REES IDEAL ALGEBRAS

IVAN CHAJDA, Olomouc

(Received November 28, 1995)

Abstract. We describe algebras and varieties for which every ideal is a kernel of a one-block congruence.

Keywords: ideal, Rees congruence, one-block congruence, Rees algebra.

MSC 1991: 08A30, 08B05

The concept of Rees congruences was introduced for semigroups by D. Rees [3]. R. F. Tichy [5] generalized this concept to universal algebras. The author with J. Duda described Rees algebras in [1] and, moreover, gave a characterization of varieties all of whose members are Rees algebras. Some particular results for lattices can be found in [2] and [4]. Our aim is to study the Rees congruences induced in algebras by ideals in the sense of A. Ursini [6]. We will describe such ideals and characterize varieties of algebras having Rees ideal congruences.

1. Preliminaries

For an algebra $\mathcal{A}=(A,F)$ we denote by $Con\ \mathcal{A}$ the lattice of congruences of \mathcal{A} . By ω_A we denote the least congruence on \mathcal{A} , i.e. ω_A is the identity relation alias the diagonal of A. Further, we denote by ι_A the greatest congruence on \mathcal{A} , i.e. $\iota_A=A\times A$. We call $\Theta\in Con\ A$ a one-block congruence if the partition of A induced by Θ contains at most one non singleton congruence class. Trivially, ω_A and ι_A are one-block congruences.

Lemma 1. Let $\Theta, \Phi \in Con \ \mathcal{A}$ be one-block congruences. Then Θ, Φ are 3-permutable, i.e. $\Theta \vee \Phi = \Theta \circ \Phi \circ \Theta = \Phi \circ \Phi$.

The proof is elementary.

Remark 1. It is obvious that the join of two one-block congruences need not be a one-block congruence.

Definition 1. Let B be a subalgebra of an algebra A = (A, F). B is called a Rees subalgebra whenever $B^2 \cup \omega_A \in Con A$. Any congruence of the form $B^2 \cup \omega_A$ for some subalgebra B of A is called a Rees congruence. An algebra A is a Rees algebra if its every subalgebra is a Rees one.

Hence, every Rees congruence is a one-block congruence and therefore, every two Rees congruences on an algebra \mathcal{A} are 3-permutable.

The concept of an ideal was generalized by A. Ursini [6] for algebras with 0. In what follows, let \mathcal{C} be a class of algebras of a fixed similarity type τ . For $\mathcal{A} \in \mathcal{C}$, the set of all fundamental operations of \mathcal{A} will be denoted by F. We require that all algebras of \mathcal{C} have a constant 0 which is either a nullary operation of F or at least equationally defined. For $\mathcal{A} \in \mathcal{C}$, this constant will be denoted by 0_A .

An (n+m)-ary term $p(x_1,\ldots,x_n,y_1,\ldots,y_m)$ of type τ is called an *ideal term* in y_1,\ldots,y_m if

$$p(x_1,\ldots,x_n,0,\ldots,0)=0$$

is an identity in C. For $A = (A, F) \in C$, a non-void subset I of A is called an *ideal* of A if for every ideal term $p(x_1, \ldots, x_n, y_1, \ldots, y_m)$ in y_1, \ldots, y_m and all elements a_1, \ldots, a_n of A and b_1, \ldots, b_m of I we have

$$p(a_1,\ldots,a_n,b_1,\ldots,b_m)\in I;$$

is such a case, we say that I is closed under the ideal term p. In other words, a non-void subset of A is an ideal of A if it is closed under every ideal term.

It is worth mentioning that for rings and for lattices with 0 this concept coincides with common concept of an ideal in these algebras. For groups, it coincides with the concept of the normal subgroup.

For an algebra $\mathcal{A} \in \mathcal{C}$, we denote by Id \mathcal{A} the set of all ideals of \mathcal{A} . Evidently, $\{0_A\}$ and the whole algebra \mathcal{A} are ideals of \mathcal{A} . It is easy to show that Id \mathcal{A} is a complete lattice with respect to set inclusion where meet coincides with set intersection.

Further, denote by $\mathcal{IT}(\mathcal{A})$ the set of all ideal terms of $\mathcal{A} \in \mathcal{C}$. It can be shown that $\mathcal{IT}(\mathcal{A})$ is a clone and, moreover, either $\mathcal{IT}(\mathcal{A})$ consists only of 0_A and all the projections or $\mathcal{IT}(\mathcal{A})$ is infinite. We say that \mathcal{A} has a *finite basis of ideal terms* if there exists a finite subset of $\mathcal{IT}(\mathcal{A})$ generating the clone $\mathcal{IT}(\mathcal{A})$. It is well-known that groups, rings or lattices with 0 have finite bases of ideal terms.

For any $\Theta \in Con \mathcal{A}$, the congruence kernel $[0]_{\Theta}$ is an ideal of \mathcal{A} . On the other hand, there can exist ideals of \mathcal{A} which are not congruence kernels.

An algebra $\mathcal{A} = (A, F)$ is said to have a *finite type* if F is a finite set.

2. Rees ideals

Definition 2 Let \mathcal{C} be a class of algebras with 0. An ideal I of an algebra $\mathcal{A} \in \mathcal{C}$ is called a *Rees ideal* if $I^2 \cup \omega_A \in Con \mathcal{A}$; any congruence of this form is called a *Rees ideal congruence* (induced by I). An algebra \mathcal{A} is a *Rees ideal algebra* if every ideal of \mathcal{A} is a Rees ideal. A class \mathcal{C} is a *Rees ideal class* if each $\mathcal{A} \in \mathcal{C}$ is a Rees ideal algebra.

Evidently, for any $A \in C$, $\{0_A\}$ and A are Rees ideals of A and ω_A , ι_A are Rees ideal congruences.

Rees congruences were intensively studied on lattices, see [2], [4]. These results are summarized by J. Duda (see [2], Theorem 3):

Proposition. Let C be a class of lattices with 0. Then C is a Rees ideal class if and only if C is a class of chains.

Example 1. Consider the commutative groupoid $\mathcal{G}=(\{0,a,b,c\},\cdot)$ given as follows:

Evidently, the subset $\{0, a, b\}$ is a congruence kernel, thus $\{0\}$, $\{0, a, b\}$, $\{0, a, b, c\}$ are ideals of \mathcal{G} . It is an easy exercise to check that \mathcal{G} has no other ideals. Evidently, each of these ideals is a Rees one, i.e. \mathcal{G} is a Rees ideal algebra.

For an algebra \mathcal{A} , denote by $Con_R\mathcal{A}$ the set of all Rees ideal congruences of \mathcal{A} . We are able to characterize Rees ideal algebras by two-generated ideals as follows:

Lemma 2. Let A be an algebra with 0. The following conditions are equivalent:

- (1) A is a Rees ideal algebra;
- (2) every ideal of A generated by two elements is a Rees ideal;
- (3) for every unary polynomial p over \mathcal{A} and for any elements a, b, of \mathcal{A} we have either
 - (i) p(a) = p(b), or
- (ii) there exist ideal terms $q(x_1, \ldots, x_n, y_1, y_2)$, $r(x_1, \ldots, x_n, y_1, y_2)$ in y_1, y_2 such that $p(a) = q(c_1, \ldots, c_n, a, b)$, $p(b) = r(c_1, \ldots, c_n, a, b)$ for some elements c_1, \ldots, c_n of \mathcal{A} .

Proof. (1) \Rightarrow (2) is trivial. Prove (2) \Rightarrow (3): Let a, b be elements of \mathcal{A} and p a unary polynomial over \mathcal{A} . Consider an ideal I of \mathcal{A} generated by the set $\{a, b\}$. By (2), I is a Rees ideal, i.e. $\Theta_I = I^2 \cup \omega_A \in Con \mathcal{A}$. Moreover, $a, b \in I$ implies

 $\langle a,b\rangle \in \Theta_I$. Hence also $\langle p(a),p(b)\rangle \in \Theta_I$, i.e. either p(a)=p(b) or $p(a),p(b)\in I$, i.e. there exist ideal terms q,r as desired in (3), see [6] for some details.

 $(3) \Rightarrow (1)$: Let I be an ideal of \mathcal{A} . Evidently, $\Theta_I = I^2 \cup \omega_A$ is an equivalence on \mathcal{A} . To prove $\Theta_I \in Con \ \mathcal{A}$ we need only to prove the substitution property of Θ_I . Since Θ_I is reflexive and transitive, it remains only to show the substitution property with respect to unary polynomials over \mathcal{A} . Let $\langle a,b\rangle \in \Theta_I$ and let p be a unary polynomial over \mathcal{A} . By (3), either p(a) = p(b) or $p(a), p(b) \in I$, i.e. $\langle p(a), p(b) \rangle \in \Theta_I = I^2 \cup \omega_A$, which completes the proof.

Lemma 3. Every homomorphic image of a Rees ideal algebra is a Rees ideal algebra.

Proof. Let \mathcal{A} be a Rees ideal algebra and let $\mathcal{B} = h(\mathcal{A})$ for some homomorphism h of \mathcal{A} . Let I be an ideal of \mathcal{B} . Let $J = h^{-1}(I)$. It is a routine to show that J is an ideal of \mathcal{A} , i.e. $J^2 \cup \omega_A \in Con \ \mathcal{A}$. Since $I^2 \cup \omega_B$ is an equivalence on \mathcal{B} , it remains only to prove the substitution property of $I^2 \cup \omega_B$ with respect to unary polynomials over \mathcal{B} . Let p be a unary polynomial over \mathcal{B} . Then $p(x) = t(x, b_1, \ldots, b_n)$ for some term function t over \mathcal{B} and elements b_1, \ldots, b_n of \mathcal{B} . Suppose $\langle a, b \rangle \in I^2 \cup \omega_B$. The case a = b is trivial. Let $a \neq b$. Then $a, b \in I$, i.e. there are $a', b' \in A$ with h(a') = a, h(b') = b. Hence $a', b' \in J$, thus $\langle a', b' \rangle \in J^2 \cup \omega_A$ and, by the assumption, also $\langle t(a', c_1, \ldots, c_n), t(b', c_1, \ldots, c_n) \rangle \in J^2 \cup \omega_A$ for $c_i \in h^{-1}(b_i)$, $i = 1, \ldots n$. Since h is a homomorphism, we conclude p(a) = p(b) or $p(a), p(b) \in I$.

Remark 2. A class \mathcal{C} of Rees ideal algebras of the same type need not be closed under direct products as one may check using Proposition 2. Moreover, \mathcal{C} need not be closed under subalgebras as the following example shows.

Example 2. Let $\mathcal{A} = (A, \cdot)$, where $A = \{0, a, b, c, d\}$ and the binary operation \cdot is defined as follows:

•	0	a	b		d
0	0	0	0	0	0
a	0	a	a	a	d
b	0	a	a	c	d
c	0	a	b	c	d
d	0	a	b	c	d

Evidently, $\{0\}$ and A are the only ideals of \mathcal{A} , i.e. \mathcal{A} is a Rees ideal algebra. Further, $\mathcal{B} = (\{0, a, b, c\}, \cdot)$ is a subalgebra of \mathcal{A} having an ideal $I = \{0, a\}$. However, $I^2 \cup \omega_B \notin Con \mathcal{B}$, i.e. \mathcal{B} is not a Rees ideal algebra.

3. Rees ideal varieties

Varieties of Rees algebras were characterized in [1]. It was proved that \mathcal{V} is a variety of Rees algebras if and only if \mathcal{V} is at most unary. We are going to establish a characterization of varieties of Rees ideal algebras showing that these varieties have not restricted their similarity types.

Theorem. For a variety V with 0, the following conditions are equivalent:

- (1) \mathcal{V} is a Rees ideal variety;
- (2) for any integer $n \ge 1$ and any n-ary term t and each $i \in \{1, ..., n\}$ either t does not depend on the i-th variable or

$$t(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)=0$$

is an identity of \mathcal{V} .

Proof. (1) \Rightarrow (2) Let t be an n-ary term of \mathcal{V} and $\mathcal{A} = F_{\mathcal{V}}(x_1, \ldots, x_n, y)$ a free algebra of \mathcal{V} . By (3) of Lemma 2, either

(*)
$$t(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) = t(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n)$$

or there exists an ideal term q in the last two variables such that

$$v(x_i) = t(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) = q(a_1, \dots, a_k, x_i, y)$$

for some $a_1, \ldots, a_k \in A$. Since $v(x_i)$ does not depend on y, this implies also

$$v(x_i) = q(a_1, \dots, a_k, x_i, x_i).$$

In the case of (*), t does not depend on the i-th variable. The latter case gives

$$t(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)=q(a_1,\ldots,a_k,0,0)=0.$$

 $(2)\Rightarrow (1)$: Let $\mathcal{A}\in\mathcal{V}$ and let I be an ideal of \mathcal{A} . Set $\Theta_I=I^2\cup\omega_A$. Since Θ_I is an equivalence on A, it remains to show the substitution property with respect to unary polynomials over \mathcal{A} . Suppose $\langle a,b\rangle\in\Theta_I$ and p is a unary polynomial over \mathcal{A} . If a=b then p(a)=p(b). If $a\neq b$ then $a,b\in I$. By (2), p is either constant, i.e. p(a)=p(b), or $p(x)=t(a_1,\ldots,a_{i-1},x,a_{i+1},\ldots,a_n)$ for some n-ary term function t over \mathcal{A} and for some elements a_1,\ldots,a_n of \mathcal{A} . By (2), t is an ideal term in the i-th variable, so also p(0)=0. Hence $a,b\in I$ implies $p(a),p(b)\in I$. In all cases we conclude $\langle p(a),p(b)\rangle\in\Theta_I$ proving $I^2\cup\omega_A=\Theta_I\in Con\ \mathcal{A}$.

Example 3. (a) The variety of all \land -semilattices with 0 is a Rees ideal variety. (b) More generally, any variety of groupoids with 0 satisfying the identities $x \cdot 0 = 0 = 0 \cdot x$ is a Rees ideal variety. (c) Every variety of at most unary algebras with 0 satisfying f(0) = 0 for any unary fundamental operation f is a Rees ideal variety.

Corollary. Let V be a Rees ideal variety of a finite similarity type. Then V has a finite basis of ideal terms.

Proof. By Theorem, every n-ary term either is an ideal term in the i-th variable or it does not depend on the i-th variable. Hence, for $\mathcal{A} = (A, F) \in \mathcal{V}$ and $\emptyset \neq I \subseteq A$, I is an ideal of \mathcal{A} if and only if I is closed under every ideal term which is of the form $f(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n)$, where $f \in F$ and f depends on the i-th variable. Since F is finite and every $f \in F$ is finitary, we conclude the assertion.

References

- Chajda I., Duda J.: Rees algebras and their varieties. Publ. Math. (Debrecen) 32 (1985), 17–22.
- [2] Duda J.: Rees sublattices of a lattice. Publ. Math. (Debrecen) 35 (1988), 77-82.
- [3] Rees D.: On semigroups. Proc. Cambridge Phil. Soc. 36 (1940), 387–400.
- [4] Szász G.: Rees factor lattices. Publ. Math. (Debrecen) 15 (1968), 259–266.
- [5] Tichy R.F.: The Rees congruences in universal algebras. Publ. Inst. Math. (Beograd) 29 (1981), 229–239.
- [6] Ursini A.: Sulla varietá di algebra con una buona teoria degli ideali. Boll. U. M. I. (4) 6 (1972), 90-95.

Author's address: Ivan Chajda, Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic, e-mail: chajda@risc.upol.cz.