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Abstract. We consider the problem of the existence and unique-

ness of solutions for partial differential operator of the form Lu =

DXu − B(x, u) where X is a vector field. The solvability of L may

be of some interest since by the Nash-Moser inverse function theorem

the equivalence problem in differential geometry can be solved via Lie

derivative operator and the later is locally a particular case of L. An

application to the equivalence of dynamic systems is given.

1. Introduction.

Let C(n, s) denote the space of germs of C∞-maps from Rn into

Rsendowed with the weak topology. The weak topology is the topol-

ogy on uniform convergence of derivatives of each order on compact sets.

Consider a differential operator L : C(n, s) → C(n, s) defined by

Lu = DXu − B(x, u),

where X ∈ C∞(n, n) is a vector function, B is a C∞ function with values

in C∞(n, s) and DXu stands for the directional derivative of u in direction

X. The operators of this type represent a local form (for specific B) of

a Lie derivative LX or covariant derivative ∇X which are widely used in

differential geometry on manifolds. In both these cases B(x, .) depends
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26 M.BENALILI

uniquely on a certain jet of X at the point x, and u stands usually for a

differentiable section of a fiber bundle over a manifold.

In this paper we are interested in local solvability of the operator L. In

other words we ask for the existence and the uniqueness of local solution

of the partial differential equation

DXu − B(x, u) = f (1)

or in coordinates
n
∑

j=1

Xj(x)Dju
i − Bi(x, u) = f i(x) (2)

where i = 1, . . . , s.

2. Formal solution of the linearized equation

We are going to present a dynamical method to give an integral formula

for a solution of the linearized equation of the equation (1), useful in

case where the method works. We shall assume in this section that

the coefficients in (2) are of class C∞ and the vector field X is a half

complete in the sense that the flow φ(t, x) generated by X is defined in

a half-cylindrical neighborhood Cδ ⊂ Rn × R+

|x| ≤ δ, t ≥ 0,

where |.| stands for a norm in Rn. The flow of X is the solution of the

initial value problem

x′ = X(x) x(0) = x (3)

which means that

φ′

t = Xoφt φ0(x) = x (4)

where ′ = d
dt

.

Lemma 1 ([1]). For all s, t, such that s ≥ 0, t ≥ 0 and s− t ≥ 0 we have

φ−1
s−t = φtoφ

−1
s .

Proof.Let f ∈ Ck(n, s), we use Newton method to solve

F (x, u) = DXu − B(x, u) − f(x) = 0.

Let uo be an approximate solution, we try to give a better approximation,

uo + ∆o = u1.

The Taylor formula with integral remainder writes

F (x, u1) = F (x, uo) + (DX − B′

u(x, u))∆o + o(∆2
o)
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where

o(∆2
o) =

∫ 1

0

(1 − s)D2
uF (x, uo + s∆o) < ∆o, ∆o > ds (5)

and B′

u(x, u) is the Jacobian matrix of B with respect to the variable u.

So if ∆o is solution of

(DX − B′

u(x, uo))∆o = −F (x, uo) (6)

then

F (x, u1) = o(∆2
o).

Before starting iteration we study the linearized equation (6). Consider

an another auxiliary differential equation

u′ = −B′

u(φ
−1
t (x), uo(φ

−1
t (x))).u (7)

x plays here a role of parameter in respect which the right hand side is

C∞. Thus there exists a normalized fundamental solution Ro(t, x) of (7)

satisfying

R′

o(t, x) = −B′

u(φ
−1
t (x), uo(φ

−1
t (x))).Ro(t, x) Ro(0, x) = id (8)

We shall prove

Lemma 2. [1]If the integral of the right side hand of the formula

∆(x) = −

∫

∞

0

R(s, φs(x))G(φs(x))ds (9)

is uniformly convergent in a neighborhood of the origin, then ∆ is a local

solution of (6) where, for a fixed function v ∈ C(n, s), G(φs(x)) =

F (φs(x), v(φs(x))).

Proof.While this result is in [1], we include its proof. In order to show

that it satisfies (6) we compute first ∆(φt(x))

∆(φt(x)) = −

∫

∞

0

R(s, φs+t(x))G(φs+t(x))ds

= −

∫

∞

t

R(s − t, φs(x))G(φs(x))ds

d

dt
∆(φt(x)) = −G(φt(x)) +

∫

∞

t

R′(s − t, φs(x))G(φs(x))ds

= −G(φt(x)) − B′

u(φt(x), v(φt(x)))

∫

∞

0

R(s, φs+t(x))G(φs+t(x))ds

= −G(φt(x)) − B′

u(φt(x), v(φt(x))).∆(φt(x)).
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Setting t = 0 and knowing φ0(x) = x, we get finally

(DX − B′

u(x, v)).∆ = −F (x, v(x)).

�

3. Solution of the non linearized equation

We make sufficient conditions to obtain solutions of the non linear

equation1

Assume that:

(H1) the function f is infinitely flat at the origin 0.

(H2) B(x, 0) = 0 for all x in a neighborhood of 0.

(H3) the origin 0 is a contracting critical point of the vector field X:

that means there are positive constants a, c, δ such that

|φt(x)| ≤ a |x| e−ct for x ∈ Bδ

where Bδ denotes the ball {|x| ≤ δ}.

We recall some useful facts:

–Contracting critical points are necessary isolated critical points (cf. [3]).

–In [5]it was shown that if φt has an exponential bound of order e−ct,

then so do all the derivative Dkφt, k ≥ 1 that is
∣

∣Dk
xφt(x)

∣

∣ ≤ a.e−ct (10)

where a is a constant depending on k and x ∈ Bδ.

Let α(t, x) and β(t, x) denote respectively the least and the greatest

real parts of the eigenvalues occurring in the spectrum of the matrix

A(t, x) = −B′

u(φ
−1
t (x), uo(φ

−1
t (x))) (with fixed t, x and function u). Let

R(t, x) be the normalized fundamental solution of the auxiliary equation

(7). The following estimates, in version without x are well known (cf. [4]):

exp

∫ t

to

α(s, x)ds ≤ |R(t, to, x)| ≤ exp

∫ t

to

β(s, x)ds (11)

for t ≥ 0 and x fixed.

Since we are investigating local solution we can assume without loss of

generality that X is of support included in Bδ, hence its flow is defined for

all t ∈ R, and the mapping F is bounded in some neighborhood of (x, u),

namely since F is continuous in the C∞− topology there exist constants

δ > 0 and ε > 0 such that for every positive integer k,
∣

∣DkF (x, u)
∣

∣ < ∞

provided that |x| < δ and ‖u‖Bδ

n = supα sup {|Dαu(x)| : x ∈ Bδ} < ε,

where α runs over all the derivatives Dα at most equal to the positive

integer n.
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We define inductively the sequence uk:

uk+1 = uk + ∆k , uo = 0

(DX − B′

u(x, uk)).∆k = −F (x, uk(x)) (12)

Theorem 3. Under the assumptions (H1), (H2) and (H3), the function

u =
∑

∞

i=1 ∆i converges uniformly in a neighborhood of the origin 0.

Proof. Let K be a compact set K. For any x ∈ K and any u ∈ C(n, s)

sufficiently small (for the norm ‖.‖K
n ) there is a constant C such that

∣

∣D2
uF (x, u(x))

∣

∣ ≤ 2C

where D2
uF is the second derivative with respect to u. If uk is a solution

of the equation12, then by Taylor’s formula with integral remainder we

get. So we have the estimate

F (x, uk+1(x)) =

∫ 1

0

(1 − t)D2
uF (x, uk + t∆k) < ∆k, ∆k > dt

so

|F (x, uk+1(x))| ≤ C |∆k(x)|2 (13)

Provided that x ∈ K and uk+1 sufficiently small. Letting Rk(t, x) =

R(t, uk(x)) where R(t, x) denotes the fundamental normalized solution

of the equation7 and Gk(x) = −F (x, uk(x)). Putting uo = 0, we get

Go(φt(x)) = F (φt(x), 0) = −f(φt(x)).

Since f is infinitely flat at the origin 0, for every integer p there exist

constants δ = δp > 0 and M ′

p > 0 such that

|F (φt(x)), 0| ≤ M ′

pδ
p
p |φt(x)|p for |x| ≤ δ.

Taking into account that the vector field X is asymptotically stable, there

are constants a > 0 and c > 0 such that

|φt(x)| ≤ ae−ct

provided that x is small (we assume that x ∈ Bδ = {x : |x| < δ}). Then

|F (φt(x), 0)| ≤ Mpδ
p
pe

−pct for |x| ≤ δ (14)

where Mp = apM ′

p is a constant depending only on p.

Now since the matrix function B
′

u(x, u) is continuous in the C∞-topology

with respect to the adjoint variable, it follows that B
′

u(x, u) is bounded

for |x| ≤ δ and u bounded in the space C(n, s) and so do its eigenvalues.

By the estimations of the eigenvalues given in 11 we deduce

|Ro(t, φt(x))| . |Go(φt(x))| ≤ Mpδ
pe(−pc+β)t (15)
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where β denotes the upper bound of the eigenvalues. We choose p large

enough so that

pc − β = ω ≥ 1.

By the formula (9), we get that

|∆o(x)| ≤

∫ +∞

0

|Ro(t, φt(x))| . |Go(φt(x))| dt

and by the estimation (15), we obtain for any |x| ≤ δ

|∆o(x)| ≤ Mpδ
p.

Fix 0 < ε < 1
C

and choose δ such that Mpδ
p < ε

2
, then for any |x| ≤ δ

|∆o(x)| <
ε

2
.

Suppose that for any fixed integer k ≥ 1 and 1 ≤ j ≤ k

|∆j(x)| <
ε

2j+1

then

|uk(x)| =

∣

∣

∣

∣

∣

k
∑

i=0

∆j(x)

∣

∣

∣

∣

∣

< ε.

so for any |x| ≤ δ, we get, by the inequality (14) that

|∆k+1(x)| =

∣

∣

∣

∣

∫ +∞

0

Rk(so, φso
(x)).Gk(φso

(x))dso

∣

∣

∣

∣

≤ C

∫ +∞

0

|Rk(so, φso
(x))| . |∆k(x)| dso

≤ (C)20

(C)21

· · · (C)2k

∫ +∞

0

|Rk(so, φso
(x))| ·

[

∫ +∞

0

|Rk−1(s1, φso+s1
(x))| . . .

(
∫ +∞

0

|Ro(so+···+sk, φso+···+sk
(x))| |Go(φso+···+sk

(x))dsk|

)2

. . . ds1

]2

dso. (16)

Taking into account of (11) and (15) we obtain
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|Ro(so+.···+sk, φso+···+sk
(x))| . |Go(φso+···+sk

(x))|

≤ Mpδ
p
p exp

∫ so+···+sk

0

(βo(t, φso+···+sk
(x)) − pc)dt

≤ Mpδ
p exp

∫ so+···+sk

0

(β − pc)dt

≤ Mpδ
pe−ω(so+···+sk). (15)

where as it is defined above ω = pc − β > 1.

Finally we have

|∆k+1(x)| ≤ (Mpδ
p)2k

≤
ε

2
(
Cε

2
)2k

with |x| ≤ δ.

Since Cε < 1, we get

|∆k+1(x)| ≤
ε

2k+1
with |x| ≤ δ.

so

|uk+1(x)| < ε with |x| ≤ δ.

The series u(x) =
∑

∞

i=0 ui(x) converges informally, on the ball |x| ≤ δ,

and hence it is the solution of the equation F (x, u) = 0.

�

Remark 1. By the same way we have proved that the solution of the

linearized equation given by Lemma2 is uniformly convergent in a neigh-

borhood of the origin 0.

3.1. Smoothness of solutions. Now state the following

Theorem 4. Under the assumptions (H1), (H2) and (H3), the function

u =
∑

∞

i=1 ∆i converges in the C∞– topology in a neighborhood of the

origin 0.

We establish some estimates from which the proof of Theorem4 follows.

3.1.1. Estimation of Dk
xF (φs(x), um(φs(x))).

Lemma 5. For any integers k, m ≥ 1, there exist constants K and A

depending on k and δ > 0 such that

∣

∣Dk
xF (φs(x), um(φs(x)))

∣

∣ ≤ Ke−cs22k−1k4k+3Ak

(

k
∑

j=0

∣

∣Dj
y∆m−1(φs(x))

∣

∣

)2

for all s ≥ 0, |x| ≤ δ and y = φs(x).
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Proof.Since for any m ≥ 1, um = um−1 + ∆m−1, where ∆m−1 is as-

sumed to be a solution of the linear equation DX − B′

u(x, u)∆m−1 =

−F (x, um−1), then F (x, um(x)) is the integral remainder that is to say

F (x, um(x))

=

∫ 1

0

(1 − t)D2
uF (x, um−1(x) + t∆m−1(x)) < ∆m−1(x), ∆m−1(x) > dt

so we have by taking derivative with respect to x that

Dk
xF (x, um(x))

=

∫ 1

0

(1 − t)
k
∑

r=0

Cr
kD

r
x

(

D2
uF (x, um−1(x) + t∆m−1(x))

)

Dk−r
x 〈∆m−1(x), ∆m−1(x)〉dt. (16)

Setting vm−1(x, t) = um−1(x) + t∆m−1(x), we get

Dr
x

(

D2
uF (x, vm−1(x, t))

)

=
∑

L+N=r

N
∑

Q=1

DL
y DQ+2

u F (x, vm(x, t))

∑

j1+···+jQ=N

CN,J1···JQ
Dj1

y vm−1(x, t)...DjQ
y vm−1(x, t). (17)

Now interchanging x by y = φs(x), and differentiating with respect to

x we obtain

Dr
x

(

D2
uF (φs(x), vm−1(φs(x), t))

)

=
∑

L+N=r

L
∑

P=1

N
∑

Q=1

DP
y DQ+2

u F (φs(x), vm−1(φs(x), t))

×
∑

i1+···+iP =L

CL,i1...iP
Dj1φs(x) . . .DjQφs(x)

×
∑

j1+···+jQ=N

CN,j1...jQ

×





j1
∑

r1=1

Dr1

y vm−1(φs(x), t)
∑

l1+···+lr1=j1

Cj1,l1...lr1
Dl1φs(x) . . .Dlr1φs(x)





. . .





jQ
∑

rp=1

DrQ
y vm−1(φs(x), t)

∑

l1+···+lrQ
=jQ

CjQ,l1...lrQ
Dl1φs(x) . . .DlrQφs(x)
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where

CL,j1...JQ
=

L!

j1!...jQ!
.

Since φt has an exponential bound of order e−ct then, by ([5]), so do all

its derivatives Diφt, k ≥ 1, that is

∣

∣Di
xφt(x)

∣

∣ ≤ η(i).e−ct (18)

where η(i) is a constant depending on i and x small enough.

For any integer k ≥ 1, let A = sup {1, η(i) : i = 1, ..., k} and

C = sup
{

∣

∣DP
y DQ+2

u F (x, v(x, τ))
∣

∣ : P + Q = k, ‖v‖Bδ

j < ρ,

j = 0, 1, 2, · · · , x ∈ Bδτ ∈ [0, 1]}

where Bδ is the closed ball of center 0 and radius δ.

By (18) we get

∣

∣Dr
y(D

2
uF (φs(x), vm−1(φs(x), τ)))

∣

∣

≤
∑

L+N=r

L
∑

P=1

N
∑

Q=1

∣

∣DP
y DQ+2

u F (φs(x), vm−1(φs(x), τ))
∣

∣

∑

i1+···+iP =L

CL,i1...iP
η(i1) . . . η(iP )e−Pcs

∑

j1+···+jQ=N

CN,j1...jQ

j1
∑

r1=1

∣

∣Dr1

y vm−1(φs(x), τ)
∣

∣

∑

l1+···+llr1=j1

Cj1,l1...lr1
η(l1) . . . η(lj1)e

−j1cs . . .

jQ
∑

rQ=1

∣

∣DrQ
y vm−1(φs(x), τ)

∣

∣

∑

l1+···+lrQ
=jQ

CjQ,l1...l
Q
η(l1) . . . η(ljQ

)e−jQcs. (19)

Using

∑

j1+···+jQ=N

CN,j1...jQ
= QN
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we obtain

∣

∣Dr
y

(

D2
uF (φs(x), vm−1(φs(x), τ))

)∣

∣ ≤

Ce−cs
∑

L+N=r

L
∑

P=1

N
∑

Q=1

APP L

εQ
∑

j1+···+jQ=N

CN,j1...jQ
Aj1+···+jQ(j1)

J1+1 . . . (jQ)JQ+1

≤ ρ′CArr4re−cs. (20)

where ρ′ = sup(1, ρ).

By the chain rule we get

Dγ
y 〈∆m−1(y), ∆m−1(y)〉 =

γ
∑

α=0

Cα
γ 〈D

α
y ∆m−1(y), Dγ−α

y ∆m−1(y)〉,

setting y = φs(x), the above equality writes

Dl
x〈∆m−1(φs(x)), ∆m−1(φs(x))〉

= 2 < ∆m−1(φs(x)),

l
∑

i=1

Di
y∆m−1(φs(x))

∑

i1+···+ii=l

Cl,i1,...,ii Di1
x φs(x) · · ·Dii

x φs(x) >

+
l−1
∑

q=1

C
q
l

〈

q
∑

i=1

Di
y∆m−1(φs(x))

∑

i1+···+ii=q

Cq

∑

i1···i

Di1
x φs(x) · · ·Dii

x φs(x),

l−q
∑

j=1

Dj
y∆m−1(φs(x)).

∑

j1+···+jj=l−q

Cl−q,j1...jj
Dj1

x φs(x) . . .Djj
x φs(x)

〉
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So, by (18), we get
∣

∣Dl
y〈∆m−1(φs(x)), ∆m−1(φs(x))〉

∣

∣ ≤ 2 |∆m−1(φs(x))| .

l
∑

i=1

∣

∣Di
y∆m−1(φs(x))

∣

∣

∑

i1+···+ii=l

Cl,i1···iη(i1) . . . η(ii)e
−ics+

l−1
∑

q=1

C
q
l

q
∑

j=1

∣

∣Dj
y∆m−1(φs(x))

∣

∣

∑

j1+···+jj=q

Cq,j1...jj
η(j1) . . . η(jj)e

−jcs

l−q
∑

p=1

∣

∣Dp
y∆m−1(φs(x))

∣

∣

∑

p1+···+pp=l−q

Cl−q,p1...pl
η(p1) . . . η(pp)e

−pcs

≤ 2Allle−cs |∆m−1(φs(x))|

l
∑

i=1

∣

∣Di
y∆m−1(φs(x))

∣

∣+

Ale−cs

l−1
∑

q=1

C
q
l q

q(l − q)l−q

q
∑

j=1

∣

∣Dj
y∆m−1(φs(x))

∣

∣

l−q
∑

p=1

∣

∣Dp
y∆m−1(φs(x))

∣

∣

≤ e−cs(2lA)l

(

l
∑

j=0

∣

∣Dj
y∆m−1(φs(x))

∣

∣

)2

. (21)

Now combining the inequalities (20) and (21), we get easily that
∣

∣Dk
xF (φs(x), um(φs(x)))

∣

∣

≤ Ce−cs22kk4kAk

(

l
∑

j=0

∣

∣Dj
y∆m−1(φs(x))

∣

∣

)2

. (22)

�

3.1.2. Estimation of Dk
xRm(t, x).

Lemma 6. With the same notations as in Lemma 5, we have
∣

∣Dk
xRm(t, φt(x))

∣

∣

≤ Ck (2A)k+1
k
∏

i=1

i3i+2
k−1
∑

j=0

C
j
k−1

1

cj+1
exp

∫ t

0

βm(τ, φt(x))dτ.

Proof.From the equation (8) we obtain by derivation

Dk
xR

′

m(t, x)

= Am(t, x).Dk
xRm(t, x) +

k
∑

l=1

C l
kD

l
xAm(t, x)Dk−l

x Rm(t, x), (23)
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where

Am(t, x) = −DuB(φ−1
t (x), um(φ−1

t (x))).

So Dk
xRm(t, x) appears as the solution of a non homogeneous matrix

linear equation with initial value Dk
xRm(0, x) =0 and, as a particular

solution, is given by

Dk
xRm(t, x) =

∫ t

0

S(t, s, x)

k
∑

l=1

C l
kD

l
x(Am(s, x))Dk−l

x Rm(s, x)ds,

where S(t, s, x) stands for the normalized fundamental solution of the

differential equation (23).

Following the same calculations as above and taking into account of

(11), we get
∣

∣Dk
xRm(t, φt(x))

∣

∣

≤ K (2A)k
k3k+2

∫ t

0

e−c(t−s) exp

(
∫ t

s

βm(τ, φt(x))dτ

)

k
∑

l=1

∣

∣Dk−l
x Rm(s, φt(x))

∣

∣ ds.

And by induction we obtain
∣

∣Dk
xRm(t, φt(x))

∣

∣

≤ (K)k (2A)k+1
k
∏

i=1

i3i+2
k−1
∑

j=0

C
j
k−1

1

cj+1
exp

∫ t

0

βm(τ, φt(x))dτ. (24)

�

3.1.3. Estimate of Dk
x∆m(x).

Lemma 7. For any integers k, m ≥ 1, and large positive integer p, there

exist positive constants M = Mk,p, δ = δk,p (depending on p and k), W

depending on k such that

∣

∣Dk
x∆m(x)

∣

∣ ≤
(

2kk3MδpW 1− 1

2m

)2m

'
(

2kk3Mk,pδ
pW
)2m

.

Proof.Let 0 < ε < 0. For m = 0, we have

Go(φt(x)) = −B(φt(x), 0) + f(φt(x)) = f(φt(x))

so

∣

∣Dk
xGo(φt(x))

∣

∣ ≤

k
∑

i=1

∣

∣Difoφt(x)
∣

∣

∑

j1+···+ji=k

Ck,j1...jiη(j1)...η(ji)e
−ict (25)
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≤ Akkk

k
∑

i=1

∣

∣Difoφt(x)
∣

∣ e−ct.

Since f is infinitely flat at origin 0, for any positive integer p there exist

constants Mi,p > 0 and δi,p > 0 (depending on i and p) such that

∣

∣Difoφt(x)
∣

∣ ≤ Mi,pδ
p
i,pe

−pct

provided that |x| < δi,p.

Now (25) becomes

∣

∣Dk
xGo(φt(x))

∣

∣ ≤ Akkk+1Mk,pδ
p
k,pe

−(p+1)ct (26)

with |x| ≤ δk,p. For simplicity, we put δ = δk,p and M = Akkk+1Mk,p, we

have

∣

∣Dk∆o(x)
∣

∣ ≤ Mδp

∫ +∞

0

exp

∫ s

0

(−pc + βo(φt(x), 0))dt

and we choose p large enough so that

pc − βo = ω > 1.

where βo = sup {|βo(φt(x), 0)| : |x| ≤ δo, t ≥ 0}. Hence

∣

∣Dk∆o(x)
∣

∣ ≤ Mδp

with |x| ≤ δ. Taking δ such that Mδp
o < ε

2
, we obtain

∣

∣Dk∆o(x)
∣

∣ <
ε

2
(27)

Provided that |x| ≤ δ.

Suppose that for any integer m ≥ 1,

∣

∣Dk∆m−1(x)
∣

∣ <
ε

2m

for |x| < δ.

Denote by

U(k, A, C) = 22k−1k4k+3AkC

and

W (k, A, c, C) = Ck (2A)k+1
k
∏

i=1

i3i+2

k−1
∑

j=0

C
j
k−1

1

cj+1
.
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From (23) and (25) we obtain

∣

∣Dk
x∆m(x)

∣

∣

≤

∫

∞

0

k
∑

l=1

C l
kU(l, K, A)U(k − l, K, A)

(

n
∑

j=0

∣

∣Dj
x∆m−1(φt(x))

∣

∣

)2

exp

∫ t

0

βm(τ, φt(x))dτ.

and by induction, we get

∣

∣Dk
x∆m(x)

∣

∣ ≤ 2(2m
−1)kk3(2m

−1)W 2m
−1 (Mδp)2

m

≤
(

2kk3W ′Mδp
)2m

with W ′ = max(1, W ).

We choose δ small enough so that

2kk3W ′Mδp <
ε

2

then
∣

∣Dk
x∆m(x)

∣

∣ <
ε

2m

and
∞
∑

m=0

∣

∣Dk
x∆m(x)

∣

∣ < ε.

�

4. Uniqueness theorems

First, we give a uniqueness theorem for the linearized equation 6.

Let A(x, u) = DuB(x, u) the solutions of the equation (6) are unique

if the equation

(DX − A(x, u))∆ = 0, ∆(0) = 0 (28)

has only trivial solution ∆(x) = 0 in neighborhood of the origin. Let

S(t, x) be the normalized fundamental matrix of the auxiliary equation

∆′ = A(φt(x), u(φt(x)))∆ (29)

Setting φt(x) as argument, (29) yields to

(∆(φt(x)))′ = A(φt(x), u(φt(x)))∆(φt(x)) (30)

So if a solution ∆(x) satisfies 29 then ∆(φt(x)) satisfies 13 and we get

∆(φt(x)) = S(t, x)∆(x), t ≥ 0
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Theorem 8. Suppose that the flow φt(x) generated by X is quasi-asymptotically

stable and either integral
∫

∞

0

α(s, x)ds

or

int∞0 |A(φt(x), u(φt(x)))| dt

converges for x from a neighborhood of the origin and fixed function u.

Then every solution of (13) is locally trivial.

Proof.There exists η > 0 such that if |x| ≤ η then u(φt(x)) → 0 as

t → ∞. From (11) we have

|u(φt(x))| ≥ |u(x)| exp

∫ t

0

α(s, x)ds

Letting t → ∞ we get u(x) = 0 for sufficiently small x.�

Theorem 9. Suppose that φt(x) is bounded as t → ∞ and x is small. If

for such x

sup
t>0

∫ t

0

α(s, x)ds = +∞

then ∆(x) = 0 for every solution of 13.

Now we are in position to establish a uniqueness theorem for the orig-

inal equation, let , for any subset compact subset K ⊂ Rn, ‖.‖K
o stand

for the semi-norm on the space C(n, s), the space of germs of C∞-maps

from Rn into Rs, given by ‖u‖K

o = supK |u(x)|.

Lemma 10. Let u1, u2 ∈ C(n, s); there exist constant δ > 0 and C > 0

such that if ‖u2‖
B
o ≤ δ and ‖u1‖

B
o ≤ δ, then

‖u2 − u1‖
B
o ≤ C ‖F (., u1) − F (., u2)‖

B
o

where F (., u)(x) = F (x, u(x)) and B is a small closed ball centered at the

origin 0 ∈ Rn.

Proof. We use Taylor’s formula with integral remainder

F (x, u2) = F (x, u1) + DuF (x, u1)(u2 − u1)

+

∫ 1

0

(1 − s)D2
uF (u1 + s(u2 − u1))(u2 − u1)

2ds
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By the Theorems 8 and 9, DuF (x, u1) = DX − A(x, u1) is invertible

on a sufficiently small ball neighborhood of the origin 0 in C(n, s); let

V F (x, u1) be its inverse. So

u2 − u1 =

V F (x, u1)

{

F (x, u2) − F (x, u1) −

∫ 1

0

(1 − s)D2
uF (u1 + s(u2 − u1))

2ds

}

and

‖u2 − u1‖
B
o

≤ ‖V F (x, u1)‖
B
o {‖F (., u2) − F (., u1)‖+

sup
s∈[0,1]

∥

∥D2
uF (u1 + s(u2 − u1))

∥

∥

B

o
.(‖u2 − u1‖

B
o )2
}

.

On the other hand, V F (x, u1) is bounded on a sufficiently small neigh-

borhood W of the origin (0, 0) in Rn × C(n, s); consequently, if the di-

ameter of W is less than δ, there exists a constant C ′ such that

‖u2 − u1‖
B
o (1 − 2δC ′) ≤ C ′ ‖F (., u2) − F (., u1)‖

B
o

provided that (x, u1), (x, u2) ∈ W .

We choose δ < 1
2C′

and take the constant C = C′

1−2δC′
.�

As a consequence of Lemma10, we have the following uniqueness the-

orem

Theorem 11. Under the assumptions (H1), (H2) and (H3) the nonlinear

differential equation DXu − B(x, u) = f has a unique local solution.

5. Application to dynamic

Theorem 12. Let X =
∑n

i=1(λixi + fi(x) ∂
∂xi

) be a vector field where the

functions fi are infinitely flat at the origin 0 and λi < 0. Then there

exists a local diffeomorphism tangential to the identity xi = yi + ϕi(y)

which transforms X in its linear part
∑n

i=1 λiyi.

Proof.This result is not new, it is a special case of the Sternberg lin-

earization. If φ(y) = y + ϕ(y), φ satisfy

X = φ∗Xo,

where

φ∗Xo = DφoXooφ
−1
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which writes in coordinates
n
∑

i=1

(λiyi

∂ϕj

∂yi

− λjϕj(y)) = fj(y + ϕ(y)), j = 1, · · · , n. (13)

Putting

Bj(y, ϕ) = λjϕj(y) + fj(y + ϕ(y)) − fj(y) j = 1, · · · , n

we get from (32) that
n
∑

i=1

λiyi

∂ϕj

∂yi

− Bj(y, ϕ) = fj(y) j = 1, · · · , n

or in a short form
n
∑

i=1

λiyi

∂ϕ

∂yi

− B(y, ϕ) = f(y)

where B(y, ϕ) = (B1(y, ϕ), · · · , Bn(y, ϕ))f(y) = (f1(y), · · · , fn(y)). The

above equation fulfils manifestly the assumption of Theorem4 and we

obtain Theorem 12. �
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