This technique is based on the Michelson interferometer and is particularly suited to the detection of gravitational waves as they have a quadrupole nature. Waves propagating perpendicular to the plane of the interferometer will result in one arm of the interferometer being increased in length while the other arm is decreased and vice versa. The induced change in the length of the interferometer arms results in a small change in the intensity of the light observed at the interferometer output.
As will be explained in detail in the next Section 4, the sensitivity of an interferometric
gravitational-wave detector is limited by noise from various sources. Taking this frequency-dependent noise
floor into account, a design goal can be estimated for a particular detector design. For example, the design
sensitivity for initial LIGO is show in Figure 4 plotted alongside the achieved sensitivities of the three
individual interferometers during the fifth science run (see Section 6.1). Such strain sensitivities are
expected to allow a reasonable probability for detecting gravitational wave sources. However, in order to
guarantee the observation of a full range of sources and to initiate gravitational-wave astronomy, a
sensitivity or noise performance approximately ten times better in the mid-frequency range and several
orders of magnitude better at 10 Hz, is desired. Therefore, initial detectors will be upgraded to an
advanced configuration, such as Advanced LIGO, which will be ready for operation around
2015.
For the initial interferometric detectors, a noise floor in strain close to 2 × 10–23 Hz–1/2 was achieved.
Detecting a strain in space at this level implies measuring a residual motion of each of the test masses of
about 8 × 10–20 m/Hz–1/2 over part of the operating range of the detector, which may be from
10 Hz to a few kHz. Advanced detectors will push this target down further by another factor
of 10 – 15. This sets a formidable goal for the optical detection system at the output of the
interferometer.
http://www.livingreviews.org/lrr-2011-5 |
Living Rev. Relativity 14, (2011), 5
![]() This work is licensed under a Creative Commons License. E-mail us: |