These, however, refer to applications of the subject – important though they are – but we believe that
higher-dimensional gravity is also of intrinsic interest. Just as the study of quantum field theories, with a
field content very different than any conceivable extension of the Standard Model, has been a very useful
endeavor, throwing light on general features of quantum fields, we believe that endowing general relativity
with a tunable parameter – namely the spacetime dimensionality – should also lead to
valuable insights into the nature of the theory, in particular into its most basic objects: black
holes. For instance, four-dimensional black holes are known to have a number of remarkable
features, such as uniqueness, spherical topology, dynamical stability, and to satisfy a set of
simple laws — the laws of black hole mechanics. One would like to know which of these are
peculiar to four-dimensions, and which hold more generally. At the very least, this study will lead
to a deeper understanding of classical black holes and of what spacetime can do at its most
extreme.
There is a growing awareness that the physics of higher-dimensional black holes can be markedly
different, and much richer, than in four dimensions. Arguably, two advances are largely responsible for this
perception: the discovery of dynamical instabilities in extended black-hole horizons [118] and the discovery
of black-hole solutions with horizons of nonspherical topology that are not fully characterized by their
conserved charges [83
].
At the risk of anticipating results and concepts that will be developed only later in this review, in the following we try to give simple answers to two frequently asked questions: 1) why should one expect any interesting new dynamics in higher-dimensional general relativity, and 2) what are the main obstacles to a direct generalization of the four-dimensional techniques and results. A straightforward answer to both questions is to simply say that as the number of dimensions grows, the number of degrees of freedom of the gravitational field also increases, but more specific, yet intuitive, answers are possible.
The novel features of higher-dimensional black holes that have been identified so far can be understood in physical terms as due to the combination of two main ingredients: different rotation dynamics and the appearance of extended black objects.
There are two aspects of rotation that change significantly when spacetime has more than four
dimensions. First, there is the possibility of rotation in several independent rotation planes [200]. The
rotation group
has Cartan subgroup
, with
The other aspect of rotation that changes qualitatively as the number of dimensions increases is the relative competition between the gravitational and centrifugal potentials. The radial falloff of the Newtonian potential
depends on the number of dimensions, whereas the centrifugal barrier does not, since rotation is confined to a plane. We see that the competition between (2 The other novel ingredient that appears in but is absent in lower dimensions (at least in vacuum
gravity) is the presence of black objects with extended horizons, i.e., black strings and, in general, black
-branes. Although these are not asymptotically-flat solutions, they provide the basic intuition for
understanding novel kinds of asymptotically-flat black holes.
Let us begin with the simple observation that, given a black-hole solution of the vacuum
Einstein equations in dimensions with horizon geometry
, we can immediately
construct a vacuum solution in
dimensions by simply adding a flat spatial
direction1.
The new horizon geometry is then a black string with horizon
. Since the Schwarzschild solution is
easily generalized to any
, it follows that black strings exist in any
. In general, adding
flat directions we find that black
-branes with horizon
(with
) exist in any
.
How are these related to new kinds of asymptotically-flat black holes? Heuristically, take a piece of black
string with horizon, and curve it to form a black ring with horizon topology
. Since the
black string has a tension, the
, being contractible, will tend to collapse. But we may try to set the ring
into rotation and in this way provide a centrifugal repulsion that balances the tension. This turns out to be
possible in any
, so we expect that nonspherical horizon topologies are a generic feature of
higher-dimensional general relativity.
It is also natural to try to apply this heuristic construction to black -branes with
, namely, to
bend the worldvolume spatial directions into a compact manifold and balance the tension by introducing
suitable rotations. The possibilities are still under investigation, but it is clear that an increasing variety of
black holes should be expected as
grows. Observe again that the underlying reason is a combination of
extended horizons with rotation.
Horizon topologies other than spherical are forbidden in by well-known theorems [132
]. These
are rigorous, but also rather technical and formal results. Can we find a simple, intuitive explanation for the
absence of vacuum black rings in
? The previous argument would trace this fact back to the
absence of asymptotically-flat vacuum black holes in
. This is often attributed to the
absence of propagating degrees of freedom for the three-dimensional graviton (or one of its
paraphrases:
-gravity is topological, the Weyl tensor vanishes identically, etc), but here we shall
use the simple observation that the quantity
is dimensionless in
. Hence, given
any amount of mass, there is no length scale to tell us where the black-hole horizon should
be2.
So we attribute the absence of black strings in
to the lack of such a scale. This observation goes
some way towards understanding the absence of vacuum black rings with horizon topology
in
four dimensions; it implies that there cannot exist black-ring solutions with different scales for each of the
two circles, and, in particular one can not make one radius arbitrarily larger than the other.
This argument, though, could still allow for black rings, where the radii of the two
are
set by the same scale, i.e., the black rings should be plump. The horizon-topology theorems
then tell us that plump black rings do not exist; they would actually be within a spherical
horizon.
Extended horizons also introduce a feature absent in : dynamical horizon instabilities [118
].
Again, this is to some extent an issue of scales. Black brane horizons can be much larger in
some of their directions than in others, and so perturbations with wavelengths on the order of
the ‘short’ horizon length can fit several times along the ‘long’ extended directions. Since the
horizon area tends to increase by dividing up the extended horizon into black holes of roughly the
same size in all its dimensions, this provides grounds to expect an instability of the extended
horizon (however, when other scales are present, as in charged solutions, the situation can become
quite a bit more complicated). It turns out that higher-dimensional rotation can extend the
horizon much more in some directions than in others, which is expected to trigger this kind of
instability [81
]. At the threshold of the instability, a zero-mode deformation of the horizon
has been conjectured to lead to new ‘pinched’ black holes that do not have four-dimensional
counterparts.
Finally, an important question raised in higher dimensions refers to the rigidity of the horizon. In four
dimensions, stationarity implies the existence of a rotational isometry [132
]. In higher dimensions
stationarity has been proven to imply one rigid rotation symmetry too [138
], but not (yet?)
more than one. However, all known higher-dimensional black holes have multiple rotational
symmetries. Are there stationary black holes with less symmetry, for example just the single
isometry guaranteed in general? Or are black holes always as rigid as can be? This is, in our
opinion, the main unsolved problem on the way to a complete classification of five-dimensional
black holes and an important issue in understanding the possibilities for black holes in higher
dimensions.
Again, the simple answer to this question is the larger number of degrees of freedom. However, this
cannot be an entirely satisfactory reply, since one often restricts oneself to solutions with a large
degree of symmetry for which the number of actual degrees of freedom may not depend on
the dimensionality of spacetime. A more satisfying answer should explain why the methods
that are so successful in become harder, less useful, or even inapplicable, in higher
dimensions.
Still, the larger number of metric components, and of equations determining them, is the main reason for
the failure so far to find a useful extension of the Newman–Penrose (NP) formalism to . This
formalism, in which all the Einstein equations and Bianchi identities are written out explicitly, was
instrumental in deriving the Kerr solution and analyzing its perturbations. The formalism is tailored to deal
with algebraically-special solutions, but even if algebraic classifications have been developed for
higher dimensions [51
] and applied to known black-hole solutions, no practical extension of the
NP formalism has appeared yet that can be used to derive the solutions, nor to study their
perturbations.
Then, it seems natural to restrict oneself to solutions with a high degree of symmetry. Spherical
symmetry yields easily by force of Birkhoff’s theorem. The next simplest possibility is to impose stationarity
and axial symmetry. In four dimensions this implies the existence of two commuting Abelian isometries,
time translation and axial rotation, which are extremely powerful; by integrating out the two isometries
from the theory, we obtain an integrable two-dimensional sigma-model. The literature on these
theories is enormous and many solution-generating techniques are available, which provide a variety of
derivations of the Kerr solution.
There are two natural ways of extending axial symmetry to higher dimensions. We may look for
solutions invariant under the group of spatial rotations around a given line axis, where the
orbits of
are
-spheres. However, in more than four dimensions these orbits have nonzero
curvature. As a consequence, after dimensional reduction of these orbits, the sigma model acquires terms (of
exponential type) that prevent a straightforward integration of the equations (see [34
, 35
] for an
investigation of these equations).
This suggests that one should look for a different higher-dimensional extension of the four-dimensional
axial symmetry. Instead of rotations around a line, consider rotations around (spatial) codimension-2
hypersurfaces. These are symmetries. If we assume
commuting
symmetries, so that
we have a spatial
symmetry in addition to the timelike symmetry
, then the vacuum Einstein
equations again reduce to an integrable two-dimensional
sigma model with powerful
solution-generating techniques.
However, there is an important limitation: only in can these geometries be globally
asymptotically flat. Global asymptotic flatness implies an asymptotic factor
in the spatial geometry,
whose isometry group
has a Cartan subgroup
. If, as above, we demand
axial
isometries, then, asymptotically, these symmetries must approach elements of
, so we need
, i.e.,
Finally, the classification of possible horizon topologies becomes increasingly complicated in higher
dimensions [98]. In four spacetime dimensions the (spatial section of the) horizon is a two-dimensional
surface, so the possible topologies can be easily characterized and restricted. Much less restriction is possible
as
is increased.
All these aspects will be discussed in more detail below.
http://www.livingreviews.org/lrr-2008-6 | ![]() This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 Germany License. Problems/comments to |