-b; this can be proved in the same way as for $x=w_1$. Therefore for each $v \in V(G)$ and $u \in V(B)$ we have $d^{\circ}(u, v) \leq r$ and $C^{\circ}(G) = V(B)$.

In Fig. 5 we see a directed cactus in which the circular center is a one-element set; in Fig. 6 we see a directed cactus in which the circular center is the vertex set of a block. In both the figures the vertices of the circular center are black.



References

[1] B. Zelinka: Centers of directed cacti. Časopis pěst. mat. 114 (1989), 225–229.

 $Author's\ address:\ Bohdan\ Zelinka,\ {\it Technick\'a}\ univerzita\ Liberec,\ katedra\ diskr\'etn\'i\ matematiky\ a\ statistiky,\ {\it Voron\check{e}\check{z}sk\'a}\ 13,\ 461\ 17\ Liberec\ 1,\ {\it Czech\ Republic}.$