The accretion-induced collapse of white dwarfs has been simulated by a number of groups [14, 166, 263, 82].
The majority of these simulations have been Newtonian and have focused on mass ejection and neutrino
and
-ray emission during the collapse and its aftermath (note that neglecting relativistic effects likely
introduces an error of order
for the neutron star remnants of AIC; see below). The most
sophisticated are those carried out by Fryer et al. [82
], as they include realistic equations of state, neutrino
transport, and rotating progenitors.
As a part of their general evaluation of upper limits to GW emission from gravitational collapse, Fryer,
Holz, and Hughes (hereafter, FHH) [86] examined an AIC simulation (model 3) of Fryer et al. [82
]. FHH
used both numerical and analytical techniques to estimate the peak amplitude
, energy
, and
frequency
of the gravitational radiation emitted during the collapse simulations they
studied.
For direct numerical computation of the GWs emitted in these simulations, FHH used the quadrupole approximation, valid for nearly Newtonian sources [169]. This approximation is standardly used to compute the GW emission in Newtonian simulations. The reduced or traceless quadrupole moment of the source can be expressed as
where Errors resulting from the neglect of general relativistic effects (in collapse evolutions as a whole and in
GW emission estimations like the quadrupole approximation) are of order . These errors are
typically
10% for neutron star remnants of AIC,
30% for neutron star remnants of massive stellar
collapse, and
30% for black hole remnants. Neglect of general relativity in rotational collapse studies is
of special concern because relativistic effects counteract the stabilizing effects of rotation (see
Section 3.4).
Because the code used in the collapse simulations examined by FHH [82] was axisymmetric, their use of
the numerical quadrupole approximation discussed above does not account for GW emission that may occur
due to non-axisymmetric mass flow. The GWs computed directly from their simulations come only from
polar oscillations (which are significant when the mass flow during collapse [or explosion] is largely
aspherical).
In order to predict the GW emission produced by non-axisymmetric instabilities, FHH employed rough
analytical estimates. The expressions they used to approximate the rms strain and the power
of the GWs emitted by a star that has encountered the bar-mode instability are
For their computation of the GWs radiated via -modes, FHH used the method of Ho and Lai [115]
(which assumes
) and calculated only the emission from the dominant
mode.
This approach is detailed in FHH. If the neutron star mass and initial radius are taken to be
and
, respectively, the resulting formula for the average GW strain is
FHH’s numerical quadrupole estimate of the GWs from polar oscillations in the AIC simulation of Fryer
et al. [82] predicts a peak dimensionless amplitude
(for
). The energy
is emitted at a frequency of
. This amplitude is about an order of
magnitude too small to be observed by the advanced LIGO-II detector. The sensitivity curve for the
broadband configuration of the LIGO-II detector is shown in Figure 2
(see Appendix A of [86
] for details
on the computation of this curve). Note that the characteristic strain
is plotted along the vertical axis
in Figure 2
(and in LISA’s sensitivity curve, shown in Figure 18
). For burst sources,
. For sources
that persist for
cycles,
.
According to FHH, the remnant of this AIC simulation will be susceptible to -mode growth.
Assuming
(which is likely not physical; see Section 2.3), they predict
. FHH
compute
for coherent observation of the neutron star as it spins down over the course of a year.
For a neutron star located at a distance of
, this track is always below the LIGO-II noise curve.
The point on this track with the maximum
, which corresponds to the beginning of
-mode evolution,
is shown in Figure 2
. The track moves down and to the left ( i.e.,
and
decrease) in this figure as
the
-mode evolution continues.
In addition to full hydrodynamics collapse simulations, many studies of gravitational collapse
have used hydrostatic equilibrium models to represent stars at various stages in the collapse
process. Some investigators use sequences of equilibrium models to represent snapshots of the
phases of collapse (e.g., [16, 185
, 156
]). Others use individual equilibrium models as initial
conditions for hydrodynamical simulations (e.g., [231, 192
, 184
, 49
]). Such simulations represent the
approximate evolution of a model beginning at some intermediate phase during collapse or the
evolution of a collapsed remnant. These studies do not typically follow the intricate details of
the collapse itself. Instead, their goals include determining the stability of models against the
development of non-axisymmetric modes and estimation of the characteristics of any resulting GW
emission.
Liu and Lindblom [156, 155
] have applied this equilibrium approach to AIC. Their investigation began
with a study of equilibrium models built to represent neutron stars formed from AIC [156
].
These neutron star models were created via a two-step process, using a Newtonian version of
Hachisu’s self-consistent field method [98]. Hachisu’s method ensures that the forces due to
the centrifugal and gravitational potentials and the pressure are in balance in the equilibrium
configuration.
Liu and Lindblom’s process of building the nascent neutron stars began with the construction of rapidly
rotating, pre-collapse white dwarf models. Their Models I and II are C-O white dwarfs with central
densities and
, respectively (recall this is the range of densities for which AIC
is likely for C-O white dwarfs). Their Model III is an O-Ne-Mg white dwarf that has
(recall this is the density at which collapse is induced by electron capture). All three models are uniformly
rotating, with the maximum allowed angular velocities. The models’ values of total angular momentum are
roughly 3 - 4 times that of Fryer et al.’s AIC progenitor Model 3 [82]. The realistic equation of state used
to construct the white dwarfs is a Coulomb corrected, zero temperature, degenerate gas equation of
state [210, 52].
In the second step of their process, Liu and Lindblom [156] built equilibrium models of the
collapsed neutron stars themselves. The mass, total angular momentum, and specific angular
momentum distribution of each neutron star remnant is identical to that of its white dwarf
progenitor (see Section 3 of [156
] for justification of the specific angular momentum conservation
assumption). These models were built with two different realistic neutron star equations of
state.
Liu and Lindblom’s cold neutron star remnants had values of the stability parameter ranging from
. It is interesting to compare these results with those of Zwerger and Müller [271
]. Zwerger
and Müller performed axisymmetric hydrodynamics simulations of stars with polytropic equations of state
(
). Their initial models were
polytropes, representative of massive white dwarfs. All of
their models started with
. Their model that was closest to being in uniform
rotation (A1B3) had 22% less total angular momentum than Liu and Lindblom’s Model I.
The collapse simulations of Zwerger and Müller that started with model A1B3 all resulted
in remnants with values of
. Comparison of the results of these two studies could
indicate that the equation of state may play a significant role in determining the structure
of collapsed remnants. Or it could suggest that the assumptions employed in the simplified
investigation of Liu and Lindblom are not fully appropriate. Zwerger and Müller’s work will be
discussed in much more detail in Section 3, as it was performed in the context of core collapse
supernovae.
In a continuation of the work of Liu and Lindblom, Liu [155] used linearized hydrodynamics to perform
a stability analysis of the cold neutron star AIC remnants of Liu and Lindblom [156]. He found that only
the remnant of the O-Ne-Mg white dwarf (Liu and Lindblom’s Model III) developed the dynamical
bar-mode (
) instability. This model had an initial
. Note that the
mode,
observed by others to be the dominant mode in unstable models with values of
much lower than
0.27 [247, 260, 192, 49
], did not grow in his simulation. Because Liu and Lindblom’s Models I and II had
lower values of
, Liu identified the onset of instability for neutron stars formed via AIC as
.
Liu estimated the peak amplitude of the GWs emitted by the Model III remnant to be
and the LIGO-II signal-to-noise ratio (for a persistent signal like that seen in
the work of [184] and [34]) to be
(for
). These values are for a
source located at
. He also predicted that the timescale for gravitational radiation to
carry away enough angular momentum to eliminate the bar-mode is
(
cycles). Thus,
. (Note that this value for
is merely an upper limit as it
assumes that the amplitude and frequency of the GWs do not change over the
during
which they are emitted. Of course, they will change as angular momentum is carried away from
the object via GW emission.) Such a signal may be marginally detectable with LIGO-II (see
Figure 2
). Details of the approximations on which these estimates are based can be found
in [155
].
Liu cautions that his results hold if the magnetic field of the proto-neutron star is . If the
magnetic field is larger, then it may have time to suppress some of the neutron star’s differential rotation
before it cools. This would make bar formation less likely. Such a large field could only result if the white
dwarf progenitor’s
field was
. Observation-based estimates suggest that about 25% of white
dwarfs in interacting close binaries (cataclysmic variables) are magnetic and that the field strengths for
these stars are
[256].
![]() |
http://www.livingreviews.org/lrr-2003-2 |
© Max Planck Society and the author(s)
Problems/comments to |