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Abstract. We consider a transformation of a normalized measure

space such that the image of any point is a finite set. We call such a

transformation an m-transformation. In this case the orbit of any point

looks like a tree. In the study of m-transformations we are interested

in the properties of the trees. An m-transformation generates a sto-

chastic kernel and a new measure. Using these objects, we introduce

analogies of some main concept of ergodic theory: ergodicity, Koop-

man and Frobenius-Perron operators etc. We prove ergodic theorems

and consider examples. We also indicate possible applications to fractal

geometry and give a generalization of our construction.

1. Main definitions and examples

Throughout the paper (X,B, µ) denotes a normalized measure space.

Let m be a positive integer.

Definition 1. We call a multivalued transformation S : X → X an m-

transformation if 1 ≤ |S(x)| ≤ m for any x ∈ X, where |A| is just a

number of elements in A.
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48 K. IGUDESMAN

Let

S−1
k;l (B) ≡ {x ∈ X : |S(x)| = k, |S(x) ∩B| = l},

where B ⊂ X and k, l ∈ N. Note that sets S−1
k;l (B) are pairwise disjoint

for the fixed B.

Definition 2. The m-transformation S : X → X is measurable if

S−1
k;l (B) ∈ B for all B ∈ B and k, l ∈ N.

Let K : X × B → R
+ be the function

K(x,B) ≡
1

|S(x)|

∑

y∈S(x)

χB(y) .

For each x ∈ X, K(x, ·) : B → R
+ is a normalized measure and for each

B ∈ B, K(·, B) : X → R
+ is measurable by the Definition 2. Therefore

K is a stochastic kernel that describes the m-transformation S. We

will use K as a tool for proving some results. Fore a more complete study

of stochastic kernels the reader is referred to [5].

For any measurable m-transformation S we define a new measure Sµ

on (X,B, µ)

Sµ(B) ≡

∫

X

K(x,B) dµ =
m

∑

k=1

k
∑

l=1

l

k
µ(S−1

k;l (B)).

Definition 3. We say the measurable m-transformation S : X → X

preserves measure µ or that µ is S-invariant if Sµ = µ.

Definition 4. Let the m-transformation S : X → X preserve measure

µ. The quadruple (X,B, µ, S) is called an m-dynamical system.

The next proposition gives a number of examples of m-dynamical sys-

tems.

Proposition 1. Let {Si}
k
1 be a finite collection of the µ-preserving mi-

transformations of (X,B, µ) and let S(x) =
⋃k

i=1 Si(x) be measurable.

Let K,Ki be the stochastic kernels that generates S, Si, respectively. If

for any B ∈ B

K(x,B) =
1

k

k
∑

i=1

Ki(x,B) (1)

for almost all x ∈ X, then S is µ-preserving.

I For any measurable B we have

Sµ(B) =

∫

X

K(x,B) dµ =
1

k

k
∑

i=1

∫

X

Pi(x,B) dµ = µ(B). J
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In the following examples λ denotes the Lebesgue measure on [0, 1].

Example 1. Let S : [0, 1] → [0, 1] be defined by S(x) = {x, 1−x}. Then

S is λ-preserving.

Example 2. Let S : [0, 1] → [0, 1] be defined by

S(x) =

{

{2x, 1 − 2x}, x ∈ [0, 1
2
]

{2x− 1}, x ∈ ( 1
2
, 1].

Then S is λ-preserving.

The following example show that not every λ-preservingm-transformation

is union of λ-preserving transformations.

Example 3. Let S : [0, 1] → [0, 1] be defined by

S(x) =























{3
2
x} , x ∈ [0, 1

3
)

{3
2
x, 3

2
x− 1

2
} , x ∈ [1

3
, 2

3
]

{3
2
x− 1

2
} , x ∈ (2

3
, 1] .

Then S is λ-preserving, but S can not be represented as union of λ-

preserving transformations.

I Assume S(x) = ∪ki=1Si(x), where Si are the λ-preserving transfor-

mations. Then there are a measurable set B ⊂ [ 1
3
, 2

3
] of positive measure

and transformation Si (for instance S1), such that S1(B) ⊂ [0, 1
2
]. We

have

λ(S−1
1 (S1(B))) = λ(B ∪ (B −

1

3
)) = 2λ(B) and λ(S1(B)) =

3

2
λ(B) .

Since S1 is the λ-preserving transformation, λ(S1(B)) = λ(B) = 0. J

Example 4. Let S : [0, 1] → [0, 1] be defined by

S(x) =







{2x, 1 − 2x, x} , x ∈ [0, 1
2
]

{2x− 1, x} , x ∈ ( 1
2
, 1] .

Then S isn’t λ-preserving.

I For instance,

Sλ([0,
1

2
]) =

2

3
λ([0,

1

2
]) +

1

2
λ([

1

2
,
3

4
]) =

11

24
6= λ([0,

1

2
]) .

Nevertheless, we can represent S as the union of the λ-preserving trans-

formations S1(x) = x and S2 from Example 2. Of course, (1) does not

hold true. J
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Let S−1(B) = {x ∈ X : S(x) ∩B 6= ∅} denote the full preimage of B.

Definition 5. A measurable m-transformation S : X → X is said to be

nonsingular if for any B ∈ B such that µ(B) = 0, we have µ(S−1(B)) =

0, i.e., Sµ� µ.

2. Recurrence and ergodic theorems

Let S : X → X be an m-transformation. The n-th iterate of S

is denoted by Sn. The tree at x0 ∈ X is the set {x ∈ X : x ∈
Sn(x0) for some n ≥ 0}. Any sequence x0, x1, x2, . . . with xn+1 ∈ S(xn)

for all n ≥ 0 is called the orbit of x0.

In the study of m-dynamical systems, we are interested in properties of

the trees. For example, in the recurrence of trees of S, i.e., the property

that if the tree in x starts in a specified set, some orbits of x return to

that set infinitely many times.

Proposition 2. Let S be a nonsingular m-transformation on (X,B, µ)

and let µ(A) ≤ µ(S−1(A)) for any A ∈ B. If µ(B) > 0, then for almost

all x ∈ B there is an orbit of x that returns infinitely often to B.

I Let B be a measurable set with µ(B) > 0, and let us define the

set A of points that never return to B, i.e., A = {x ∈ B : Sn(x) ∩ B =

∅ for all n ≥ 1} = B\ ∪∞
n=1 S

−n(B). Consider a collection of sets

A1 = A ∪ S−1(A), Ai = A ∪ S−1(Ai−1), i ≥ 2 .

It is clear that A ∩ S−1(Ai−1) = ∅. Hence

µ(Ai) = µ(A) + µ(S−1(Ai−1)) ≥ µ(A) + µ(Ai−1) ≥ . . . ≥ (i+ 1)µ(A) .

Therefore, µ(A) = 0. Since µ is nonsingular, µ(S−n(A)) = 0 for any n ≥

0. This gives µ(B\
⋃

n S
−n(A)) = µ(B), and for any x ∈ B\

⋃

n S
−n(A)

there exists an orbit of x that returns infinitely often to B. J

If S is measure preserving, then we have an analogue of Poincare’s

Recurrence Theorem.

Corollary 1. Let S be a measure-preservingm-transformation on (X,B, µ).

If µ(B) > 0, then for almost all x ∈ B there is an orbit of x that returns

infinitely often to B.

I Note that Sµ� µ and for any measurable A

µ(A) = Sµ(A) =

m
∑

k=1

k
∑

l=1

l

k
µ(S−1

k;l (A)) ≤ µ(S−1(A)) . J
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Example 1 shows there are orbits that do not return to B. If B = [0, 1
2
),

then for any x ∈ B the orbit {x, 1 − x, 1 − x, . . .} does not return to B.

For any nonsingularm-transformation S and function f onX we define

a new function Uf on X by the equality

(Uf)(x) ≡

∫

X

f dK(x, ·) =
1

|S(x)|

∑

y∈S(x)

f(y) .

Proposition 3. If S is a nonsingular m-transformation and f is a real-

valued measurable function on X, then
∫

X

f dSµ =

∫

X

Uf dµ ,

in the sense that if one of these integrals exists then so does the other

integral and the two integrals are equal.

I We first show that Uf is measurable. Given any α ∈ R consider

an increasing sequence of rational numbers α1 < . . . < αk, where k ≤ m

and
∑k

i=1 αi < kα. Then the set

Bα1,...,αk
= S−1(f−1(−∞, α1])∩S

−1(f−1(α1, α2])∩. . .∩S
−1(f−1(αk−1, αk])

is measurable. Taking the union of Bα1,...,αk
for all possible k ≤ m and

α1, . . . , αk, we conclude that the set {x : (Uf)(x) < α} is measurable.

When f = χB is the characteristic function of B ∈ B,
∫

X

χB dSµ = Sµ(B)

and

∫

X

UχB dµ =

∫

X





∫

X

χB dK(x, ·)



 dµ

=

∫

X

K(x,B) dµ = Sµ(B) . (2)

Since U is a linear operator, the formula is also true for simple functions.

If f is a nonnegative measurable function, then f is the Sµ-pointwise limit

of an increasing sequence of simple functions fi, and the result follows

from the fact that Uf is the µ-pointwise limit of the increasing sequence

of functions Ufi and the monotone convergence theorem. Finally, any

measurable function f can be written as the difference f = f+ − f− of

two nonnegative measurable functions, so the formula is true in general.J
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Corollary 2. Let S : X → X be a measurable m-transformation on

(X,B, µ). Then S is µ-preserving if and only if
∫

X

f dµ =

∫

X

Uf dµ

for any f ∈ L1.

I This follows from the Proposition above and from (2). J

Proposition 4. Let S : X → X be a µ-preserving m-transformation on

(X,B, µ). Then the positive linear operator U is a contraction on Lp for

any 1 ≤ p ≤ ∞.

I It is easily seen that U is a contraction on L∞. By the Jensen

inequality |Uf |p ≤ U |f |p for any p ≥ 1 and f ∈ Lp (see [5], Chapter 1,

Lemma 7.4 for a more general statement). Then

‖Uf‖pp =

∫

X

|Uf |p dµ ≤

∫

X

U |f |p dµ =

∫

X

|f |p dµ = ‖f‖pp . J

For a function f on X and an m-transformation S : X → X, we define

the averages

An(f) =
1

n

n−1
∑

k=0

Ukf, n = 1, 2, . . . .

From the Birkhoff Ergodic Theorem for Markov operators (see [4] for

the details) and from the Proposition above we get the following theorem.

Theorem 1. Suppose S : (X,B, µ) → (X,B, µ) is a measure preserving

m-transformation and f ∈ L1. Then there exists a function f ∗ ∈ L1 such

that

An(f) → f ∗, µ− a.e.

Furthermore, Uf ∗ = f ∗ µ-a.e. and
∫

X
f ∗ dµ =

∫

X
f dµ.

Corollary 3. Let 1 ≤ p < ∞ and let S be a measure preserving m-

transformation on (X,B, µ). If f ∈ Lp, then there exists f ∗ ∈ Lp such

that Uf ∗ = f ∗ µ-a.e. and ‖f ∗ − An(f)‖p → 0 as n→ ∞.

I Let us fix 1 ≤ p ≤ ∞ and f ∈ Lp. Since ‖An(f)‖p ≤ ‖f‖p, we have

by Fatou’s lemma,
∫

X

|f ∗|p dµ ≤ lim inf
n→+∞

∫

X

|An(f)|p dµ ≤

∫

X

|f |p dµ .

Hence, the operator L : Lp → Lp defined by L(f) = f ∗ is a contraction

on Lp. By Theorem 1 ‖f ∗ − An(f)‖p → 0 as n → ∞ for any bounded
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function f ∈ Lp. Let f ∈ Lp be a function, not necessarily bounded. For

any ε > 0 we can find a bounded function fB ∈ Lp such that ‖f−fB‖p <

ε. Then, since L is a contraction on Lp, we have

‖f ∗ − An(f)‖p ≤ ‖f ∗
B − An(fB)‖p + ‖An(f − fB)‖p + ‖(f − fB)∗‖p ,

which can be made arbitrarily small. J

3. Ergodicity

Assume Uf = f for some measurable function f . It is very important

to know condition on S under which f is constant.

Definition 6. We call a nonsingular m-transformation S ergodic if

for any B ∈ B, such that B\S−1(B) = Bc\S−1(Bc) = ∅, µ(B) = 0 or

µ(Bc) = 0.

It is obvious that if S is the union of µ-preserving m-transformations

(see Proposition 1) one of which is not ergodic, then S is not ergodic.

Theorem 2. The following three statements are equivalent for any non-

singular m-transformation S : X → X.

(1) S is ergodic

(2) for any B ∈ B, such that µ(B\S−1(B)) = µ(Bc\S−1(Bc)) = 0,

µ(B) = 0 or µ(Bc) = 0.

(3) for any disjoint sets B1, B2 ∈ B, such that µ(B1\S
−1(B1)) =

µ(B2\S
−1(B2)) = 0, µ(B1) = 0 or µ(B2) = 0.

I It is evident that (3)⇒(1).

(1)⇒(2) Suppose S is ergodic and B ∈ B, such that µ(B\S−1(B)) =

µ(Bc\S−1(Bc)) = 0. Let A1 = (B ∩ S−1(B)) ∪ (Bc\S−1(Bc)), Ai =

Ai−1 ∩ S−1(Ai−1) for i ≥ 2, and A = ∩∞
i=1Ai. We have A1 ⊃ A2 ⊃ . . .

and

Ai−1\Ai ⊂ S−1(Ai−2\Ai−1) ⊂ . . . ⊂ S−i+2(A1\A2) ⊂ S−i+1(B\S−1(B)) .

Therefore, µ(A4B) = 0. Let x ∈ A, then there is at least one point in

S(x) that belongs to infinite many of Ai. This gives A ⊂ S−1(A).

Let C1 = Ac, Ci = Ci−1 ∩ S
−1(Ci−1) for i ≥ 2, and C = ∩∞

i=1Ci. We

have C1 ⊃ C2 ⊃ . . . and

Ci−1\Ci ⊂ . . . ⊂ S−i+2(C1\C2) ⊂ S−i+1(Bc\S−1(Bc)) ∪ S−i+2(B\A) .

Therefore, µ(C4Bc) = 0. Let x ∈ C, then there is at least one point

in S(x) that belongs to infinite many of Ci. This gives C ⊂ S−1(C).

Moreover,

Cc = A ∪ C1\C ⊂ S−1(A) ∪ S−1(C1\C) ∪ S−1(A) = S−1(Cc) .
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We conclude from the ergodicity of S that µ(Bc) = µ(C) = 0 or µ(B) =

µ(Cc) = 0.

(2)⇒(3) Suppose (2) holds true and let B1, B2 ∈ B be the disjoint sets,

such that µ(B1\S
−1(B1)) = µ(B2\S

−1(B2)) = 0. Let C1 = Bc
1, Ci =

Ci−1 ∩ S−1(Ci−1) for i ≥ 2, and C = ∩∞
i=1Ci. We have C1 ⊃ C2 ⊃ . . .

and µ(B2\Ci) = 0. Therefore µ(C) ≥ µ(B2). Let x ∈ C, then there is

at least one point in S(x) that belongs to infinite many of Ci. This gives

C ⊂ S−1(C). Moreover µ(Cc\S−1(Cc)) = 0 and µ(Cc) ≥ µ(B1). By

assumption µ(C) = 0 or µ(Cc) = 0. This finishes the proof. J

Example 5. We will prove the ergodicity of

S(x) =







{2x, 1 − 2x} , x ∈ [0, 1
2
]

{2x− 1} , x ∈ ( 1
2
, 1] .

I Let

B ⊂ S−1(B) and Bc ⊂ S−1(Bc) . (3)

Set A1 = {x : {x, 1 − x} ⊂ B}, A2 = {x : {x, 1 − x} ⊂ Bc} and

A3 = (A1 ∪ A2)
c.

Let x ∈ A1. By (3)

1 + x

2
∈ B ,

2 − x

2
∈ B ,

1 − x

2
∈ B ,

x

2
∈ B .

Therefore S̄−1(A1) ⊂ A1, where S̄ is the well known ergodic single-

valued transformation S̄(x) = 2x (mod 1), x ∈ [0, 1]. By ergodicity

of S̄, λ(A1) = 0 or λ(A1) = 1. Similarly, λ(A2) = 0 or λ(A2) = 1.

Since λ(A1) = 1 leads to λ(Bc) = 0 and λ(A2) = 1 leads to λ(B) = 0,

we need only consider

λ(A3) = 1 . (4)

Let x ∈ B. By (3) and (4)

1 + x

2
∈ B ,

2 − x

2
∈ Bc a.s.,

1 − x

2
∈ Bc a.s.,

x

2
∈ B a.s.

Therefore λ(S̄−1(B)\B). By ergodicity of S̄, λ(B) = 0 or λ(B) = 1. J

Example 6. The 2-transformation S : [0, 1] → [0, 1]

S(x) =























{3
2
x} , x ∈ [0, 1

3
)

{3
2
x, 3

2
x− 1

2
} , x ∈ [1

3
, 2

3
]

{3
2
x− 1

2
} , x ∈ (2

3
, 1] .

is not ergodic.
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I For instance, [0, 1
2
) ⊂ S−1([0, 1

2
)) and [1

2
, 1] ⊂ S−1([1

2
, 1]) . J

Proposition 5. Let S be ergodic. If f is measurable and (Uf)(x) = f(x)

a.e., then f is constant a.e.

I For each r ∈ R, Er = {x ∈ X : (Uf)(x) = f(x) > r} is measurable.

Then Er ⊂ S−1(Er) and Ec
r ⊂ S−1(Ec

r), hence Er has measure 0 or 1. But

if f is not constant a.e., there exists an r ∈ R such that 0 < µ(Er) < 1.

Therefore f must be constant a.e. J

Corollary 4. If a measure preserving m-transformation S is ergodic and

f ∈ L1, then the limit of the averages f ∗ =
∫

X
f dµ is constant a.e. Thus,

if µ(B) > 0, then for almost all x ∈ X there is a orbit of x that returns

infinitely often to B.

I We conclude from Theorem 1 and from Proposition 5, that f ∗ =
∫

X
f dµ. To prove the second statement we consider f = χB and apply

Corollary 1. J

Corollary 5. Let measure preserving m-transformation S be ergodic and

µ(S−1
11 (X)) < 1, i.e., the set {x ∈ X : |S(x)| ≥ 2} has positive measure.

If µ(B) > 0, then for almost all x ∈ X there are uncountable many orbits

of x that return infinitely often to B.

I We just apply the Corollary above to the sets B and S−1
11 (X)c. J

Corollary 6. Let S be a measure preserving ergodic m-transformation

and f ∈ L1 such that f(x) ≥ f(y)(f(x) ≤ f(y)), for any y ∈ S(x). Then

f is constant a.e.

I We have Uf ≤ f , hence the limit of averages f ∗ ≤ f . By Corollary

4 f = f ∗ is constant a.e. J

4. The Frobenius-Perron operator

Assume that a nonsingular m-transformation S : X → X on a nor-

malized measure space is given. We define an operator P : L1 → L1 in

two steps.

1. Let f ∈ L1 and f ≥ 0. Write

ν(B) =

∫

X

f(x)K(x,B) dµ .

Then, by the Radon-Nikodym Theorem, there exists a unique element in

L1, which we denoted by Pf , such that

ν(B) =

∫

B

Pf dµ .
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2. Now let f ∈ L1 be arbitrary, not necessarily nonnegative. Write

f = f+ − f− and define Pf = Pf+ −Pf−. From this definition we have
∫

B

Pf dµ =

∫

X

f+(x)K(x,B) dµ−

∫

X

f−(x)K(x,B) dµ

or, more completely,
∫

B

Pf dµ =

∫

X

f(x)K(x,B) dµ . (5)

Definition 7. If S : X → X is a nonsingular m-transformation the

unique operator P : L1 → L1 defined by equation (5) is called the

Frobenius-Perron operator corresponding to S.

It is straightforward to show that P is a positive linear operator and
∫

X

Pf dµ =

∫

X

f dµ .

Proposition 6. If f ∈ L1 and g ∈ L∞, then 〈Pf, g〉 = 〈f, Ug〉, i.e.,
∫

X

(Pf) · g dµ =

∫

X

f · (Ug) dµ . (6)

I Let B be a measurable subset of X and g = χB. Then the left hand

side of (6) is
∫

B

Pf dµ =

∫

X

f(x)K(x,B) dµ

and the right hand side is

∫

X

f · (UχB) dµ =

∫

X

f ·





∫

X

χB dK(x, ·)



 dµ =

∫

X

f(x)K(x,B) dµ .

Hence (6) is verified for characteristic functions. Since the linear com-

binations of characteristic functions are dense in L∞, (6) holds for all

f ∈ L1 and g ∈ L∞. J

The following proposition says that a density f∗ is a fixed point of

P if and only if it is a density of an S-invariant measure ν, absolutely

continuous with respect to a measure µ.

Proposition 7. Let S : X → X be nonsingular and let f∗ ∈ L1 be a

density function on (X,B, µ). Then Pf∗ = f∗ a.e., if and only if the

measure ν = f∗ · µ, defined by ν(B) =
∫

B
f∗ dµ, is S-invariant.
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I Let B ⊂ X be measurable. Then

Sν(B) =

∫

X

K(x,B) dν =

∫

X

f∗(x)K(x,B) dµ =

∫

B

Pf∗ dµ .

On the other hand

ν(B) =

∫

B

f∗ dµ . J

Proposition 8. Let S : X → X be a nonsingular m-transformation and

P the associated Frobenius-Perron operator. Assume that an f ≥ 0, f ∈

L1 is given. Then

supp f ⊂ S−1(suppPf) a.s.

I By the definition of the Frobenius-Perron operator, we have Pf(x) =

0 a.e. on B implies that f(x) = 0 for a.a. x ∈ S−1(B). Now setting

B = (supp f)c, we have Pf(x) = 0 for a.a. x ∈ B and, consequently,

f(x) = 0 for a.a. x ∈ S−1(B), which means that supp f ⊂ (S−1(B))c.

Since (S−1(B))c ⊂ S−1(Bc) a.s., this completes the proof. J

Proposition 9. Let S : X → X be a nonsingular m-transformation and

P the associated Frobenius-Perron operator. If S is ergodic, then there

is at most one stationary density f∗ of P .

I Assume that S is ergodic and that f1 and f2 are different stationary

densities of P . Set g = f1 − f2, so that Pg = g. Since P is a Markov

operator, g+ and g− are both stationary densities of P . By assumption,

f1 and f2 are not only different but are also densities we have g+ 6≡ 0

and g− 6≡ 0. Set

B1 = supp g+ and B2 = supp g− .

It is evident that B1 and B2 are disjoint sets and both have positive

measure. By Proposition 8, we have

B1 ⊂ S−1(B1) a.s. and B2 ⊂ S−1(B2) a.s.

But, from Theorem 2 it follows that µ(B1) = 0 or µ(B2) = 0. J

5. Applications and generalization

We now apply the method of m-transformation to the intersection of

two middle-β Cantor sets (see [8] and the references given there).
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Let α ∈ [1
3
, 2

3
] and ψ1(x) = αx, ψ1(x) = αx + 1 − α be contracting

similarity maps on I = [0, 1] endowed with Lebesgue measure λ. There

is a unique compact set Cα ⊂ I which satisfies the set equation

Cα = ψ1(Cα) ∪ ψ2(Cα) .

It is easily checked that Cα is the middle-β Cantor set for β = 1−2α. Let

x ∈ I and f(x) = dimH(Cα ∩ (Cα + x)) denotes the Hausdorff dimension

of the set Cα∩ (Cα+x). Let Bij = ψi(Cα)∩ψj(Cα+x), i, j = 1, 2. From

the construction of Cα it follows that B12 = ∅,

dimHB11 = dimHB22 =







f( x
α
) , 0 ≤ x ≤ α

0 , α < x ≤ 1

and

dimHB21 =























0 , 0 ≤ x < 1 − 2α

f(− x
α

+ 1
α
− 1) , 1 − 2α ≤ x < 1 − α

f( x
α
− 1

α
+ 1) , 1 − α ≤ x ≤ 1 .

Since Cα ∩ (Cα + x) = B11 ∪ B21 ∪ B22, we have

f(x) = max{dimHBij : i, j = 1, 2} = max{f(y) : y ∈ S(x)} , (7)

where

S(x) =











































{ x
α
} , 0 ≤ x < 1 − 2α

{ x
α
,− x

α
+ 1

α
− 1} , 1 − 2α ≤ x ≤ α

{− x
α

+ 1
α
− 1} , α < x ≤ 1 − α

{ x
α
− 1

α
+ 1} , 1 − α < x ≤ 1

(compare with Examples 2 and 5 under α = 1
2
).

Using Leibniz’s rule, we find the Frobenius-Perron operator corre-

sponding to S:

(Pf)(x)=







α(f(1 − α + αx) + f(1 − α− αx) + f(αx)), 0 ≤ x < 1
α
− 2

α(f(1 − α + αx) + 1
2
f(1 − α− αx) + 1

2
f(αx)), 1

α
− 2 ≤ x ≤ 1.

Assume there exist a stable point f∗ of P . Then by Proposition 7 the

measure µ = f∗ · λ is S-invariant. If in addition S : (I,B, µ) → (I,B, µ)

is ergodic, then by (7) and Corollary 6 f is constant µ-a.e. The same

method works in case of the intersection of two arbitrary self-similar sets.
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Using m-transformations, we can develop a new approach to the self-

similar sets with overlaps (see [2], [7]). Let ψ1, . . . , ψm be contracting

similarity maps on R
n, and let X = ∪mi=1ψi(X) be an attractor of the

iterated function system. Given normalized measure µ on X we consider

m-transformation of X

S(x) =
⋃

{i:x∈ψi(X)}

ψ−1
i (x) .

Assume, using the Frobenius-Perron operator corresponding S, we have

found S-invariant ergodic measure on X. This measure gives us an inter-

esting information about X. For instance, if the conditions of Corollary

5 hold true, we see that a.a. points of X have uncountable many of

addresses (see [3] for details).

From these examples we see that the main problem of the investigation

is to find an S-invariant ergodic measure. To decide this problem we

propose a following generalization of an m-transformation.

Given m-transformation S on a normalized measure space (X,B, µ)

we consider a collection of pairs {Si, αi}
m
i=1, where Si : X → X are the

single-valued measurable transformations such that S(x) = ∪mi=1Si(x) for

any x ∈ X, and αi : X → [0, 1] are the measurable functions such that
∑m

i=1 αi(x) = 1 for any x ∈ X. Let us consider the stochastic kernel

K(x,B) =

m
∑

i=1

αi(x)χB(Si(x))

and a new measure on X

Sµ(B) ≡

∫

X

K(x,B) dµ .

If we choose Si and αi such that Sµ = µ, we can employ the results of

this paper to the measure preserving transformation S.
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