MAGIC POWERS OF GRAPHS

MARIÁN TRENKLER, Košice, VLADIMÍR VETCHÝ, Brno

(Received October 30, 1995)

Abstract. Necessary and sufficient conditions for a graph G that its power G^i , $i \ge 2$, is a magic graph and one consequence are given.

Keywords: magic graph, power of graph, factor of graph

MSC 1991: 05C78

1. Introduction

In the paper only finite, undirected connected graphs are considered. By a magic valuation of a graph \mathbf{G} we mean such an assignment of the edges of \mathbf{G} by pairwise different positive numbers that the sum of assignments of edges meeting the same vertex is constant. A graph is called magic if it allows a magic valuation. This notion was introduced by J. Sedláček in [6]. Now, the *i-th power* \mathbf{G}^i , $i \geq 2$, of a graph \mathbf{G} is the graph with the same vertex set as \mathbf{G} and such that two vertices of \mathbf{G}^i are adjacent if and only if the distance between these vertices in \mathbf{G} is at most i.

Various properties of \mathbf{G}^i have been studied, such as hamiltonicity, existence of some factors, etc. Some results can be found in [1] and [2] and [5].

Two different characterizations of magic graphs were published in [3] and [4]. Since, except of the complete graph \mathbf{K}_2 of order 2, no graph with less than 5 vertices is magic we confine ourselves to graphs of order $n \ge 5$.

By an *I-graph* we mean a graph G with a 1-factor F whose every edge is incident with an *end-vertex* (a vertex of degree 1) of G. The symbol P_5 denotes a path of length 5.

The aim of this paper is the following theorem.

Theorem. Let a graph G have order $n \ge 5$. The graph G^2 is magic if and only if G is not an I-graph and it is different from the path P_5 . The graph G^i is magic for all $i \ge 3$.

2. Proof of the theorem

First we shall formulate several necessary definitions. We say that a graph \mathbf{G} is of $type \ \mathbb{A}$ if it has two edges e, f such that $\mathbf{G} - e - f$ is a balanced bipartite graph with the partition V_1 , V_2 , and the edge e joins two vertices of V_1 and f joins two vertices of V_2 . A graph \mathbf{G} is of $type \ \mathbb{B}$ if it has two edges e_1 , e_2 such that $\mathbf{G} - e_1 - e_2$ is a graph with two components \mathbf{G}_1 and \mathbf{G}_2 such that \mathbf{G}_1 is a balanced bipartite graph with partition V_1 , V_2 and \mathbf{G}_2 is a non-bipartite graph, and e_i joins a vertex of V_i with a vertex of $V(\mathbf{G}_2)$. As usual, $\Gamma(S)$ denotes the set of vertices adjacent to a vertex in the set S.

The proof of Theorem is an immediate consequence of the following five Lemmas and Theorem 1.

Theorem 1. (Jeurissen [3].) A non-bipartite graph G is magic if and only if G is neither of type A nor of type B, and $|\Gamma(S)| > |S|$ for every independent subset $S \neq \emptyset$ of V(G).

Lemma 1. If **G** is an *I*-graph or it is a path P_5 , then G^2 is not a magic graph.

Proof. Every I-graph of order 2n has n end-vertices which form an independent subset S such that $|\Gamma(S)| = |S|$. Let \mathbf{P}_5 be a path $v_1v_2v_3v_4v_5v_6$. By omitting the edges v_2v_3 and v_4v_5 from \mathbf{P}_5^2 we obtain a bipartite graph which is a graph of type \mathbb{A} .

Lemma 2. If G + e is a graph which arises by adding an arbitrary edge e to a non-bipartite magic graph G, then G + e is a magic graph.

The proof follows from Theorem 1 because by omitting an arbitrary edge of a graph of type A or B we do not obtain a magic graph.

Let **T** be a spanning tree of a graph **G**. Lemma 2 implies that if the square of **T** is magic, then \mathbf{G}^i , for all $n \ge 2$, is magic. Therefore, in the next part we shall confine ourselves to graphs which are trees.

Lemma 3. If **T** is a tree then $|\Gamma(S)| \ge |S|$ for every non-empty independent subset S of $V(\mathbf{T}^2)$.

Proof. Let S be an independent subset of $V(\mathbf{T}^2)$. Then the distance $d(u,v) \geqslant 3$ in \mathbf{T} for vertices $u,v \in S$, i.e. no vertex of the induced subgraph \mathbf{H} on $V(\mathbf{T}) - S$ is joined with two vertices of S. We choose one internal vertex $w \in V(\mathbf{H})$ and define a mapping f from the set S into $\Gamma(S)$ in the following way: The image f(v) of a vertex v is the vertex such that d(v,w) - 1 = d(f(v),w). The proof follows from the fact that f is an injective mapping.

Lemma 4. If $V(\mathbf{T}^2)$ contains an independent subset S such that $|\Gamma(S)| = |S| = n > 0$, then \mathbf{T} is an I-graph of order 2n.

Proof. If v is an internal vertex of \mathbf{T} and $v \in S$ then there exists a vertex $z \in \Gamma(v)$ with d(z,w) = d(v,w) + 1 (the internal vertex w is chosen in the same way as in the proof of Lemma 3). The vertex z is not an image of any vertex $u \in S$ in the mapping f because in \mathbf{T}^2 the vertex v is joined by an edge with all vertices which in \mathbf{T} have the distance 2. This fact together with the proof of Lemma 3 yield that then $|\Gamma(S)| > |S|$.

If an arbitrary end-vertex $t \notin S$, then t is not the image of any vertex of S and so $|\Gamma(S)| > |S|$.

Every vertex of S is joined to at least two vertices of $\mathbf{T} - S$ and so it follows from the assumption $|\Gamma(S)| = |S|$ that every internal vertex is uniquely assigned to a vertex of S.

Lemma 5. No graph T^2 , different from P_5^2 , is a graph of type \mathbb{A} or \mathbb{B} .

Proof. First we show that \mathbf{T}^2 different from \mathbf{P}_5^2 cannot be a graph of type \mathbb{A} . We suppose that the order of \mathbf{T} is at least 6, because any graph of type \mathbb{A} has an even order. If \mathbf{T} has a vertex of degree at least 4, then \mathbf{T}^2 has, as a subgraph, the complete graph \mathbf{K}_5 . By omitting an arbitrary pair of edges from \mathbf{K}_5 we obtain a graph with chromatic number 3, i.e. a non-bipartite graph. If \mathbf{T} has a vertex of degree 3, then \mathbf{T} contains a subgraph isomorphic to one of the graphs which are depicted in Fig. 1. In both cases, by omitting two edges we obtain a subgraph with at least one triangle. If \mathbf{T} is a path \mathbf{P}_n , $n \geq 6$, then \mathbf{T}^2 has at least 3 edge-disjoint triangles.

Fig. 1

Every graph of type \mathbb{B} is 2-edge-connected. From \mathbf{T}^2 we obtain a disconnected graph only if we omit a pair of edges incident with an end-vertex of \mathbf{T} and so the non-bipartite part consists of one vertex while the other part is not a bipartite graph.

3. A CONSEQUENCE OF THE THEOREM

A spanning subgraph \mathbf{F} of the graph \mathbf{G} is called a (1-2)-factor of \mathbf{G} if each of its components is an isolated edge or a circuit. We say that a (1-2)-factor separates edges e and f, if at least one of them belongs to \mathbf{F} and neither the edge part nor the circuit part contains both of them. In [4] the following theorem is proved.

Theorem 2. (Jezný, Trenkler) A graph G is magic if and only if every edge belongs to a (1-2)-factor, and every pair of edges e, f is separated by a (1-2)-factor.

From Lemma 3 and Theorem 2 we get the following

Corollary. Let **G** be a graph of order ≥ 5 and e its arbitrary edge. The graph \mathbf{G}^i , $i \geq 2$, has a (1-2)-factor which contains the edge e if and only if e is not an internal edge of an I-graph and i = 2.

Proof. No pair of end-vertices of an I-graph G is joined by an edge in G^2 because every (1-2)-factor of G^2 is a 1-factor. The internaledge of an I-graph does not belong to the same (1-2)-factor. Evidently, every edge of P_5^2 belongs to a 2-factor. The sufficient condition follows from Theorem 2.

References

- [1] G. R. T. Hendry: The multiplicity of 1-factors in the square of a graph. J. Graph Theory 8 (1984), 399–403.
- [2] A. M. Hobbs: Some hamiltonian results in powers of graphs. J. Res. Nat. Bur. Standards Sect. B 77 (1973), 1–10.
- [3] R. H. Jeurissen: Magic graphs, a characterization. Europ. J. Combinatorics 9 (1988), 363-368.
- [4] S. Jezný, M. Trenkler: Characterization of magic graphs, Czechoslovak Math. J. 33 (1983), 435–438.
- L. Nebeský: On 2-factors in squares of graphs. Czechoslovak Math. J. 29 (1979), 588–594.
- [6] J. Sedláček: Problem 27 in Theory of Graphs and Applications. Proc. Symp. Smolenice. 1963, pp. 163–164.

Authors' addresses: M. Trenkler, Department of Geometry and Algebra, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovak Republic, e-mail: trenkler@duro.upjs.sk V. Vetchý, Department of Mathematics, Military Academy, 61200 Brno, P.O.B. 13, Czech Republic.