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Computing the cardinality of CM elliptic curves
using torsion points

par FRANCOIS MORAIN*

RESUME. Soit £/Q une courbe elliptique avec multiplications
complexes par un ordre d’un corps quadratique imaginaire K. Le
corps de définition de & est le corps de classe de rayon (2 associé
a lordre. Si le nombre premier p est scindé dans €2, on peut
réduire £ modulo un des facteurs de p et obtenir une courbe F
définie sur F,. La trace du Frobenius de E est connue au signe
pres et nous cherchons a déterminer ce signe de la maniere la plus
rapide possible, avec comme application ’algorithme de primalité
ECPP. Dans ce but, nous expliquons comment utiliser ’action du
Frobenius sur des points de torsion d’ordre petit obtenus a partir
d’invariants de classes qui généralisent les fonctions de Weber.

ABSTRACT. Let £/Q be an elliptic curve having complex multi-
plication by a given quadratic order of an imaginary quadratic
field K. The field of definition of £ is the ring class field €2 of the
order. If the prime p splits completely in 2, then we can reduce
€ modulo one the factors of p and get a curve E defined over [Fp.
The trace of the Frobenius of F is known up to sign and we need
a fast way to find this sign, in the context of the Elliptic Curve
Primality Proving algorithm (ECPP). For this purpose, we pro-
pose to use the action of the Frobenius on torsion points of small
order built with class invariants generalizing the classical Weber
functions.

1. Introduction

Let K be an imaginary quadratic field of discriminant —D. For any
integer ¢, let O; be the order of conductor t of K, A; = —t?D its discrim-
inant, and hy = h(A;) its class number. We denote by ; the ring class
field modulo t over K. By class field theory, the extension €;/K can be
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constructed using the minimal polynomial of the modular function j over a
set of representatives {iy,iz,...,1ip, } of the class group Cl1(O;). An elliptic
curve & of invariant j(i,) can be defined over §; and has complex multipli-
cation (CM) by O;. We denote by Ha,[j](X) the minimal polynomial of
the j’s, namely

ht

Ha [j)(X) = TT(X = (i)

r=1
which is known to have rational integer coefficients.

Let p be a rational prime number which splits completely in €2, or equiv-
alently which is the norm of an integer of €; (that is p = (U? + Dt?V?)/4
for rational integers U and V). Then we can reduce £ modulo a prime
divisor P of p to get an elliptic curve E/F, having CM by O,. If = denotes
the Frobenius of E, then it can be viewed as an element of O; of norm p,
that is (assuming that A; ¢ {—3,—4}):

(1.1) 7= (U +tVV/-D)/2.

The cardinality of E(F,) is the norm of 7 — 1, or more simply p+ 1 F U.

The j-invariant of E/F, is the reduction of one of the j(i,)’s modulo
p, that is a root of H(X) = Ha,[j](X) modulo p. Building F is done as
follows: find a root j of H(X) in IF,,, and deduce from that the equation of
E. When j € {0,1728}, we may take any equation E(j,c):

Y%= X3+ as()X + ag(j)c

where c is any element of F,, and

, 3j , 2j
1.2 - — _

We will note E(j) for E(j,1). If its cardinality is p + 1 — a, then a curve
E(j,¢) has cardinality p + 1 — (E)a (where (2) stands for the Legendre

p b
symbol). A curve with (1%) = —1is a twist of E(j). The problem is now
to compute #E(j) modulo p, or equivalently, fix the sign of U in equation
(1.1).

In the course of implementing the ECPP algorithm [3, 20] or for cryp-
tographic reasons, it is important to compute this cardinality rapidly. We
could of course try both signs of U yielding cardinalities m, find some ran-
dom points P on E(j) and check whether [m|P = Og on E. This approach
is somewhat probabilistic and we prefer deterministic and possibly faster
solutions.

In the case where D is fundamental and prime to 6, the solution is to use
Stark’s approach [29], together with tricks described in [19]. This method
is efficient, provided we can afford some precomputations. Note that in the
special case where h; = 1, which includes j = 0,1728, one already knows
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the answer (see [3, 13, 23] and the references given therein). For D = 20,
we have the isolated result of [15] (see also section 6.2 below). Since the
first version! of the present article, Ishii [12] has given the answer for D of
class numbers 2 or 3 and divisible by 3, 4, or 5.

In the ECPP algorithm, class invariants obtained from functions on I'(¢)
are used to build Q;/K in an efficient way [11]. When (_—ZD) # —1, we
actually build an elliptic curve having rational torsion subgroup of order ¢,
and sometimes a rational point inside it. Application of the Frobenius on
such a point gives us the sign we are looking for. This is all the more true
when £ is small and X (¢) is “close” to X ().

Section 2 describes properties of the modular equations defining X(¢) for
prime ¢ and their relations to complex multiplication over Q. In Section
3, we briefly describe the necessary results used in the SEA algorithm.
Section 4 contains our main contribution. We treat the special cases £ = 3
in Section 5 and ¢ = 5 in Section 6. Section 7 describes the very interesting
case of £ = 7 and for the sake of completeness that of £ = 11. Section 8 is
devoted to the particular case ¢ = 2, in which we study the properties of 4-
torsion points. We provide numerical examples for each case. We conclude
with remarks on the use of our results in our implementation of ECPP.

The books [8, 27] are a good introduction to all the material described
above.

2. Modular curves and class invariants

2.1. Modular polynomials. Let ¢ be a prime number. The curve X (¢)

parametrizes the cyclic isogenies of degree ¢ associated to an elliptic curve F

defined over a field k. An equation for Xy(¢) can be obtained as the minimal

polynomial of a modular function f whose stabilizer in SLa(Z) is T'°(¢). This

modular polynomial, noted ®[f](X, J) is such that ®[f](f(z),j(z)) = 0 for

all z such that 3z > 0, where j(z) is the ordinary modular function.
Dedekind’s i function is

77(7_) _ q1/24 H (1 - qm)
m>1

where ¢ = exp(2in7). It is used to build suitable functions for T'O(¢) (see
for instance [21, 22]). For example, if

and s = 12/ ged(12,¢ — 1), then w2 is a modular function for T'Y(¢). The
equations for small prime values of ¢ are given in Table 1 (see for instance
[18]).

1http://au"xiv.org/ps/math.NT/0210173
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Plrog]

(X +16)° —JX

(X +27) (X 4+3)° —JX

(X2 +10X +5)° —JX

(X2 +13X +49) (X2+5X +1)° —JX

TABLE 1. Table of modular equations ®[w,](X, J).

N Ot W N~

Among other classes of functions for other modular groups, we find the
classical functions of Weber:

Yo(2) = V/i(2), v3(2) = /j(z) — 1728

for which the corresponding modular equations are quite simple.

2.2. CM theory. View the class group CI(A;) as a set of reduced qua-
dratic primitive binary forms of discriminant A, say

CUA,) = {(A,B,C),B% — 4AC = A}

with hy forms in it. For a given Q = (4, B,C), let 7g = (—B+VA;)/(24).
Then j(7g) is an algebraic integer that generates /K. Moreover, the
associated curve Eg of invariant j(7g) has CM by O.

Suppose j(7) € €. If u is some function on some I'°(¢), then the roots
of ®[u|(X,j(7)) are algebraic integers. They generate an extension of §; of
degree dividing £ + 1. The striking phenomenon, known for a long time, is
that sometimes these roots lie in €2 itself. We will note Ha, [u](X) for the
minimal polynomial of the invariant w.

Among the simplest results in this direction, we have the following, dat-
ing back to Weber [31]. Suppose «a is a quadratic integer with minimal
polynomial

Ao’ + Ba+C =0

such that gcd(A, B,C) = 1 and B? — 4AC = A;.
Theorem 2.1. If31 A, 3| B, then

Qj(a) #3140
Qna) :{ Q) 1131,

A companion result is:
Theorem 2.2. Suppose 21 A. We assume that

5= Omod4 if2] A,
Tl 1mod4 if21A.
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Then
Q(v—=Dy3(@) = Q(j(a)), 214y,
Q(r3(a)) = Q(I(2e)),  if2] A

Finding a complete system of conjugate values for vo(a) (resp. y3(a)),
as well as for a lot of such functions, is explained in [24].

3. The foundations of the SEA algorithm

3.1. Division polynomials and their properties. For an elliptic F,
we let E[n] denote the group of n-torsion points of E (over Q). We let
fE(X) (or simply f,(X)) denote the n-th division polynomial whose roots
are the abscissae of the n-torsion points of E. See [26] for its definition
and properties. For instance for the curve E : Y2 = X3 + aX + b, the first
values are:

fo(X) =0, f1(X) =1, fo(X) =1,
f3(X)=3X*+6aX*+12bX — d?
f1(X)=2X%4+10a X +40b X3 —10a*X? —8abX —2a> — 16b°.

Recurrence relations for computing f,, are given by:

f2n = fn(fnJerS—l - fn72f7%+1)7

fntofps = f21fac1(16(X3? 4+ aX +b)?)  if nis odd,
Jont1 =
16(X? + aX 4 b)? fryofd — 31 fa if n is even.

n

3.2. Explicit factors of ff(X) Let E be an elliptic curve. Suppose
that we have some modular polynomial ®[f](X,.J) for a function f on
I%(¢). Then a root v of ®[f](X,5(FE)) gives rise to a curve which is /-
isogenous to E, and to a factor of f£(X). This is the essence of the ideas
of Elkies and Atkin that improve Schoof’s algorithm for computing the
cardinality of curves over finite fields [1, 25, 10]. The computations can be
done using Vélu's formulas [30] (see also [18] for technicalities related to
the actual computations). We end up with a factor g (X) of fF(X).

In Table 2, for prime ¢, we suppose v; is a root of ®[toy](X,j) and we

give the factor gf(j) (X) of ff(j) (X) that can be obtained.

3.3. The splitting of ®[f](X, j(FE)) in Fp. We take the following result
from [1] (see also [25]). Let ¢ and p be two distinct primes, and E/F,
an elliptic curve. Put #E = p+1—U, D = 4p — U2 We denote the
splitting type of a squarefree polynomial P(X) by the degrees of its factors.
For instance, a polynomial of degree 4 having two linear factors and one
quadratic factor will be said to have splitting type (1)(1)(2).
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factor
(v2 —8) X + vz + 16,
(vi 4+ 18v3 —27) X + v5 +30ws + 81,
(v2 +4vs —1)7 (v + 225 + 125) X2
2 (v3+4vs — 1) (v3 +10v5 +5) (v3 + 22vs + 125) X
+ (v +22vs5 +89) (v3 +10ws +5)°,
7] (v 41403 + 6302 + 7007 — 7)° X°
+3 (02 + 1307 +49) (V2 + 5vr + 1) (v + 1403 + 6302 + T0vr — 7)° X2
+3 (v3 + 137 +33) (02 + 1307 +49) (v + 507 + 1)
><(v$+14v$’+63v?+70v7—7)X
+ (v2 4+ 1307 +49) (V2 + 507 +1)° (v + 2603 + 21902 + 77807 + 881)

LW >

TABLE 2. Factors of feE(])

Theorem 3.1. Let f be a function for T°(¢) and write

U(X) = @[f)(X, j(E)) mod p.
If (_e ) =0, then W splits as (1)(€) or (1)---(1).
If (78 ) = +1, then U splits as (1)(1)(r)--- (r) wherer | £ —1 and r > 1
if 0 # 2.
If (_—KD) = —1, then U splits as (r)---(r) wherer > 1 and r | £+ 1.

If k denotes the number of factors of ¥, then (—1)F = (sz).

3.4. Elkies’s ideas. We briefly summarize Elkies’s idea [10]. Let 7 be the
Frobenius of the curve, sending any point P = (z,y) of E(F,) to (z?,yP).

Theorem 3.2. Let x(X) = X2 — UX + p denote the characteristic poly-
nomaal of the Frobenius m of the elliptic curve E of cardinality p+1—U.
When (_—f) # —1, the restriction of m to E[l] (denoted by 7|gj) has at
least one eigenvalue. To each eigenvalue \ of w|gyy corresponds a factor of

degree (¢ —1)/2 of f,. We deduce that U = XA+ p/X mod 4.

We will note gy »(X) the factor of ff G) (X) associated to the eigenvalue
A. Let w denote the order of A modulo ¢ and 0 = w/2 if w is even and w
otherwise. With these notations, one can show the following result:

Proposition 3.1. The splitting type of g¢ x(X) mod p is (0)(0) - - (o) with
K factors such that (¢ —1)/2 = ko.

From this, we deduce:

Corollary 3.1. The polynomial ge \(X) splits completely modulo p if and
only if A =+1 mod 4.

Note also the following result of Dewaghe [9] in the formulation of [16].
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Proposition 3.2. Let r = Resultant(gex(X), X3 + a4(j) X + a¢(j)). Then

3)-G)
t)  \p
Classically, this enables us to fix the sign of A when ¢ = 3 mod 4.

4. Stating the problem

Let 4p = U? + DV2. We want to find the equation of a curve E/F,
having cardinality m = p 4+ 1 — U. The general algorithm is the following:

procedure BUILDEWITHCM (D, U, V, p)
{ Input: 4p = U? + DV? }
1. For some invariant u, compute the minimal polynomial Hp[u](X).
2. Find a root xg of Hp[u](X) modulo p.
3. for all roots j of ®[u](zo,J) mod p do
a. compute E(j).
b. If #E(j) = p+ 1+ U instead of p+ 1 — U, replace E(j) by a twist.

4.1. Eliminating bad curves. In general, the degree of ®[u](xo,.J) is
larger than 1 and we expect several roots in J, not all of which are invariants
of the curves we are looking for.

In order to eliminate bad curves, we can use the following result. First,
note that the discriminant of the curve E is

A(E(j)) = 2" - 3%52/(j — 1728)%.

Proposition 4.1. Let 4p = U? + DV2. The number A(E(j)) is a square
modulo p in the following cases:

(i) D odd;

(ii) 4| D and 2 | V.

Proof:

(i) If « is as in Theorem 2.2, we deduce that v/—Dy3(a) is in Ok,
which means that H_p[v/—D~s] splits modulo p and therefore j — 1728 =
—Du? mod p and we have (_—pD) = +1 by hypothesis.

(ii) Theorem 2.2 tells us that Q(y3(«)) = Q(j(2cr)). But p splits in the
order Oy and therefore in €29;, which shows that the minimal polynomial
of ~y3 splits modulo p, proving the result. O

Coming back to our problegm(, )\;ve see that when the above result applies,

E(j
=)

P

a good curve is such that (A must be equal to 1.

4.2. Fixing the sign of the trace. We can assume that we are left with
only one possible j and that we want to compute the cardinality of F(j)
as quickly as possible. Let us explain our idea. Let D = DV?2. Suppose
that ¢ # p is an odd prime (the case ¢ = 2 will be dealt with later) and
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(#) # —1. In that case, Theorem 3.2 applies and if we can find one
eigenvalue A\, we can find U mod ¢. If U # 0 mod ¢, then we can find the
sign of U. Note that if £ | D, then U # 0 mod /.

The most favorable case is when ¢ | D, because then there is only one
eigenvalue A (it can be a double one) and A = U/2 mod ¢. Having \ gives
us immediately the sign of U. A very favorable case is when ¢ = 3 mod 4,
using Dewaghe’s idea.

Apart from this, there is another interesting sub-case, when we can find

a rational root xgy of gEE)\, using for instance some class invariant. In that
case, we can form y(2) = mg + axo + b mod p and test whether y is in F,, or
not. If it is, then A = 1, since (zg, yo) is rational and 7 (P) = P. Otherwise,
A=-—1.

Our idea is then to use the general framework for some precise values of
¢, and use rational roots of gy » obtained via class invariants. When ¢ = 3,
we are sure to end with a rational root of ng(])(X), as is the case for £ = 2
and ff 2 Moreover, we can use some invariant that give us the torsion
points directly. We also give examples for £ = 5,7,11.

5. The case £ = 3

We suppose that 4p = U% 4+ DV2. The first subsection makes precise the
above results.

5.1. Using 3-torsion points. We begin with an easy lemma that can be
proved by algebraic manipulations:

Lemma 5.1. Let v be any root of ®5(X,j) = 0. Then a root of ff(J)(X)
s given by

(v+27)(v+ 3)

v2 4+ 18v — 27

Proposition 5.1. Let p be a prime representable as 4p = UZ + DVOQ, for
which 3 | DVZ and #E = p+1—U. Suppose P = (x3,ys) is a 3-torsion
point on E(j) for which x5 is rational. Let s = 3+ a4(j)xs + ag(j) mod p.
Then U = 2( ) mod 3.

E
p

T3 = —

Proof: This is a simple application of Theorem 3.2. O
5.2. Solving the equation ®5(X,j(F)) = 0.

5.2.1. The case (%) # —1. A solution of this equation is given by 32,
which lies in ; with the hypothesis made on D.

Numerical examples. Let H_j5[wi? = X2 + 81X + 729, p = 109,
dp =142 +15x 4%, v3=3, 23 =104, £ : Y? = X3 4+ 94X +99;: U = +14.
Since A = 1 mod 3, we conclude that U = 14 and E has 109+ 1 — 14 points.
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Take D = 20 and p = 349. We find (U,V') = (£26,+6). We compute:
H_o0[w3?] = X2 + (70 — 22¢/—20) X — 239 — 154/—20.
Using +/—20 = 237 mod p, a root of this polynomial is v = 257, from

which j = 224 and E(j) : Y? = X3 + 45X + 30. Now A\ = —1, which gives
us that #F = 349 + 1 + 26.

5.2.2. The case (%) = —1. We may find the roots of the degree 4 equa-
tion ®4(X, j(a)) = 0 directly.
In Skolem’s approach [28], to compute the roots of a general quartic
(with a1 and a3 not both zero)
PX)=X*"4+ a1 X34+ asX? 4+ a3 X + a4

one uses the four roots X; of P to define

21 = X1+ Xo— X3 — Xy,
(5.1) 7o = X1—Xo+ X3— Xy,

z3 = X1 —Xo— X3+ X4

Writing y; = 21‘27 the y;’s are roots of

(5.2) R(y) = y* + biy* + boy + by

in which
b1 = 8a2 — 3a%,

(5.3) by = 3ai—16a2ay + 16a1a3 + 1643 — 64ay,
by = —(a“;’ — 4ayas + 8az)?.

Conversely, if the y;’s are the roots of R and if the z;’s are chosen in such
a way that
—212923 = a:{’ — 4aqa9 + 8as,
then the X;’s defined by (5.1) (together with X; + Xo + X3+ X4 = —a1)
are the roots of P.
In our case, we find that

R(Y) =Y? - 1728Y? — 576(j(a) — 1728)Y — 64(j () — 1728)?
and the compatibility relation is z3 2923 = 8(j(a) — 1728). Since we suppose
that 31 D, we replace j(a) by 72(a)3. In that case, the roots of R(Y) are
4(C3'2(@)® + 12¢5ma(a) + 144)

for i = 0,1,2. Studying the roots of these numbers as class invariants
could probably be done using Shimura’s reciprocity law (see e.g., [24]).
The function

Vra(@)? + 1272(a) + 144
has been introduced via a different route by Birch in [4] and the theorems
proven there could be used in our context, though we refrain from doing so
in this article.
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Let us summarize the algorithm to find the roots of ®§(X, j(£)) modulo
p when 31D, 3|V (which implies p = 1 mod 3):

1. compute 2 mod p;

2. compute the values y; = 4((Fy2(a)? + 12¢4y2(a) + 144) mod p for
1=1,2;

3. compute z; = /y; mod p for i = 1,2 and z3 = 8(73 — 1728)/(2122)
from which X; = 21 + 22 + 23 — 36 is a root of ®§(X, j).

Notice that (3 mod p can be computed as follows (see [2] for more on this

sort of ideas): since 3 | p — 1, we can find a such that a?=D/3 £ 1 mod p.
Put (3 = a®D/3. Tt satisfies (2 + (3 +1 = 0mod p. Therefore, finding
a root costs two squareroots and one modular exponentiation, once ~s is
known.
Numerical examples. Consider (D,p,U,V) = (40,139, £14,+3). A root
of H_49[y2](X) = X? — 780 X + 20880 modulo p is 110. Using (3 = 96, we
compute v3 = 109 and 3 = 135. Then F : Y? = X3 + 124X + 129 has
A=1land U = 14.

6. The case £ =5

6.1. Using ;. We assume here that (%) # —1 and 5 | DV2. In that
case, we can use some power of tus as invariant to get a root vs of (I>§(X 1),

thus yielding a factor g5E(j ) of f5E 2 Writing:
A =02 4 2205 + 125, B = v? + 4v5 — 1,C = v2 + 10v5 + 5,
one has:
gPUN(X) = X2+ 2(C/B)X + (1 - 36/A)(C/B)>.
Putting Y = (B/C)X leads us to (Y + 1)? — 36/A. At this point, since
_ (v +10v5+5)3

s

we also have:

(vs2 + 2205 + 125) (vs2 + 4 vs — 1)°
s

j— 1728 =

or A =us(j — 1728)/B2.

6.1.1. The case U = +2 mod 5. We deduce that p = 1 mod 5 and gf(j)(X)
has two rational roots.
Examples. Take D = 35 for which

H_35[m](X) = X? + 50X + 125.

Take (p,U, V) = (281, £33, +1). We first use vs = 163 to compute E(j) :
Y2 = X3+ 32X + 115 and ¢5Y(X) = X2 4 245X + 198. From this, we
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get x5 = 227 and find that 23 + a4(j)xs + ag(j) is a square in Fp, so that
H#E(j) =p+1+33.
Consider now D = 91 for which (%1) = +1. We find:

H_g1[w8] = X? 4 (130 — 40v/—91) X — 99 — 8/—91.
Taking (p,U, V) = (571,43, £5), we use v/—91 = 342 mod p, find v = 216
from which j = 533 and E(j) : Y2 = X3 + 181X + 311. Then ¢"%(X) =

X? + 213X + 412 which has a root x5 = 315. We find that A\ = —1 and
U=3.

6.1.2. The case U = £1 mod 5. One has p = 4mod 5 and gf(j)(X) is
irreducible; the eigenvalue is A = U/2 = +2 mod 5. We can compute it
using the techniques of SEA, that is test the identity

(XP,YP) = [+£2)(X,Y) mod g7 (X).

(Actually, checking the equality on the ordinates is enough.) Depending on
the implementation, this can cost more than testing [m]P on E.
Example. Consider (D,p,U, V) = (35,109, 11, £3). One computes vz =

76 and g5E(j) (X) = X2 413X + 13. We compute
(XP)YP) = (108X +96,Y (72X +43)) = [2](X,Y).

Therefore, U = —11.

Consider (D,p,U,V) = (91,569, £1,45). We find E(j) : Y? = X3 +
558X + 372, gFY(X) = X2 + 100X + 201 and

(X7, YP) = [2](X,Y)

so that U = —1.
6.2. A remark on the case D = 20. We will take a route different from

that in [15]. Write p = a? 4 5b%. Let g9 = (1 4+ v/5)/2 be the fundamental
unit of Q(v/5). We have

162375  89505+/5 54125  29835+/5
_ _ e — — _

87362 174724 > 43681 87362
and f5(X) has the factor:

695  225+/5 129925 45369 /5
X2+< + f)X + v5

a4 =

418 418 174724 87362

of discriminant:

A

5

ESTERST 2N 2 =3

32 (7+\/5)4 (9+\/5>2\/5
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which is congruent to £9y/5 modulo squares. Now, by [14], we have

20v5) (2)
P 5/4°
When p = 1 mod 20, A is a square modulo p and there are two abscissas
in IF,. Now, a = £1 mod 5 and thus

#E(j)=1+1£2mod5.

We can distinguish the two cases by computing y5: It is in I, if and only
if m = 0 mod 5.

7. Numerical examples for £ = 3 mod 4

7.1. The case £ =T7.
Lemma 7.1. Let vy be a root of (X, j) and put
A(vr) = vs + 1403 + 6302 + 7007 — 7.
Then
Resultant(gf’/(\j) (X), X3+ as(§)X + ag(j)) = —3jvrA(vr)S(v7)?
for some rational fraction S with integer coefficients.
Proof: using MAPLE, we evaluate Resultant(g7 x, X> + a4(j) X + ag(j)) as
—212.3% (0,2 + 1307 +49)° (v72 + 507 + 1) /A?

from which the result follows. O
Take D = 91 for which

H_g1[r03] = X% 4+ 77X +49.

Take (p,U,V) = (107,4£8,£2). We find v; = 62 from which gf(J)(X) =
X3 +104X2 + 44X + 73. Using E(j) : Y? = X3 + 101X + 103, we find
r =13 and (%) = 1 and therefore U = 8.

For (D,p,U,V) = (20,569, +36, +7), we compute:

H_oo[wd)(X) = X% 4 (15 — vV=20) X + 41 — 6/—20

one of which roots modulo p is v; = 195 (taking v/—20 = 320). Then

E(j): Y2 = X34 289X + 3 has -V (X) = X3+ 111X% + 185X + 94 from
which U = 36.
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7.2. The case £ = 11. In that case, the modular equation is quite large.
However, if we restrict to the case where 3 4 D, we can use the modular

equation relating to; and v

X2 1980 X° 4 88072 X% + 4442 X7 + 980078 X°® — 871200 v2 X° + 15004075 X *
+ (47066580 — 786575) X* + (15475 + 560560 v2) X° + (124445 —75) X + 121.

Consider (D,p,U,V) = (88,103, +18, £1). First, we find:
H_gg[ro}](X) = X2 — 66X +121

a root of which is wi; = 21. Plugging this into the modular equation, we
find 2 = 63, from which j = 66 and E(j) : Y? = X3 + 73X + 83. Using
the techniques of SEA, we find that

g1 = X° +81X% +22X3 +55X2% + 99X + 15

and the resultant is 98, so that U = 18.
Note that the techniques needed to compute gi; are probably too heavy
to make this case useful. However, we provide it as a non-trivial example.

8. The case £ = 2

The points of 2-torsion cannot be used in our context, since they have
y-coordinate 0. So we must try to use 4-torsion points instead. We suppose
that —D is fundamental.

8.1. Splitting ff @, Curves having rational 2-torsion are parametrized
by Xo(2), or equivalently, j(E) = (u + 16)3/u. Notice that:

(1 +64) (u —8)*

(8.1) j—1728 =42 =
u

Using algebraic manipulations (and MAPLE), ff () (X) factors as the prod-
uct of polynomials Po(X)Py(X) where:

u+ 16 (u — 80) (u + 16)?

Py(X)=X?+2 X + 7
2 3
Pux) = Xt T 05 gy (@HI6)7 oy, (Tut16) (u+163)
u—8 (u+64) (u—8) (u+64) (u—8)

(5u? + 640 u — 256) (u + 16)*
(u+64)” (u—8)" '
The polynomial P has discriminant:

(u+16)*

_ 2
Azlu) =12 (u—8)2 (u+64)
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The polynomial P; has the following property. If (u + 64)/u = v?, then it
splits as a product of two quadratic polynomials:

243) (1209 (02 +3)°

Ga(X) :X2+25

(v+3) (v +3)% (v —3)%v?
e (07 43) (v2 =120 —9) (2 +3)
Gp(X)=X +2v(v—3)X 01320 3%

Proposition 8.1. Suppose that (D,p, V') satisfies one of the conditions of
Proposition 4.1 and that u is a square. Then Ps splits modulo p.

Proof: Equation (8.1) tells us that u(u 4 64) is a square modulo p, which
implies that Ag(u) is also a square. O

Notice that generally, at least one of the roots of ®5(X,j), denoted by
u, will be the square of some Weber function, see [24].

8.2. Eigenvalues modulo 2*. Our idea is to use the roots of the charac-
teristic polynomial x(X) = X2 — UX 4+ p modulo powers of 2 and deduce
from this the sign of U when possible. This subsection is devoted to prop-
erties of these roots.

Since p = 1 mod 2, x(X) has roots modulo 2 if and only if U = 0 mod 2.
Modulo 4, x(X) has roots if and only if U = (p + 1) mod 4, which we
suppose from now on. It is not enough to look at this case, since we have
U =0 mod 4 or U = 2 mod 4 and in both cases, and we cannot deduce from
this alone the sign of U. We will need to look at what happens modulo
8. We list below the cases where x(X) has roots modulo 8 and then relate
this with the splitting of p.

Lemma 8.1. The solutions of X? = 4 mod 8 are +2.

Lemma 8.2. Write ¢ = £1. We give in the following table the roots of
X(X) modulo 8:

p mod 8\U mod 8 0 2e 4
1 0 {e,e +4} 0
3 0 0 {+1,+3}
5 0 {—e,—e+4} 0
7 {£1,+3} 0 0

Proposition 8.2. Let 4p = U? + DV2. The polynomial x(X) has roots
modulo 8 exactly in the following cases:

(i) 41D and 2| V;

(i) 44 D and [(4|V ) or (2]| V and D =7 mod 8)/.
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Proof:

(i) If V is even, we deduce that U? = 4p = 4 mod 8, x(X) is one of
X% —2eX +1or X2 —2eX +5 by Lemma 8.1. The result follows from
Lemma 8.2.

What can be said when V' is odd? When 4 || D, this means that p =
(U/2)%+(D/4)V?, implying that U = 0 mod 4 and p = 1 mod 4 (since —D
is fundamental, D/4 = 1 mod 4), but then U # p + 1 mod 4.

When 8 | D, then p = (U/2)? + (D/4)V? with U = 42 mod 8, but
p =3 mod 4 and again U # p + 1 mod 4.

(ii) In that case, U and V have the same parity. If U and V are odd,
this implies m = p+ 1 — U is odd, so that we do not have 2-torsion points.
If U and V are even, so is m and p = (U/2)? + D(V/2)2.

If V/2 is even of the form 2V, then p = (U/2)? + 4DV'?; U/2 must be
odd and p =1 mod 4 and we conclude as in case (i).

If V/2 is odd, then p = (U/2)% + DV'? with V' odd, which implies U/2
even, that is U = 0 mod 8 or U = 4 mod 8. One has p = (U/2)?+ D mod 8.
If D = 7mod8, then (U,p) = (0,7) mod 8 or (4,3) mod 8 and the two
characteristic polynomials have four roots modulo 8. If D = 3 mod 8, then
(U,p) = (0,3) or (4,7) modulo 8 and x(X) has no roots. O

8.3. Computing the cardinality of CM-curves. This section makes
use of the theory of isogeny cycles described in [7, 6].

With the notations of the preceding section, we suppose we are in the
case where U = 2e¢ mod 8, or equivalently 4 | D and 2 | V, or 4 f{ D and
4|V.

From Proposition 8.1, we know that the factor Py(X) of ff U) has at
least two roots modulo p. If x4 is one of these and s = x3 + az4 + b, we let
ya = /s (a prioriin F2) and P = (x4,y4). Now m(P) = £P according to
the fact that s is a square or not. We have our eigenvalue Ay = +1 mod 4.
By the theory of isogeny cycles, the eigenspace Cy generated by P can be
lifted to an eigenspace Cg of E[8] associated to the eigenvalue Ag which is
congruent to Ay modulo 4. Since U = 2 mod 8, we know from Lemma 8.2
that only one of the possible values of A\g reduces to a given A4, which gives
us €.

In practice, x4 is relatively inexpensive to use when wu is the square of
a Weber function, which happens in the case 4 | D or D = 7 mod 8 (for
this, one uses an invariant for —4D instead of —D, and both class groups
have the same class number, see [3]). When D = 3 mod 4, hy = 3hy, which
is not as convenient; still, a root of ®§(X, j) exists, since it is in 25 and p
splits in it.

Examples. First take (D,p,U,V) = (20,29,+6,+2). We find u = 7,
j=23and E(j): Y%= X3+ 3X +2. From this, P has a root 24 = 7 and
Ag = —1, so that U = —6.
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Now take (D,p,U,V) = (40,41, £2, £2). We compute u = 16, j = 39,
E(j):Y? = X34+ 30X +20, 24 = 19 and A\g = —1 implying U = —2.

Let us turn to odd D’s. Take (D,p,U,V) = (15,409, +26,+8). Then
w=102,j =93, FE:Y?=X34+130X + 223, 24 = 159 yielding \g = —1
and U = —26.

8.4. The case D odd. In that case, ®5(X, J) will have three roots in F,,
or [F)2, that we can compute directly. This could be useful for the cases not
treated by the the preceding section.

Let us try to solve the equation

PG(X,J) = X> +48 X% + 768 X — JX +4096 =0

directly. As in [5] (already used in [17]), we first complete the cube letting
Y = X + 16 to get:

(8.2) Y3 - JY +16J = 0.
We look for v and (3 such that this equation can be rewritten:
Y3 —3a8Y + aB(a + 6) = 0.
The coefficients « and 3 are solutions of
W2 —48W 4 J/3=0

whose discriminant is A = (—4/3)(J — 1728). Having o and g (in F,, or

[F,2), we solve

and we get a root

of (8.2).
Since D is odd, v/ —D~y3 is an invariant, so that we can write:

S(7)

The computation of the roots then depends on (%3) = 1. It is not clear
that the above mentioned approach is really faster than the naive one.

A:
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9. Applications to ECPP and conclusion

In ECPP, the situation is as follows. We are given j and m=p+1—-U
for some known U. We have to build an elliptic curve F having invariant
j and cardinality m. We use the results of the preceding sections in the
following way. We build a candidate E and compute its cardinality m’. If
m' = m, then F is the correct answer, otherwise, we have to twist it. All
the material of this article is now included in the author’s program.

In [11], a comparison of all possible class invariants for a given D was
made using the height of their minimal polynomial. Though it is clear that
it is easier to use invariants of small height, the results of the present article
show that we might as well favor those invariants that give us a fast way
of computing the right equation instead.

For instance, if (D,6) = 1, using Stark’s ideas whenever possible is a
good thing. When 3 | D or 7 | D, w3 or w7 should be preferred since we
have a fast answer. Note now a new phenomenon. If we are interested in
a prescribed p, we should use an invariant which depends on D, but also
on p, or more precisely on the small factors of V. For instance, if 3 | V,
we can use the direct solution of ®§(X,J). If not, we may use some case
where (_—f) =+41,and ¢ | V.

The present work has enlarged the set of D’s for which the corresponding
E’s are easy to find. Nevertheless, there are cases which are badly covered
(for instance odd primes which are non quadratic residues modulo 8, 3, 5,
7, such as D = 163) and that will require new ideas to be treated.

Acknowledgments. The author wants to thank A. Enge for his careful
reading of the manuscript and suggesting many improvements. The referee
should be thanked also for his suggestions.

Note added in proof. K. Rubin and A. Silverberg have two recent
preprints on different methods to solve our motivating problem.
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