![]() |
1 | Aichelburg, P.C. and Bizoń, P., “Magnetically Charged Black Holes and their Stability”, Phys.
Rev. D, 48, 607–615, (1993). [![]() ![]() |
![]() |
2 | Alexakis, S., Ionescu, A.D. and Klainerman, S., “Hawking’s local rigidity theorem without
analyticity”, Geom. Funct. Anal., 20, 845–869, (2010). [![]() ![]() |
![]() |
3 | Alexakis, S., Ionescu, A.D. and Klainerman, S., “Uniqueness of smooth stationary black holes in
vacuum: small perturbations of the Kerr spaces”, Commun. Math. Phys., 299, 89–127, (2010).
[![]() ![]() |
![]() |
4 | Anderson, M.T., “On Stationary Vacuum Solutions to the Einstein Equations”, Ann. Henri
Poincare, 1, 977–994, (2000). [![]() ![]() |
![]() |
5 | Anderson, M.T., “On the Structure of Solutions to the Static Vacuum Einstein Equations”,
Ann. Henri Poincare, 1, 995–1042, (2000). [![]() ![]() |
![]() |
6 | Andersson, L. and Metzger, J., “The area of horizons and the trapped region”, Commun. Math.
Phys., 290, 941–972, (2009). [![]() ![]() |
![]() |
7 | Ansorg, M. and Pfister, H., “A universal constraint between charge and rotation rate for
degenerate black holes surrounded by matter”, Class. Quantum Grav., 25, 035009, (2008).
[![]() ![]() |
![]() |
8 | Baade, W. and Zwicky, F., “Cosmic Rays from Super-Novae”, Proc. Natl. Acad. Sci. USA, 20,
254–263, (1934). [![]() |
![]() |
9 | Bardeen, J.M., Carter, B. and Hawking, S.W., “The four laws of black hole mechanics”,
Commun. Math. Phys., 31, 161–170, (1973). [![]() ![]() |
![]() |
10 | Bartnik, R., “The existence of maximal hypersurfaces in asymptotically flat space-times”,
Commun. Math. Phys., 94, 155–175, (1984). [![]() |
![]() |
11 | Bartnik, R., “The spherically symmetric Einstein Yang-Mills equations”, in Perjés, Z., ed., Relativity Today, Proceedings of the Third Hungarian Relativity Workshop 1989, Relativity Today, pp. 221–240, (Nova Science, Commack, NY, 1991). |
![]() |
12 | Bartnik, R. and Chruściel, P.T., “Boundary value problems for Dirac-type equations”, J.
reine angew. Math., 579, 13–73, (2005). [![]() ![]() |
![]() |
13 | Bartnik, R.A., Fisher, M. and Oliynyk, T.A., “Static Spherically Symmetric Solutions of
the SO(5) Einstein Yang–Mills Equations”, J. Math. Phys., 51, 032504, (2010). [![]() ![]() |
![]() |
14 | Bartnik, R. and McKinnon, J., “Particlelike Solutions of the Einstein–Yang–Mills Equations”,
Phys. Rev. Lett., 61, 141–144, (1988). [![]() |
![]() |
15 | Baxter, J.E. and Winstanley, E., “On the existence of soliton and hairy black hole solutions
of su(N) Einstein–Yang–Mills theory with a negative cosmological constant”, Class. Quantum
Grav., 25, 245014, (2008). [![]() ![]() |
![]() |
16 | Beem, J.K., Ehrlich, P.E. and Easley, K.L., Global Lorentzian Geometry, Monographs and
Textbooks in Pure and Applied Mathematics, 202, (Marcel Dekker, New York, 1996), 2nd
edition. [![]() |
![]() |
17 | Beig, R. and Chruściel, P.T., “Killing vectors in asymptotically flat space-times. I.
Asymptotically translational Killing vectors and the rigid positive energy theorem”, J. Math.
Phys., 37, 1939–1961, (1996). [![]() ![]() |
![]() |
18 | Beig, R. and Chruściel, P.T., “The Isometry Groups of Asymptotically Flat, Asymptotically
Empty Space-Times with Timelike ADM Four-Momentum”, Commun. Math. Phys., 188,
585–597, (1997). [![]() ![]() |
![]() |
19 | Beig, R. and Chruściel, P.T., “The asymptotics of stationary electro-vacuum metrics in odd
spacetime dimensions”, Class. Quantum Grav., 24, 867–874, (2007). [![]() ![]() |
![]() |
20 | Beig, R., Gibbons, G.W. and Schoen, R.M., “Gravitating opposites attract”, Class. Quantum
Grav., 26, 225013, (2009). [![]() ![]() |
![]() |
21 | Beig, R. and Schoen, R.M., “On static n-body configurations in relativity”, Class. Quantum
Grav., 26, 075014, (2009). [![]() ![]() |
![]() |
22 | Belinskii, V.A. and Zakharov, V.E., “Integration of the Einstein equations by means of the inverse scattering problem technique and construction of exact soliton solutions”, Sov. Phys. JETP, 48, 985, (1978). |
![]() |
23 | Belinskii, V.A. and Zakharov, V.E., “Stationary gravitational solitons with axial symmetry”, Sov. Phys. JETP, 50, 1, (1979). |
![]() |
24 | Bizoń, P., “Colored black holes”, Phys. Rev. Lett., 64, 2844–2847, (1990). [![]() |
![]() |
25 | Booth, I. and Fairhurst, S., “Extremality conditions for isolated and dynamical horizons”, Phys.
Rev. D, 77, 084005, (2008). [![]() ![]() |
![]() |
26 | Boothby, W.M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Pure
and Applied Mathematics, 63, (Academic Press, New York, 1975). [![]() |
![]() |
27 | Boschung, P., Brodbeck, O., Moser, F., Straumann, N. and Volkov, M.S., “Instability of
Gravitating Sphalerons”, Phys. Rev. D, 50, 3842–3846, (1994). [![]() ![]() |
![]() |
28 | Breitenlohner, P., Forgács, P. and Maison, D., “Gravitating monopole solutions”, Nucl. Phys.
B, 383, 357–376, (1992). [![]() |
![]() |
29 | Breitenlohner, P., Forgács, P. and Maison, D., “Static Spherically Symmetric Solutions of the
Einstein–Yang–Mills Equations”, Commun. Math. Phys., 163, 141–172, (1994). [![]() ![]() |
![]() |
30 | Breitenlohner, P., Forgács, P. and Maison, D., “Gravitating monopole solutions II”, Nucl.
Phys. B, 442, 126–156, (1995). [![]() ![]() |
![]() |
31 | Breitenlohner, P., Maison, D. and Gibbons, G.W., “Four-Dimensional Black Holes from
Kaluza–Klein Theories”, Commun. Math. Phys., 120, 295–334, (1988). [![]() |
![]() |
32 | Brill, D.R., “Electromagnetic Fields in a Homogeneous, Nonisotropic Universe”, Phys. Rev. B,
133, 845–848, (1964). [![]() ![]() |
![]() |
33 | Brodbeck, O., Gravitierende Eichsolitonen und Schwarze Löcher mit Yang–Mills-Haar für beliebige Eichgruppen, Ph.D. thesis, (Universität Zürich, Zürich, 1995). |
![]() |
34 | Brodbeck, O., “On Symmetric Gauge Fields for Arbitrary Gauge and Symmetry Groups”,
Helv. Phys. Acta, 69, 321–324, (1996). [![]() |
![]() |
35 | Brodbeck, O. and Heusler, M., “Stationary perturbations and infinitesimal rotations of static
Einstein–Yang–Mills configurations with bosonic matter”, Phys. Rev. D, 56, 6278–6283, (1997).
[![]() ![]() |
![]() |
36 | Brodbeck, O., Heusler, M., Lavrelashvili, G., Straumann, N. and Volkov, M.S., “Stability
Analysis of New Solutions of the EYM System with Cosmological Constant”, Phys. Rev. D,
54, 7338–7352, (1996). [![]() ![]() |
![]() |
37 | Brodbeck, O., Heusler, M. and Straumann, N., “Pulsation of Spherically Symmetric Systems
in General Relativity”, Phys. Rev. D, 53, 754–761, (1996). [![]() ![]() |
![]() |
38 | Brodbeck, O., Heusler, M., Straumann, N. and Volkov, M., “Rotating solitons and non-rotating
non-static black holes”, Phys. Rev. Lett., 79, 4310–4313, (1997). [![]() ![]() |
![]() |
39 | Brodbeck, O. and Straumann, N., “A generalized Birkhoff theorem for the Einstein–Yang–Mills
system”, J. Math. Phys., 34, 2412–2423, (1993). [![]() ![]() |
![]() |
40 | Brodbeck, O. and Straumann, N., “Instability of Einstein-Yang-Mills solitons for arbitrary
gauge groups”, Phys. Lett. B, 324, 309–314, (1994). [![]() ![]() |
![]() |
41 | Bunting, G.L., Proof of the uniqueness conjecture for black holes, Ph.D. thesis, (University of New England, Armidale, NSW, 1983). |
![]() |
42 | Bunting, G.L. and Masood-ul Alam, A.K.M., “Nonexistence of multiple black holes in
asymptotically Euclidean static vacuum space-time”, Gen. Relativ. Gravit., 19, 147–154,
(1987). [![]() ![]() |
![]() |
43 | Carter, B., “Killing Horizons and Orthogonally Transitive Groups in Space-Time”, J. Math.
Phys., 10, 70–81, (1969). [![]() |
![]() |
44 | Carter, B., “The Commutation Property of a Stationary, Axisymmetric System”, Commun.
Math. Phys., 17, 233–238, (1970). [![]() |
![]() |
45 | Carter, B., “Axisymmetric Black Hole has only Two Degrees of Freedom”, Phys. Rev. Lett.,
26, 331–332, (1971). [![]() |
![]() |
46 | Carter, B., “Black Hole Equilibrium States”, in DeWitt, C. and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 57–214, (Gordon and Breach, New York, 1973). |
![]() |
47 | Carter, B., “The General Theory of the Mechanical, Electromagnetic and Thermodynamic Properties of Black Holes”, in Hawking, S.W. and Israel, W., eds., General Relativity: An Einstein Centenary Survey, pp. 294–369, (Cambridge University Press, Cambridge; New York, 1979). |
![]() |
48 | Carter, B., “Bunting Identity and Mazur Identity for Non-Linear Elliptic Systems Including
the Black Hole Equilibrium Problem”, Commun. Math. Phys., 99, 563–591, (1985). [![]() |
![]() |
49 | Carter, B., “Bunting Identity and Mazur Identity for Non-Linear Elliptic Systems Including the
Black Hole Equilibrium Problem”, Commun. Math. Phys., 99, 563–591, (1985). [![]() ![]() |
![]() |
50 | Carter, B., “Mathematical Foundations of the Theory of Relativistic Stellar and Black Hole Configurations”, in Carter, B. and Hartle, J.B., eds., Gravitation in Astrophysics: Cargèse 1986, Proceedings of a NATO Advanced Study Institute on Gravitation in Astrophysics, held July 15 – 31, 1986 in Cargèse, France, NATO ASI Series B, pp. 63–122, (Plenum Press, New York, 1987). |
![]() |
51 | Carter, B., “Has the black hole equilibrium problem been solved?”, in Piran, T., ed., The
Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental
General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held
at the Hebrew University of Jerusalem, June 22 – 27, 1997, (World Scientific, Singapore, 1999).
[![]() |
![]() |
52 | Celotti, A., Miller, J.C. and Sciama, D.W., “Astrophysical evidence for the existence of black
holes”, Class. Quantum Grav., 16, A3–A21, (1999). [![]() ![]() |
![]() |
53 | Chandrasekhar, S., “Highly Collapsed Configurations of Stellar Mass”, Mon. Not. R. Astron.
Soc., 91, 456–466, (1931). [![]() |
![]() |
54 | Chandrasekhar, S., “The Maximum Mass of Ideal White Dwarfs”, Astrophys. J., 74, 81–82,
(1931). [![]() |
![]() |
55 | Chandrasekhar, S., “How One May Explore the Physical Content of the General Theory of
Relativity”, in Caldi, D.G. and Mostow, G.D., eds., Proceedings of the Gibbs Symposium, Yale
University, May 15 – 17, 1989, pp. 227–251, (AMS / AIP, Providence, 1990). [![]() |
![]() |
56 | Chandrasekhar, S., The Mathematical Theory of Black Holes and of Colliding Plane Waves,
Selected Papers, 6, (University of Chicago Press, Chicago; London, 1991). [![]() |
![]() |
57 | Chruściel, P.T., “On completeness of orbits of Killing vector fields”, Class. Quantum Grav.,
10, 2091–2101, (1993). [![]() ![]() |
![]() |
58 | Chruściel, P.T., “‘No-Hair’ Theorems: Folklore, Conjectures, Results”, in Beem, J.K. and
Duggal, K.L., eds., Differential Geometry and Mathematical Physics, AMS-CMS Special Session
on Geometric Methods in Mathematical Physics, August 15 – 19, 1993, Vancouver, British
Columbia, Canada, Contemporary Mathematics, 170, pp. 23–49, (AMS, Providence, 1994).
[![]() |
![]() |
59 | Chruściel, P.T., “Uniqueness of Stationary, Electro-Vacuum Black Holes Revisited”, Helv.
Phys. Acta, 69, 529–552, (1996). [![]() |
![]() |
60 | Chruściel, P.T., “On rigidity of analytic black holes”, Commun. Math. Phys., 189, 1–7, (1997).
[![]() |
![]() |
61 | Chruściel, P.T., “The classification of static vacuum spacetimes containing an asymptotically
flat spacelike hypersurface with compact interior”, Class. Quantum Grav., 16, 661–687, (1999).
[![]() ![]() |
![]() |
62 | Chruściel, P.T., “Towards the classification of static electrovacuum spacetimes containing an
asymptotically flat spacelike hypersurface with compact interior”, Class. Quantum Grav., 16,
689–704, (1999). [![]() ![]() |
![]() |
63 | Chruściel, P.T., “Black Holes”, in Frauendiener, J. and Friedrich, H., eds., The Conformal
Structure of Space-Time: Geometry, Analysis, Numerics, Proceedings of the international
workshop, Tübingen, Germany, 2 – 4 April 2001, Lecture Notes in Physics, 604, pp. 61–102,
(Springer, Berlin; New York, 2002). [![]() ![]() |
![]() |
64 | Chruściel, P.T., “Mass and angular-momentum inequalities for axi-symmetric initial data sets.
I. Positivity of mass”, Ann. Phys. (N.Y.), 323, 2566–2590, (2008). [![]() ![]() |
![]() |
65 | Chruściel, P.T., “On higher dimensional black holes with Abelian isometry group”, J. Math.
Phys., 50, 052501, (2009). [![]() ![]() |
![]() |
66 | Chruściel, P.T., “Elements of causality theory”, arXiv, e-print, (2011). [![]() |
![]() |
67 | Chruściel, P.T. and Cortier, J., “Maximal analytic extensions of the Emparan-Reall black
ring”, J. Differ. Geom., 85, 425–459, (2010). [![]() |
![]() |
68 | Chruściel, P.T., Cortier, J. and García-Parrado Gómez-Lobo, A., “On the global structure
of the Pomeransky–Senkov black holes”, Adv. Theor. Math. Phys., 14, 1779–1856, (2011).
[![]() |
![]() |
69 | Chruściel, P.T., Delay, E., Galloway, G.J. and Howard, R., “Regularity of Horizons and the
Area Theorem”, Ann. Henri Poincare, 2, 109–178, (2001). [![]() ![]() ![]() |
![]() |
70 | Chruściel, P.T., Eckstein, M., Nguyen, L. and Szybka, S., “Existence of singularities in
two-Kerr black holes”, Class. Quantum Grav., 28, 245017, (2011). [![]() ![]() |
![]() |
71 | Chruściel, P.T., Eckstein, M. and Szybka, S., “On smoothness of Black Saturns”, J. High
Energy Phys., 2011(11), 048, (2011). [![]() ![]() |
![]() |
72 | Chruściel, P.T. and Galloway, G.J., “Uniqueness of static black holes without analyticity”,
Class. Quantum Grav., 27, 152001, (2010). [![]() ![]() |
![]() |
73 | Chruściel, P.T., Galloway, G. and Solis, D., “Topological censorship for Kaluza-Klein
space-times”, Ann. Henri Poincare, 10, 893–912, (2009). [![]() ![]() |
![]() |
74 | Chruściel, P.T. and Kondracki, W., “Some Global Charges in Classical Yang–Mills Theory”,
Phys. Rev. D, 36, 1874–1881, (1987). [![]() ![]() |
![]() |
75 | Chruściel, P.T., Li, Y. and Weinstein, G., “Mass and angular-momentum inequalities for
axi-symmetric initial data sets. II. Angular momentum”, Ann. Phys. (N.Y.), 323, 2591–2613,
(2008). [![]() ![]() |
![]() |
76 | Chruściel, P.T. and Lopes Costa, J., “On uniqueness of stationary vacuum black holes”,
Asterisque, 321, 195–265, (2008). [![]() |
![]() |
77 | Chruściel, P.T. and Maerten, D., “Killing vectors in asymptotically flat space-times. II.
Asymptotically translational Killing vectors and the rigid positive energy theorem in higher
dimensions”, J. Math. Phys., 47, 022502, (2006). [![]() ![]() |
![]() |
78 | Chruściel, P.T. and Nadirashvili, N.S., “All Electrovac Majumdar–Papapetrou Space-times
with Non-Singular Black Holes”, Class. Quantum Grav., 12, L17–L23, (1995). [![]() ![]() |
![]() |
79 | Chruściel, P.T. and Nguyen, L., “A Uniqueness Theorem for Degenerate Kerr–Newman Black
Holes”, Ann. Henri Poincare, 11, 585–609, (2010). [![]() ![]() |
![]() |
80 | Chruściel, P.T., Reall, H.S. and Tod, K.P., “On Israel–Wilson–Perjés black holes”, Class.
Quantum Grav., 23, 2519–2540, (2006). [![]() ![]() |
![]() |
81 | Chruściel, P.T., Reall, H.S. and Tod, P., “On non-existence of static vacuum black holes with
degenerate components of the event horizon”, Class. Quantum Grav., 23, 549–554, (2006).
[![]() ![]() |
![]() |
82 | Chruściel, P.T. and Szybka, S.J., “Stable causality of the Pomeransky–Senkov black holes”,
Adv. Theor. Math. Phys., 15, 175–178, (2010). [![]() |
![]() |
83 | Chruściel, P.T. and Tod, P., “The Classification of Static Electro-Vacuum Space-Times
Containing an Asymptotically Flat Spacelike Hypersurface with Compact Interior”, Commun.
Math. Phys., 271, 577–589, (2007). [![]() ![]() |
![]() |
84 | Chruściel, P.T. and Wald, R.M., “Maximal Hypersurfaces in Stationary Asymptotically Flat
Spacetimes”, Commun. Math. Phys., 163, 561–604, (1994). [![]() |
![]() |
85 | Chruściel, P.T. and Wald, R.M., “On the Topology of Stationary Black Holes”, Class.
Quantum Grav., 11, L147–L152, (1994). [![]() ![]() |
![]() |
86 | Clément, G. and Gal’tsov, D.V., “Stationary BPS Solutions to Dilaton-Axion Gravity”, Phys.
Rev. D, 54, 6136–6152, (1996). [![]() ![]() |
![]() |
87 | Coleman, S., “The Uses of Instantons”, in Zichichi, A., ed., The Whys of SubNuclear Physics, Proceedings of the International School of Subnuclear Physics, Erice, Trapani, Sicily, July 23 – August 10, 1977, The Subnuclear Series, 15, pp. 805–916, (Plenum Press, New York, 1979). |
![]() |
88 | Dain, S. and Reiris, M., “Area–Angular momentum inequality for axisymmetric black holes”,
Phys. Rev. Lett., 107, 051101, (2011). [![]() ![]() |
![]() |
89 | de Felice, F. and Clarke, C.J.S., Relativity on Curved Manifolds, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1990). |
![]() |
90 | Deser, S., “Absence of Static Solutions in Source-free Yang-Mills Theory”, Phys. Lett. B, 64,
463–465, (1976). [![]() ![]() |
![]() |
91 | Deser, S., “Absence of Static Einstein–Yang–Mills Excitations in Three Dimensions”, Class.
Quantum Grav., 1, L1–L2, (1984). [![]() |
![]() |
92 | Dias, O.J.C., Figueras, P., Monteiro, R., Reall, H.S. and Santos, J.E., “An instability of
higher-dimensional rotating black holes”, J. High Energy Phys., 2010(05), 076, (2010). [![]() ![]() |
![]() |
93 | Dias, O.J.C., Horowitz, G.T. and Santos, J.E., “Black holes with only one Killing field”, J.
High Energy Phys., 2011(7), 115, (2011). [![]() ![]() |
![]() |
94 | Droz, S., Heusler, M. and Straumann, N., “New Black Hole Solutions with Hair”, Phys. Lett.
B, 268, 371–376, (1991). [![]() |
![]() |
95 | Eichenherr, H. and Forger, M., “More about Non-Linear Sigma Models on Symmetric Spaces”,
Nucl. Phys. B, 164, 528–535, (1980). [![]() ![]() |
![]() |
96 | Eichmair, M., “The Plateau problem for marginally outer trapped surfaces”, J. Differ. Geom.,
83, 551–583, (2009). [![]() |
![]() |
97 | Elvang, H. and Figueras, P., “Black Saturn”, J. High Energy Phys., 2007(05), 050, (2007).
[![]() ![]() |
![]() |
98 | Emparan, R., Harmark, T., Niarchos, V. and Obers, N.A., “New Horizons for Black Holes and
Branes”, J. High Energy Phys., 2010(04), 046, (2010). [![]() ![]() |
![]() |
99 | Emparan, R. and Reall, H.S., “A rotating black ring in five dimensions”, Phys. Rev. Lett., 88,
101101, (2002). [![]() ![]() |
![]() |
100 | Emparan, R. and Reall, H.S., “Black rings”, Class. Quantum Grav., 23, R169–R197, (2006).
[![]() ![]() |
![]() |
101 | Emparan, R. and Reall, H.S., “Black Holes in Higher Dimensions”, Living Rev. Relativity, 11,
lrr-2008-6, (2008). [![]() http://www.livingreviews.org/lrr-2008-6. |
![]() |
102 | Ernst, F.J., “New Formulation of the Axially Symmetric Gravitational Field Problem”, Phys.
Rev., 167, 1175–1178, (1968). [![]() ![]() |
![]() |
103 | Ernst, F.J., “New Formulation of the Axially Symmetric Gravitational Field Problem. II”,
Phys. Rev., 168, 1415–1417, (1968). [![]() ![]() |
![]() |
104 | Fisher, M. and Oliynyk, T.A., “There are no Magnetically Charged Particle-like Solutions of
the Einstein Yang-Mills Equations for Models with an Abelian Residual Group”, Commun.
Math. Phys., 312, 137–177, (2012). [![]() ![]() |
![]() |
105 | Forgács, P. and Manton, N.S., “Space-Time Symmetries in Gauge Theories”, Commun. Math.
Phys., 72, 15–35, (1980). [![]() ![]() |
![]() |
106 | Friedman, J.L., Schleich, K. and Witt, D.M., “Topological Censorship”, Phys. Rev. Lett., 71,
1486–1489, (1993). [![]() ![]() ![]() |
![]() |
107 | Friedrich, H., Rácz, I. and Wald, R.M., “On the rigidity theorem for space-times with a
stationary event horizon or a compact Cauchy horizon”, Commun. Math. Phys., 204, 691–707,
(1999). [![]() ![]() |
![]() |
108 | Galloway, G.J., “On the Topology of Black Holes”, Commun. Math. Phys., 151, 53–66, (1993).
[![]() ![]() |
![]() |
109 | Galloway, G.J., “On the topology of the domain of outer communication”, Class. Quantum
Grav., 12, L99–L101, (1995). [![]() |
![]() |
110 | Galloway, G.J., “A ‘Finite Infinity’ Version of the FSW Topological Censorship”, Class.
Quantum Grav., 13, 1471–1478, (1996). [![]() |
![]() |
111 | Galloway, G.J. and Schoen, R., “A Generalization of Hawking’s Black Hole Topology
Theorem to Higher Dimensions”, Commun. Math. Phys., 266, 571–576, (2006). [![]() ![]() |
![]() |
112 | Galloway, G.J. and Woolgar, E., “The Cosmic Censor forbids Naked Topology”, Class.
Quantum Grav., 14, L1–L7, (1997). [![]() ![]() |
![]() |
113 | Gal’tsov, D.V., “Integrable Systems in String Gravity”, Phys. Rev. Lett., 74, 2863–2866, (1995).
[![]() ![]() |
![]() |
114 | Gal’tsov, D.V., “Geroch–Kinnersley–Chitre Group for Dilaton-Axion Gravity”, in Bordag, M.,
ed., Quantum Field Theory under the Influence of External Conditions, Proceedings of the
International Workshop, Leipzig, Germany, 18 – 22 September 1995, Teubner-Texte zur Physik,
30, (Teubner, Stuttgart and Leipzig, 1996). [![]() |
![]() |
115 | Gal’tsov, D.V., “Square of general relativity”, in Wiltshire, D.L., ed., Australasian
Conference on General Relativity and Gravitation, Proceedings ACGRG1, University of
Adelaide, Australia, 12 – 17 February, 1996, (University of Adelaide, Adelaide, 1996). [![]() ![]() |
![]() |
116 | Gal’tsov, D.V. and Kechkin, O.V., “Ehlers–Harrison-Type Transformations in Dilaton-Axion
Gravity”, Phys. Rev. D, 50, 7394–7399, (1994). [![]() ![]() |
![]() |
117 | Gal’tsov, D.V. and Kechkin, O.V., “Matrix Dilaton-Axion for the Heterotic String in three
Dimensions”, Phys. Lett. B, 361, 52–58, (1995). [![]() ![]() |
![]() |
118 | Gal’tsov, D.V. and Kechkin, O.V., “U-Duality and Simplectic Formulation of Dilaton-Axion
Gravity”, Phys. Rev. D, 54, 1656–1666, (1996). [![]() ![]() |
![]() |
119 | Gal’tsov, D.V. and Letelier, P.S., “Ehlers–Harrison Transformations and Black Holes in
Dilaton-Axion Gravity with Multiple Vector Fields”, Phys. Rev. D, 55, 3580–3592, (1997).
[![]() ![]() |
![]() |
120 | Gal’tsov, D.V. and Letelier, P.S., “Interpolating Black Holes in Dilaton-Axion Gravity”, Class.
Quantum Grav., 14, L9–L14, (1997). [![]() ![]() |
![]() |
121 | Gal’tsov,
D.V. and Sharakin, S.A., “Matrix Ernst Potentials for Einstein–Maxwell-Dilaton-Axion with
Multiple Vector Fields”, Phys. Lett. B, 399, 250–257, (1997). [![]() ![]() |
![]() |
122 | Garfinkle, D., Horowitz, G.T. and Strominger, A., “Charged black holes in string theory”,
Phys. Rev. D, 43, 3140–3143, (1991). [![]() ![]() |
![]() |
123 | Genzel, R., Eisenhauer, F. and Gillessen, S., “The Galactic Center Massive Black Hole
and Nuclear Star Cluster”, Rev. Mod. Phys., 82, 3121–3195, (2010). [![]() ![]() |
![]() |
124 | Geroch, R., “A Method for Generating Solutions of Einstein’s Equations”, J. Math. Phys., 12,
918–924, (1971). [![]() |
![]() |
125 | Geroch, R., “A Method for Generating New Solutions of Einstein’s Equation. II”, J. Math.
Phys., 13, 394–404, (1972). [![]() |
![]() |
126 | Gibbons, G.W., “Antigravitating Black Hole Solitons with Scalar Hair in N = 4 Supergravity”,
Nucl. Phys. B, 207, 337–349, (1982). [![]() |
![]() |
127 | Gibbons, G.W., “Self-gravitating Magnetic Monopoles, Global Monopoles and Black Holes”, in
Barrow, J.D., Henriques, A.B., Lago, M.T.V.T. and Longair, M.S., eds., The Physical Universe:
The Interface Between Cosmology, Astrophysics and Particle Physics, Proceedings of the XII
Autumn School of Physics, Lisbon, 1 – 5 October 1990, Lecture Notes in Physics, 383, pp.
110–133, (Springer, Berlin; New York, 1990). [![]() |
![]() |
128 | Gibbons, G.W. and Hull, C.M., “A Bogomolny Bound for General Relativity and Solitons in
N = 2 Supergravity”, Phys. Lett. B, 109, 190–194, (1982). [![]() |
![]() |
129 | Gibbons, G.W., Ida, D. and Shiromizu, T., “Uniqueness of (dilatonic) charged black
holes and black p-branes in higher dimensions”, Phys. Rev. D, 66, 044010, (2002). [![]() ![]() |
![]() |
130 | Gibbons, G.W., Kallosh, R.E. and Kol, B., “Moduli, Scalar Charges, and the First Law of
Black Hole Thermodynamics”, Phys. Rev. Lett., 77, 4992–4995, (1996). [![]() ![]() |
![]() |
131 | Gibbons, G.W. and Maeda, K., “Black holes and membranes in higher-dimensional theories
with dilaton fields”, Nucl. Phys. B, 298, 741–775, (1988). [![]() |
![]() |
132 | Greene, B.R., Mathur, S.D. and O’Neill, C.M., “Eluding the No-Hair Conjecture: Black
Holes in Spontaneously Broken Gauge Theories”, Phys. Rev. D, 47, 2242–2259, (1993). [![]() ![]() |
![]() |
133 | Gubser, S.S., “On non-uniform black branes”, Class. Quantum Grav., 19, 4825–4844, (2002).
[![]() ![]() |
![]() |
134 | Hájíček, P., “General Theory of Vacuum Ergospheres”, Phys. Rev. D, 7, 2311–2316, (1973). |
![]() |
135 | Hájíček, P., “Three remarks on axisymmetric stationary horizons”, Commun. Math. Phys.,
36, 305–320, (1974). [![]() ![]() |
![]() |
136 | Hájíček, P., “Stationary Electrovac Space-times with Bifurcate Horizon”, J. Math. Phys., 16, 518–527, (1975). |
![]() |
137 | Harmark, T., “Stationary and axisymmetric solutions of higher-dimensional general relativity”,
Phys. Rev. D, 70, 124002, (2004). [![]() ![]() |
![]() |
138 | Harnad, J., Shnider, S. and Vinet, L., “Group Actions on Principal Bundles and Invariance
Conditions for Gauge Fields”, J. Math. Phys., 21, 2719–2724, (1980). [![]() ![]() |
![]() |
139 | Hartle, J.B. and Hawking, S.W., “Solutions of the Einstein–Maxwell equations with many black
holes”, Commun. Math. Phys., 26, 87–101, (1972). [![]() |
![]() |
140 | Hartmann, B., Kleihaus, B. and Kunz, J., “Axially symmetric monopoles and black
holes in Einstein–Yang–Mills–Higgs theory”, Phys. Rev. D, 65, 024027, (2001). [![]() ![]() |
![]() |
141 | Hawking, S.W., “Black holes in general relativity”, Commun. Math. Phys., 25, 152–166, (1972).
[![]() |
![]() |
142 | Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975).
[![]() |
![]() |
143 | Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge
Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [![]() |
![]() |
144 | Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in
Mathematics, 34, (American Mathematical Society, Providence, RI, 2001). [![]() |
![]() |
145 | Hennig, J., Ansorg, M. and Cederbaum, C., “A universal inequality between the angular
momentum and horizon area for axisymmetric and stationary black holes with surrounding
matter”, Class. Quantum Grav., 25, 162002, (2008). [![]() ![]() |
![]() |
146 | Hennig, J., Cederbaum, C. and Ansorg, M., “A universal inequality for axisymmetric and
stationary black holes with surrounding matter in the Einstein-Maxwell theory”, Commun.
Math. Phys., 293, 449–467, (2010). [![]() |
![]() |
147 | Hennig, J. and Neugebauer, G., “Non-existence of stationary two-black-hole configurations:
The degenerate case”, Gen. Relativ. Gravit., 43, 3139–3162, (2011). [![]() ![]() |
![]() |
148 | Herdeiro, C.A.R. and Rebelo, C., “On the interaction between two Kerr black holes”, J. High
Energy Phys., 2008(10), 017, (2008). [![]() ![]() |
![]() |
149 | Heusler, M., “Staticity and Uniqueness of Multiple Black Hole Solutions of σ-Models”, Class.
Quantum Grav., 10, 791–799, (1993). [![]() |
![]() |
150 | Heusler, M., “The Uniqueness Theorem for Rotating Black Hole Solutions of Self-gravitating
Harmonic Mappings”, Class. Quantum Grav., 12, 2021–2036, (1995). [![]() ![]() |
![]() |
151 | Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge; New
York, 1996). [![]() |
![]() |
152 | Heusler, M., “No-Hair Theorems and Black Holes with Hair”, Helv. Phys. Acta, 69, 501–528,
(1996). [![]() |
![]() |
153 | Heusler, M., “Bogomol’nyi-type Mass Formulas for a Class of Nonrotating Black Holes”, Phys.
Rev. D, 56, 961–973, (1997). [![]() ![]() |
![]() |
154 | Heusler, M., “On the Uniqueness of the Papapetrou-Majumdar metric”, Class. Quantum Grav.,
14, L129–L134, (1997). [![]() ![]() |
![]() |
155 | Heusler, M., “Uniqueness Theorems for Black Hole Space-Times”, in Hehl, F.W., Metzler,
R.J.K. and Kiefer, C., eds., Black Holes: Theory and Observations, Proceedings of the 179th
W.E. Heraeus Seminar, held at Bad Honnef, Germany, 18 – 22 August 1997, Lecture Notes in
Physics, 514, pp. 157–186, (Springer, Berlin; New York, 1998). [![]() |
![]() |
156 | Heusler, M., Droz, S. and Straumann, N., “Stability Analysis of Self-Gravitating Skyrmions”,
Phys. Lett. B, 271, 61–67, (1991). [![]() ![]() |
![]() |
157 | Heusler, M., Droz, S. and Straumann, N., “Linear Stability of Einstein–Skyrme Black Holes”,
Phys. Lett. B, 285, 21–26, (1992). [![]() ![]() |
![]() |
158 | Heusler, M. and Straumann, N., “The First Law of Black Hole Physics for a Class of Nonlinear
Matter Models”, Class. Quantum Grav., 10, 1299–1322, (1993). [![]() |
![]() |
159 | Heusler, M. and Straumann, N., “Mass Variation Formulae for Einstein–Yang–Mills–Higgs and
Einstein-dilaton Black Holes”, Phys. Lett. B, 315, 55–66, (1993). [![]() ![]() |
![]() |
160 | Heusler, M. and Straumann, N., “Staticity, Circularity, and the First Law of Black Hole
Physics”, Int. J. Mod. Phys. D, 3, 199–202, (1994). [![]() ![]() |
![]() |
161 | Heusler, M., Straumann, N. and Zhou, Z.-H., “Self-Gravitating Solutions of the Skyrme Model and their Stability”, Helv. Phys. Acta, 66, 614–632, (1993). |
![]() |
162 | Hollands, S., Holland, J. and Ishibashi, A., “Further Restrictions on the Topology of
Stationary Black Holes in Five Dimensions”, Ann. Henri Poincare, 12, 279–301, (2011). [![]() ![]() |
![]() |
163 | Hollands, S. and Ishibashi, A., “On the ‘Stationary Implies Axisymmetric’ Theorem for
Extremal Black Holes in Higher Dimensions”, Commun. Math. Phys., 291, 403–441, (2009).
[![]() ![]() |
![]() |
164 | Hollands, S. and Ishibashi, A., “All Vacuum Near Horizon Geometries in D-dimensions with
(D − 3) Commuting Rotational Symmetries”, Ann. Henri Poincare, 10, 1537–1557, (2010).
[![]() ![]() |
![]() |
165 | Hollands, S., Ishibashi, A. and Wald, R.M., “A Higher Dimensional Stationary Rotating
Black Hole Must be Axisymmetric”, Commun. Math. Phys., 271, 699–722, (2007). [![]() ![]() |
![]() |
166 | Hollands, S. and Wald, R.M., “Stability of Black Holes and Black Branes”, arXiv, e-print,
(2012). [![]() |
![]() |
167 | Hollands, S. and Yazadjiev, S., “Uniqueness Theorem for 5-Dimensional Black Holes with Two
Axial Killing Fields”, Commun. Math. Phys., 283, 749–768, (2008). [![]() ![]() |
![]() |
168 | Hollands, S. and Yazadjiev, S., “A uniqueness theorem for five-dimensional Einstein–Maxwell
black holes”, Class. Quantum Grav., 25, 095010, (2008). [![]() ![]() |
![]() |
169 | Hollands, S. and Yazadjiev, S., “A Uniqueness Theorem for Stationary Kaluza-Klein Black
Holes”, Commun. Math. Phys., 302, 631–674, (2011). [![]() ![]() |
![]() |
170 | Horowitz, G.T., “The positive energy theorem and its extensions”, in Flaherty, F.J., ed.,
Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference held
at Oregon State University Corvallis, Oregon, USA, October 17 – 21, 1983, Lecture Notes in
Physics, 202, pp. 1–21, (Springer, Berlin; New York, 1984). [![]() |
![]() |
171 | Horowitz, G.T., “Quantum States of Black Holes”, in Wald, R.M., ed., Black Holes and
Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan
Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 241–266, (University of Chicago
Press, Chicago; London, 1998). [![]() |
![]() |
172 | Horowitz, G.T. and Wiseman, T., “General black holes in Kaluza–Klein theory”, in Horowitz,
G.T., ed., Black Holes in Higher Dimensions, pp. 69–98, (Cambridge University Press,
Cambridge; New York, 2012). [![]() |
![]() |
173 | Ida, D., Ishibashi, A. and Shiromizu, T., “Topology and Uniqueness of Higher Dimensional
Black Holes”, Prog. Theor. Phys. Suppl., 189, 52–92, (2011). [![]() ![]() |
![]() |
174 | Ionescu, A.D. and Klainerman, S., “On the uniqueness of smooth, stationary black holes in
vacuum”, Invent. Math., 175, 35–102, (2009). [![]() ![]() |
![]() |
175 | Ionescu, A.D. and Klainerman, S., “Uniqueness Results for Ill-Posed Characteristic Problems
in Curved Space-Times”, Commun. Math. Phys., 285, 873–900, (2009). [![]() ![]() |
![]() |
176 | Israel, W., “Event Horizons in Static Vacuum Space-Times”, Phys. Rev., 164, 1776–1779,
(1967). [![]() ![]() |
![]() |
177 | Israel, W., “Event Horizons in Static Electrovac Space-Times”, Commun. Math. Phys., 8,
245–260, (1968). [![]() ![]() |
![]() |
178 | Israel, W., “Dark stars: the evolution of an idea”, in Hawking, S.W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 199–276, (Cambridge University Press, Cambridge; New York, 1987). |
![]() |
179 | Israel, W. and Wilson, G.A., “A Class of Stationary Electromagnetic Vacuum Fields”, J. Math.
Phys., 13, 865–867, (1972). [![]() |
![]() |
180 | Jacobson, T. and Venkatarami, S., “Topology of Event Horizons and Topological Censorship”,
Class. Quantum Grav., 12, 1055–1061, (1995). [![]() ![]() |
![]() |
181 | Jadczyk, A., “Symmetry of Einstein–Yang–Mills Systems and Dimensional Reduction”, J.
Geom. Phys., 1, 97–126, (1984). [![]() ![]() |
![]() |
182 | Jost, J., Riemannian geometry and geometric analysis, (Springer, Berlin, 1998), 2nd edition. |
![]() |
183 | Kaluza, T., “Zum Unitätsproblem der Physik”, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., 1921, 966–972, (1921). |
![]() |
184 | Kay, B.S. and Wald, R.M., “Theorems on the Uniqueness and Thermal Properties of Stationary,
Nonsingular, Quasifree States on Spacetimes with a Bifurcate Killing Horizon”, Phys. Rep.,
207, 49–136, (1991). [![]() ![]() |
![]() |
185 | Kinnersley, W., “Generation of Stationary Einstein–Maxwell Fields”, J. Math. Phys., 14,
651–653, (1973). [![]() |
![]() |
186 | Kinnersley, W., “Symmetries of the Stationary Einstein–Maxwell Field Equations. I”, J. Math.
Phys., 18, 1529–1537, (1977). [![]() ![]() |
![]() |
187 | Kinnersley, W. and Chitre, D.M., “Symmetries of the Stationary Einstein–Maxwell Field
Equations. II”, J. Math. Phys., 18, 1538–1542, (1977). [![]() ![]() |
![]() |
188 | Kinnersley, W. and Chitre, D.M., “Symmetries of the Stationary Einstein–Maxwell Equations.
IV. Transformations which preserve asymptotic flatness”, J. Math. Phys., 19, 2037–2042,
(1978). [![]() ![]() |
![]() |
189 | Kinnersley, W. and Chitre, D.M., “Symmetries of the Stationary Einstein–Maxwell Field
Equations. III”, J. Math. Phys., 19, 1926–1931, (1978). [![]() ![]() |
![]() |
190 | Kleihaus, B. and Kunz, J., “Axially Symmetric Multisphalerons in Yang–Mills-Dilaton
Theory”, Phys. Lett. B, 392, 135–140, (1997). [![]() ![]() |
![]() |
191 | Kleihaus, B. and Kunz, J., “Static Axially Symmetric Solutions of Einstein–Yang-Mills-Dilaton
Theory”, Phys. Rev. Lett., 78, 2527–2530, (1997). [![]() ![]() |
![]() |
192 | Kleihaus, B. and Kunz, J., “Static Black-Hole Solutions with Axial Symmetry”, Phys. Rev.
Lett., 79, 1595–1598, (1997). [![]() ![]() |
![]() |
193 | Kleihaus, B. and Kunz, J., “Static axially symmetric Einstein-Yang-Mills-Dilaton solutions:
Regular solutions”, Phys. Rev. D, 57, 834–856, (1998). [![]() ![]() |
![]() |
194 | Kleihaus, B. and Kunz, J., “Static Regular and Black Hole Solutions with Axial Symmetry in
EYM and EYMD Theory”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent
Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic
Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, June
22 – 27, 1997, pp. 545–547, (World Scientific, Singapore, 1999). [![]() |
![]() |
195 | Klein, O., “Quantentheorie und fünfdimensionale Relativitätstheorie”, Z. Phys., 37, 895–906,
(1926). [![]() |
![]() |
196 | Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Vol. 2, (John Wiley, New York, 1969). |
![]() |
197 | Kormendy, J. and Gebhardt, K., “Supermassive black holes in Galactic Nuclei”, in Wheeler,
J.C. and Martel, H., eds., Relativistic Astrophysics, 20th Texas Symposium, Austin, Texas,
10 – 15 December 2000, AIP Conference Proceedings, 586, pp. 363–381, (American Institute of
Physics, Melville, NY, 2001). [![]() ![]() |
![]() |
198 | Kramer, D. and Neugebauer, G., “The superposition of two Kerr solutions”, Phys. Lett. A, 75, 259–261, (1980). |
![]() |
199 | Kramer, D., Stephani, H., MacCallum, M.A.H. and Herlt, E., Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1980). |
![]() |
200 | Kudoh, H. and Wiseman, T., “Properties of Kaluza-Klein black holes”, Prog. Theor. Phys.,
111, 475–507, (2004). [![]() ![]() |
![]() |
201 | Kundt, W. and Trümper, M., “Orthogonal Decomposition of Axi-symmetric Stationary
Space-times”, Z. Phys., 192, 419–422, (1966). [![]() |
![]() |
202 | Kunduri, H.K. and Lucietti, J., “A classification of near-horizon geometries of extremal vacuum
black holes”, J. Math. Phys., 50, 082502, (2009). [![]() ![]() |
![]() |
203 | Kunduri, H.K. and Lucietti, J., “Static near-horizon geometries in five dimensions”, Class.
Quantum Grav., 26, 245010, (2009). [![]() ![]() |
![]() |
204 | Kunduri, H.K., Lucietti, J. and Reall, H.S., “Near-horizon symmetries of extremal black holes”,
Class. Quantum Grav., 24, 4169–4190, (2007). [![]() ![]() |
![]() |
205 | Künzle, H.P., “SU(n) Einstein–Yang–Mills fields with spherical symmetry”, Class. Quantum
Grav., 8, 2283–2297, (1991). [![]() |
![]() |
206 | Künzle, H.P., “Analysis of the Static Spherically Symmetric SU(n) Einstein-Yang-Mills
Equations”, Commun. Math. Phys., 162, 371–397, (1994). [![]() ![]() |
![]() |
207 | Künzle, H.P., “Einstein–Yang–Mills Fields with Spherical Symmetry”, in Beem, J.K. and Duggal, K.L., eds., Differential Geometry and Mathematical Physics, AMS-CMS Special Session on Geometric Methods in Mathematical Physics, August 15 – 19, 1993, Vancouver, British Columbia, Canada, Contemporary Mathematics, 170, pp. 167–184, (AMS, Providence, 1994). |
![]() |
208 | Künzle, H.P. and Masood-ul Alam, A.K.M., “Spherically Symmetric Static SU(2)
Einstein–Yang–Mills Fields”, J. Math. Phys., 31, 928–935, (1990). [![]() |
![]() |
209 | Künzle, H.P. and Oliynyk, T.A., “Spherical symmetry of generalized EYMH fields”, J. Geom.
Phys., 56, 1856–1874, (2006). [![]() ![]() |
![]() |
210 | Laplace, P.-S., Exposition du Système du Monde, (Imprimerie du Cercle-Social, Paris, 1796).
[![]() ![]() |
![]() |
211 | Larsen, F., “Rotating Kaluza-Klein black holes”, Nucl. Phys. B, 575, 211–230, (2000). [![]() ![]() |
![]() |
212 | Lavrelashvili, G. and Maison, D., “Regular and Black Hole Solutions of Einstein–Yang–Mills
Dilaton Theory”, Nucl. Phys. B, 410, 407–422, (1993). [![]() |
![]() |
213 | Lee, K., Nair, V.P. and Weinberg, E.J., “A Classical Instability of Reissner-Nordström
Solutions and the Fate of Magnetically Charged Black Holes”, Phys. Rev. Lett., 68, 1100–1103,
(1992). [![]() ![]() |
![]() |
214 | Lee, K. and Weinberg, E.J., “Nontopological Magnetic Monopoles and New Magnetically
Charged Black Holes”, Phys. Rev. Lett., 73, 1203–1206, (1994). [![]() ![]() |
![]() |
215 | Lewandowski, J. and Pawlowski, T., “Extremal Isolated Horizons: A Local Uniqueness
Theorem”, Class. Quantum Grav., 20, 587–606, (2003). [![]() ![]() |
![]() |
216 | Li, Y.Y. and Tian, G., “Regularity of harmonic maps with prescribed singularities”, Commun.
Math. Phys., 149, 1–30, (1992). [![]() |
![]() |
217 | Lopes Costa, J., “On the classification of stationary electro-vacuum black holes”, Class.
Quantum Grav., 27, 035010, (2010). [![]() ![]() |
![]() |
218 | Maison, D., “Ehlers–Harrison-type transformations for Jordan’s extended theory of
gravitation”, Gen. Relativ. Gravit., 10, 717–723, (1979). [![]() |
![]() |
219 | Maison, D., “On the Complete Integrability of the Stationary, Axially Symmetric Einstein
Equations”, J. Math. Phys., 20, 871–877, (1979). [![]() |
![]() |
220 | Majumdar, S.D., “A Class of Exact Solutions of Einstein’s Field Equations”, Phys. Rev., 72,
390–398, (1947). [![]() |
![]() |
221 | Malec, E., “The Absence of Static, Smooth Solutions in Einstein-Yang-Mills-Klein-Gordon
Theory”, Acta Phys. Pol. B, 15, 1101–1109, (1984). Online version (accessed 03 November
2011): ![]() |
![]() |
222 | Manko, V.S., Ruiz, E. and Sanabria-Gómez, J.D., “Extended multi-soliton solutions of the
Einstein field equations. II. Two comments on the existence of equilibrium states”, Class.
Quantum Grav., 17, 3881–3898, (2000). [![]() |
![]() |
223 | Mars, M., “A spacetime characterization of the Kerr metric”, Class. Quantum Grav., 16,
2507–2523, (1999). [![]() ![]() |
![]() |
224 | Mars, M. and Simon, W., “On uniqueness of static Einstein–Maxwell-dilaton black holes”, Adv.
Theor. Math. Phys., 6, 279–305, (2002). [![]() |
![]() |
225 | Masood-ul Alam, A.K.M., “Uniqueness proof of static black holes revisited”, Class. Quantum
Grav., 9, L53–L55, (1992). [![]() |
![]() |
226 | Masood-ul Alam, A.K.M., “Uniqueness of a static charged dilaton black hole”, Class. Quantum
Grav., 10, 2649–2656, (1993). [![]() |
![]() |
227 | Mavromatos, N.E. and Winstanley, E., “Existence theorems for hairy black holes in
SU(N) Einstein–Yang–Mills theories”, J. Math. Phys., 39, 4849–4873, (1998). [![]() ![]() |
![]() |
228 | Mazur, P.O., “Proof of Uniqueness of the Kerr-Newman Black Hole Solution”, J. Math. Phys., 15, 3173– 3180, (1982). |
![]() |
229 | Mazur, P.O., “Black Hole Uniqueness from a Hidden Symmetry of Einstein’s Gravity”, Gen.
Relativ. Gravit., 16, 211–215, (1984). [![]() |
![]() |
230 | Mazur, P.O., “A Global Identity for Nonlinear Sigma-Models”, Phys. Lett. A, 100, 341–344,
(1984). [![]() |
![]() |
231 | McClintock, J.E., Narayan, R. and Rybicki, G.B., “On the lack of thermal emission from the
quiescent black hole XTE J1118+480: Evidence for the event horizon”, Astrophys. J., 615,
402–415, (2004). [![]() ![]() |
![]() |
232 | McClintock, J.E. and Remillard, R.A., “Black hole binaries”, in Lewin, W.H.G. and van der
Klis, M., eds., Compact Stellar X-Ray Sources, Cambridge Astrophysics Series, 39, pp. 157–214,
(Cambridge University Press, Cambridge; New York, 2006). [![]() ![]() ![]() |
![]() |
233 | Menou, K., Quataert, E. and Narayan, R., “Astrophysical evidence for black hole event
horizons”, in Dahdich, N. and Narlikar, J., eds., Gravitation and Relativity: At the Turn of the
Millennium, Proceedings of the GR-15 Conference, Pune, India, December 16 – 21, 1997, pp.
43–65, (IUCAA, Pune, 1998). [![]() |
![]() |
234 | Merritt, D. and Ferrarese, L., “Relationship of black holes to bulges”, in Knapen, J.H.,
Beckman, J.E., Shlosman, I. and Mahoney, T.J., eds., The Central Kiloparsec of Starbursts and
AGN: the La Palma Connection, Proceedings of a conference held in Los Cancajos, La Palma,
Spain, 7 – 11 May 2001, ASP Conference Series, 249, pp. 335–362, (Astronomical Society of the
Pacific, San Francisco, 2001). [![]() ![]() |
![]() |
235 | Michell, J., “On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars...”,
Philos. Trans. R. Soc. London, 74, 35–57, (1784). [![]() |
![]() |
236 | Minguzzi, E. and Sánchez, M., “The causal hierarchy of spacetimes”, in Alekseevsky, D.V.
and Baum, H., eds., Recent Developments in Pseudo-Riemannian Geometry, ESI Lectures in
Mathematics and Physics, pp. 299–358, (EMS Publishing House, Zürich, 2008). [![]() ![]() |
![]() |
237 | Misner, C.W., “The Flatter Regions of Newman, Unti, and Tamburino’s Generalized
Schwarzschild Space”, J. Math. Phys., 4, 924–937, (1963). [![]() |
![]() |
238 | Moncrief, V. and Isenberg, J., “Symmetries of cosmological Cauchy horizons”, Commun. Math.
Phys., 89, 387–413, (1983). [![]() ![]() |
![]() |
239 | Moncrief, V. and Isenberg, J., “Symmetries of Higher Dimensional Black Holes”, Class.
Quantum Grav., 25, 195015, (2008). [![]() ![]() |
![]() |
240 | Morisawa, Y. and Ida, D., “A boundary value problem for the five-dimensional stationary
rotating black holes”, Phys. Rev. D, 69, 124005, (2004). [![]() ![]() |
![]() |
241 | Moss, I.G., Shiiki, N. and Winstanley, E., “Monopole black hole skyrmions”, Class. Quantum
Grav., 17, 4161–4174, (2000). [![]() ![]() |
![]() |
242 | Müller, A., “Experimental evidence of black holes”, in Bonora, L., Iengo, R., Klabucar, D.,
Pallua, S. and Picek, I., eds., School on Particle Physics, Gravity and Cosmology, Dubrovnik,
August 21 – September 2, 2006, Proceedings of Science, PoS(P2GC)017, (SISSA, Trieste, 2006).
[![]() ![]() |
![]() |
243 | Müller zum Hagen, H., “On the analyticity of stationary vacuum solutions of Einstein’s
equation”, Proc. Cambridge Philos. Soc., 68, 199–201, (1970). [![]() |
![]() |
244 | Müller zum Hagen, H., Robinson, D.C. and Seifert, H.J., “Black Holes in Static Vacuum
Space-Times”, Gen. Relativ. Gravit., 4, 53–78, (1973). [![]() ![]() |
![]() |
245 | Müller zum Hagen, H., Robinson, D.C. and Seifert, H.J., “Black Holes in Static Electrovac
Space-Times”, Gen. Relativ. Gravit., 5, 61–72, (1974). [![]() |
![]() |
246 | Myers, R.C. and Perry, M.J., “Black Holes in Higher Dimensional Space-Times”, Ann. Phys.
(N.Y.), 172, 304–347, (1986). [![]() |
![]() |
247 | Narayan, R., Garcia, M.R. and McClintock, J.E., “X-ray Novae and the Evidence for Black
Hole Event Horizons”, in Gurzadyan, V.G., Jantzen, R.T. and Ruffini, R., eds., The Ninth
Marcel Grossmann Meeting on recent developments in theoretical and experimental general
relativity, gravitation and relativistic field theories, Part A, Proceedings of the MGIX MM
meeting held at the University of Rome ‘La Sapienza’, July 2 – 8, 2000, pp. 405–425, (World
Scientific, Singapore; River Edge, NJ, 2002). [![]() ![]() |
![]() |
248 | Narayan, R., Yi, I. and Mahadevan, R., “Explaining the spectrum of Sagittarius A* with a
model of an accreting black hole”, Nature, 374, 623–625, (1995). [![]() |
![]() |
249 | Neugebauer, G. and Hennig, J., “Stationary two-black-hole configurations: A non-existence
proof”, J. Geom. Phys., 62, 613–630, (2012). [![]() ![]() |
![]() |
250 | Neugebauer, G. and Kramer, D., “Eine Methode zur Konstruktion stationärer
Einstein-Maxwell-Felder”, Ann. Phys. (Leipzig), 479, 62–71, (1969). [![]() |
![]() |
251 | Neugebauer, G. and Meinel, R., “Progress in relativistic gravitational theory using the inverse
scattering method”, J. Math. Phys., 44, 3407–3429, (2003). [![]() ![]() |
![]() |
252 | Newman, E.T., Tamburino, L.A. and Unti, T., “Empty-Space Generalization of the
Schwarzschild Metric”, J. Math. Phys., 4, 915–923, (1963). [![]() |
![]() |
253 | Nomizu, K., “On local and global existence of Killing vector fields”, Ann. Math., 72, 105–120,
(1960). [![]() |
![]() |
254 | Oliynyk, T.A., “An existence proof for the gravitating BPS monopole”, Ann. Henri Poincare,
7, 199–232, (2006). [![]() ![]() |
![]() |
255 | Oliynyk, T.A. and Künzle, H.P., “On all possible static spherically symmetric EYM solitons
and black holes”, Class. Quantum Grav., 19, 457–482, (2002). [![]() ![]() |
![]() |
256 | O’Neill, B., Semi-Riemannian Geometry: With Applications to Relativity, Pure and Applied
Mathematics, 103, (Academic Press, San Diego; London, 1983). [![]() |
![]() |
257 | Oppenheimer, J.R. and Snyder, H., “On Continued Gravitational Contraction”, Phys. Rev.,
56, 455–459, (1939). [![]() ![]() |
![]() |
258 | Oppenheimer, J.R. and Volkoff, G.M., “On Massive Neutron Cores”, Phys. Rev., 55, 374–381,
(1939). [![]() |
![]() |
259 | Orlik, P., Seifert Manifolds, Lecture Notes in Mathematics, 291, (Springer, Berlin; New York,
1972). [![]() |
![]() |
260 | Orlik, P. and Raymond, F., “Actions of the Torus on 4-Manifolds. I”, Trans. Amer. Math. Soc., 152, 531–559, (1970). |
![]() |
261 | Orlik, P. and Raymond, F., “Actions of the torus on 4-manifolds – II”, Topology, 13, 89–112,
(1974). [![]() |
![]() |
262 | Papapetrou, A., “A Static Solution of the Gravitational Field for an Arbitrary Charge-Distribution”, Proc. R. Irish Acad. A, 51, 191–204, (1945). |
![]() |
263 | Papapetrou, A., “Eine Rotationssymmetrische Lösung in der Allgemeinen
Relativitätstheorie”, Ann. Phys. (Leipzig), 447, 309–315, (1953). [![]() ![]() |
![]() |
264 | Papapetrou, A., “Champs gravitationnels stationnaires à symétrie axiale”, Ann. Inst. Henri
Poincare A, 4, 83–105, (1966). Online version (accessed 14 May 2012): ![]() |
![]() |
265 | Parker, T. and Taubes, C.H., “On Witten’s Proof of the Positive Energy Theorem”, Commun.
Math. Phys., 84, 223–238, (1982). [![]() ![]() |
![]() |
266 | Penrose, R., Techniques of Differential Topology in Relativity, Regional Conference Series in
Applied Mathematics, 7, (SIAM, Philadelphia, 1972). [![]() |
![]() |
267 | Perjés, Z., “Solutions of the Coupled Einstein–Maxwell Equations Representing the Fields of
Spinning Sources”, Phys. Rev. Lett., 27, 1668–1670, (1971). [![]() |
![]() |
268 | Pomeransky, A.A., “Complete integrability of higher-dimensional Einstein equations with
additional symmetry, and rotating black holes”, Phys. Rev. D, 73, 044004, (2006). [![]() ![]() |
![]() |
269 | Pomeransky, A.A. and Sen’kov, R.A., “Black ring with two angular momenta”, arXiv, e-print,
(2006). [![]() |
![]() |
270 | Rácz, I. and Wald, R.M., “Global Extensions of Spacetimes Describing Asymptotic Final
States of Black Holes”, Class. Quantum Grav., 13, 539–552, (1995). [![]() ![]() |
![]() |
271 | Radu, E. and Winstanley, E., “Static axially symmetric solutions of Einstein–Yang–Mills
equations with a negative cosmological constant: Black hole solutions”, Phys. Rev. D, 70,
084023, (2004). [![]() ![]() |
![]() |
272 | Rasheed, D., “The rotating dyonic black holes of Kaluza-Klein theory”, Nucl. Phys. B, 454,
379–401, (1995). [![]() ![]() |
![]() |
273 | Raymond, F., “Classification of the actions of the circle on 3-manifolds”, Trans. Amer. Math.
Soc., 131, 51–78, (1968). [![]() |
![]() |
274 | Reall, H.S., “Higher dimensional black holes and supersymmetry”, Phys. Rev. D, 68, 024024,
(2003). [![]() ![]() |
![]() |
275 | Rees, M.J., “Astrophysical Evidence for Black Holes”, in Wald, R.M., ed., Black Holes and
Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan
Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 79–101, (University of Chicago
Press, Chicago; London, 1998). [![]() ![]() |
![]() |
276 | Rees, M.J., “Supermassive Black Holes: Their Formation, and Their Prospects as Probes of
Relativistic Gravity”, in Kaper, L., van den Heuvel, E.P.J. and Woudt, P.A., eds., Black Holes
in Binaries and Galactic Nuclei: Diagnostics, Demography and Formation, Proceedings of the
ESO Workshop Held at Garching, Germany, in Honour of Riccardo Giacconi, 6 – 8 September
1999, ESO Astrophysics Symposia, pp. 351–363, (Springer, Berlin; New York, 2001). [![]() ![]() |
![]() |
277 | Ridgway, S.A. and Weinberg, E.J., “Are All Static Black Hole Solutions Spherically
Symmetric?”, Gen. Relativ. Gravit., 27, 1017–1021, (1995). [![]() ![]() |
![]() |
278 | Ridgway, S.A. and Weinberg, E.J., “Static Black Hole Solutions without Rotational
Symmetry”, Phys. Rev. D, 52, 3440–3456, (1995). [![]() ![]() |
![]() |
279 | Robinson, D.C., “Classification of Black Holes with Electromagnetic Fields”, Phys. Rev., 10,
458–460, (1974). [![]() ![]() |
![]() |
280 | Robinson, D.C., “Uniqueness of the Kerr Black Hole”, Phys. Rev. Lett., 34, 905–906, (1975).
[![]() |
![]() |
281 | Robinson, D.C., “A Simple Proof of the Generalization of Israel’s Theorem”, Gen. Relativ.
Gravit., 8, 695–698, (1977). [![]() ![]() |
![]() |
282 | Rogatko, M., “Uniqueness theorem of static degenerate and nondegenerate charged black holes
in higher dimensions”, Phys. Rev. D, 67, 084025, (2003). [![]() ![]() |
![]() |
283 | Rogatko, M., “Classification of static charged black holes in higher dimensions”, Phys. Rev. D,
73, 124027, (2006). [![]() ![]() |
![]() |
284 | Ruback, P., “A new uniqueness theorem for charged black holes”, Class. Quantum Grav., 5,
L155–L159, (1988). [![]() ![]() |
![]() |
285 | Sadeghian, L. and Will, C.M., “Testing the black hole no-hair theorem at the galactic center:
perturbing effects of stars in the surrounding cluster”, Class. Quantum Grav., 28, (2011). [![]() ![]() |
![]() |
286 | Sarbach, O. and Winstanley, E., “On the linear stability of solitons and hairy black holes with a
negative cosmological constant: The Odd parity sector”, Class. Quantum Grav., 18, 2125–2146,
(2001). [![]() |
![]() |
287 | Schoen, R. and Yau, S.T., “Compact Group Actions and the Topology of Manifolds with
Non-Positive Curvature”, Topology, 18, 361–380, (1979). [![]() |
![]() |
288 | Schoen, R. and Yau, S.-T., “On the Proof of the Positive Mass Conjecture in General
Relativity”, Commun. Math. Phys., 65, 45–76, (1979). [![]() ![]() |
![]() |
289 | Schoen, R. and Yau, S.-T., “Proof of the positive mass theorem. II”, Commun. Math. Phys.,
79, 231–260, (1981). [![]() ![]() |
![]() |
290 | Schwarzschild, K., “Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit
nach der Einsteinschen Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl.,
1916(III), 424–434, (1916). [![]() ![]() |
![]() |
291 | Schwarzschild, K., “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen
Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916(VII), 189–196, (1916).
[![]() ![]() |
![]() |
292 | Shaposhnikov, M.E., “Sphalerons and Baryogenesis”, Class. Quantum Grav. Suppl., 10,
147–154, (1993). [![]() |
![]() |
293 | Simon, W., “Characterizations of the Kerr metric”, Gen. Relativ. Gravit., 16, 465–476, (1984).
[![]() |
![]() |
294 | Simon, W., “A Simple Proof of the Generalized Electrostatic Israel Theorem”, Gen. Relativ.
Gravit., 17, 761–768, (1985). [![]() ![]() |
![]() |
295 | Simon, W., “Radiative Einstein–Maxwell spacetimes and ‘no-hair’ theorems”, Class. Quantum
Grav., 9, 241–256, (1992). [![]() |
![]() |
296 | Smarr, L.L., “Mass Formula for Kerr Black Holes”, Phys. Rev. Lett., 30, 71–73, (1973). [![]() ![]() |
![]() |
297 | Smoller, J.A. and Wasserman, A.G., “Existence of Infinitely-Many Smooth, Static, Global
Solutions of the Einstein/Yang-Mills Equations”, Commun. Math. Phys., 151, 303–325, (1993).
[![]() ![]() ![]() |
![]() |
298 | Smoller, J.A., Wasserman, A.G. and Yau, S.-T., “Existence of Black Hole Solutions for the
Einstein-Yang/Mills Equations”, Commun. Math. Phys., 154, 377–401, (1993). [![]() ![]() |
![]() |
299 | Smoller, J.A., Wasserman, A.G., Yau, S.-T. and McLeod, J.B., “Smooth static solutions of the
Einstein/Yang-Mills equations”, Commun. Math. Phys., 143, 115–147, (1991). [![]() ![]() ![]() |
![]() |
300 | Straumann, N., General Relativity and Relativistic Astrophysics, (Springer, Berlin; New York,
1984). [![]() |
![]() |
301 | Straumann, N. and Zhou, Z.-H., “Instability of a colored black hole solution”, Phys. Lett. B,
243, 33–35, (1990). [![]() ![]() |
![]() |
302 | Sudarsky, D. and Wald, R.M., “Extrema of mass, stationarity, and staticity, and solutions to
the Einstein–Yang–Mills equations”, Phys. Rev. D, 46, 1453–1474, (1992). [![]() |
![]() |
303 | Sudarsky, D. and Wald, R.M., “Mass formulas for stationary Einstein–Yang–Mills black holes
and a simple proof of two staticity theorems”, Phys. Rev. D, 47, R5209–R5213, (1993). [![]() ![]() |
![]() |
304 | Szabados, L.B., “Commutation properties of cyclic and null Killing symmetries”, J. Math.
Phys., 28, 2688–2691, (1987). [![]() |
![]() |
305 | Szybka, S., “Stable causality of Black Saturns”, J. High Energy Phys., 2011(05), 052, (2011).
[![]() ![]() |
![]() |
306 | Varzugin, G.G., “Equilibrium configuration of black holes and the method of the inverse
scattering problem”, Theor. Math. Phys., 111, 345–355, (1997). [![]() |
![]() |
307 | Varzugin, G.G., “The interaction force between rotating black holes at equilibrium”, Theor.
Math. Phys., 116, 367–378, (1998). [![]() |
![]() |
308 | Vishveshwara, C.V., “Generalization of the ‘Schwarzschild Surface’ to Arbitrary Static and
Stationary Metrics”, J. Math. Phys., 9, 1319–1322, (1968). [![]() |
![]() |
309 | Volkov, M.S., Brodbeck, O., Lavrelashvili, G. and Straumann, N., “The number of sphaleron
instabilities of the Bartnik-McKinnon solitons and non-Abelian black holes”, Phys. Lett. B,
349, 438–442, (1995). [![]() ![]() |
![]() |
310 | Volkov, M.S. and Gal’tsov, D.V., “Non-Abelian Einstein–Yang–Mills Black Holes”, JETP Lett., 50, 346–350, (1989). |
![]() |
311 | Volkov, M.S. and Gal’tsov, D.V., “Gravitating non-Abelian solitons and black holes with
Yang–Mills fields”, Phys. Rep., 319, 1–83, (1999). [![]() ![]() |
![]() |
312 | Volkov, M.S. and Straumann, N., “Slowly Rotating Non-Abelian Black Holes”, Phys. Rev.
Lett., 79, 1428–1431, (1997). [![]() ![]() |
![]() |
313 | Volkov, M.S., Straumann, N., Lavrelashvili, G., Heusler, M. and Brodbeck, O., “Cosmological
analogues of the Bartnik-McKinnon solutions”, Phys. Rev. D, 54, 7243–7251, (1996). [![]() ![]() |
![]() |
314 | Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [![]() ![]() |
![]() |
315 | Wald, R.M., “On the instability of the n = 1 Einstein–Yang–Mills black holes and
mathematically related systems”, J. Math. Phys., 33, 248–255, (1992). [![]() ![]() |
![]() |
316 | Wald, R.M., “Black Holes and Thermodynamics”, in Wald, R.M., ed., Black Holes and
Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan
Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 155–176, (University of Chicago
Press, Chicago; London, 1998). [![]() |
![]() |
317 | Weinberg, E.J., “Magnetically charged black holes with hair”, arXiv, e-print, (1995).
[![]() |
![]() |
318 | Weinstein, G., “On Rotating Black Holes in Equilibrium in General Relativity”, Commun.
Pure Appl. Math., 43, 903–948, (1990). [![]() |
![]() |
319 | Weinstein, G., “On the force between rotating coaxial black holes”, Trans. Amer. Math. Soc.,
343, 899–906, (1994). [![]() |
![]() |
320 | Weinstein, G., “On the Dirichlet problem for harmonic maps with prescribed singularities”,
Duke Math. J., 77, 135–165, (1995). [![]() |
![]() |
321 | Weinstein, G., “Harmonic maps with prescribed singularities into Hadamard manifolds”, Math. Res. Lett., 3, 835–844, (1996). |
![]() |
322 | Weinstein, G., “N-black hole stationary and axially symmetric solutions of the
Einstein/Maxwell equations”, Commun. Part. Diff. Eq., 21, 1389–1430, (1996). [![]() |
![]() |
323 | Winstanley, E., “Existence of stable hairy black holes in su(2) Einstein–Yang–Mills theory
with a negative cosmological constant”, Class. Quantum Grav., 16, 1963–1978, (1999). [![]() ![]() |
![]() |
324 | Winstanley, E. and Mavromatos, N.E., “Instability of hairy black holes in spontaneously
broken Einstein–Yang–Mills–Higgs systems”, Phys. Lett. B, 352, 242–246, (1995). [![]() ![]() |
![]() |
325 | Witten, E., “A new proof of the positive energy theorem”, Commun. Math. Phys., 80, 381–402,
(1981). [![]() ![]() |
![]() |
326 | Wong, W.W.-Y., “A space-time characterization of the Kerr-Newman metric”, Ann. Inst. Henri
Poincare, 10, 453–484, (2009). [![]() ![]() |
![]() |
327 | Yu, P., “On Hawking’s Local Rigidity Theorems for Charged Black Holes”, Ann. Henri
Poincare, 11, 1–21, (2010). [![]() ![]() |
![]() |
328 | Zhou, Z.-H., “Instability of SU(2) Einstein–Yang–Mills Solitons and Non-Abelian Black Holes”,
Helv. Phys. Acta, 65, 767–819, (1992). [![]() |
![]() |
329 | Zhou, Z.-H. and Straumann, N., “Nonlinear Perturbations of Einstein–Yang–Mills Solitons and
Non-Abelian Black Holes”, Nucl. Phys. B, 360, 180–196, (1991). [![]() ![]() |
http://www.livingreviews.org/lrr-2012-7 |
Living Rev. Relativity 15, (2012), 7
![]() This work is licensed under a Creative Commons License. E-mail us: |