7.2 The von Neumann condition
Consider a discretization for a linear system with variable, time-independent coefficients such that
where
denotes the gridfunction
and
is called the amplification
matrix. We assume that
is also time-independent. Then
and the approximation (7.40, 7.41) is stable if and only if there are constants
and
such that
for all
and high enough resolutions.
In practice, condition (7.43) is not very manageable as a way of determining if a given scheme
is stable since it involves computing the norm of the power of a matrix. A simpler condition
based on the eigenvalues
of
as opposed to the norm of
is von Neumann’s one:
This condition is necessary for numerical stability: if
is an eigenvalue of
,
is an eigenvalue of
and
That is,
which, in order to be valid for all
, implies Eq. (7.44).
As already mentioned, in order to analyze numerical stability, one can drop lower-order terms. Doing so
typically leads to
depending on
and
only through a quotient (the CFL factor) of the form
(with
for hyperbolic equations)
Then for Eq. (7.44) to hold for all
while keeping the CFL factor fixed (in particular, for small
), the following condition has to be satisfied:
and one has a stronger version of the von Neumann condition, which is the one encountered in Example 33;
see Eq. (7.18).
7.2.1 The periodic, scalar case
We return to the periodic scalar case, such as the schemes discussed in Examples 33, 34, 35, and 36 with
some more generality. Suppose then, in addition to the linearity and time-independent assumptions of the
continuum problem, that the initial data and discretization (7.40, 7.41) are periodic on the interval
. Through a Fourier expansion we can write the grid function
corresponding to the initial data as
where
. The approximation becomes
Assuming that
is diagonal in the basis
, such that
as is many times the case, we obtain, using Parseval’s identity,
If
for some constant
then
and stability follows. Conversely, if the scheme is stable and (7.52) holds, (7.54) has to be satisfied. Take
then
or
for arbitrary
, which implies (7.54). Therefore, provided the condition (7.52) holds, stability is
equivalent to the requirement (7.54) on the eigenvalues of
.
7.2.2 The general, linear, time-independent case
However, as mentioned, the von Neumann condition is not sufficient for stability, neither in its original
form (7.44) nor in its strong one (7.49), unless, for example,
can be uniformly diagonalized. This
means that there exists a matrix
such that
is diagonal and the condition number of
with respect to the same norm,
is bounded
for some constant
independent of resolution (an example is that of
being normal,
). In that case
and
Next, we discuss two examples where the von Neumann condition is satisfied but the resulting scheme is
unconditionally unstable. The first one is for a well-posed underlying continuum problem and the second
one for an ill-posed one.
Example 38. An unstable discretization, which satisfies the von Neumann condition for a
trivially–well-posed problem [228
].
Consider the following system on a periodic domain with periodic initial data
discretized as
with
given by Eq. (7.32). The Fourier transform of the amplification matrix and its
-th power are
The von Neumann condition is satisfied, since the eigenvalues are
. However, the discretization
is unstable for any value of
. For the unit vector
, for instance, we have
which grows without bound as
is increased for
.
The von-Neumann condition is clearly not sufficient for stability in this example because the
amplification matrix not only cannot be uniformly diagonalized, but it cannot be diagonalized at all because
of the Jordan block structure in (7.65).
Example 39. Ill-posed problems are unconditionally unstable, even if they satisfy the von Neumann
condition. The following example is drawn from [107
].
Consider the periodic Cauchy problem
where
,
is a
constant matrix, and the following discretization. The right-hand
side of the equation is approximated by a second-order centered derivative plus higher (third) order
numerical dissipation (see Section 8.5)
where
is the
identity matrix,
an arbitrary parameter regulating the strength of the
numerical dissipation and
are first-order forward and backward approximations of
,
The resulting system of ordinary differential equations is marched in time (method of lines, discussed in
Section 7.3) through an explicit method: the iterated Crank–Nicholson (ICN) one with an arbitrary but
fixed number of iterations
(see Example 37).
If the matrix
is diagonalizable, as in the scalar case of Example 37, the resulting discretization is
numerically stable for
and
, even without dissipation. On the other
hand, if the system (7.68) is weakly hyperbolic, as when the principal part has a Jordan block,
one can expect on general grounds that any discretization will be unconditionally unstable. As an
illustration, this was explicitly shown in [107] for the above scheme and variations of it. In Fourier space the
amplification matrix and its
-th power take the form
with coefficients
depending on
such that for an arbitrary small initial perturbation at
just one gridpoint,
the solution satisfies
and is therefore unstable regardless of the value of
and
. On the other hand, the von Neumann
condition
is satisfied if and only if
Notice that, as expected, the addition of numerical dissipation cannot stabilize the scheme
independent of its amount. Furthermore, adding dissipation with a strength parameter
violates the von Neumann condition (7.75) and the growth rate of the numerical instability
worsens.