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Characterizations of groups generated by
Kronecker sets

par ANDRAS BIRO

RESUME. Ces derniéres années, depuis larticle [B-D-S], nous
avons étudié la possibilité de caratériser les sous-groupes dénom-
brables du tore T = R/Z par des sous-ensembles de Z. Nous
considérons ici de nouveaux types de sous-groupes: soit K C T
un ensemble de Kronecker (un ensemble compact sur lequel toute
fonction continue f : K — T peut étre approchée uniformément
par des caractéres de T') et G le groupe engendré par K. Nous
prouvons (théoréme 1) que G peut étre caractérisé par un sous-
ensemble de Z? (au lieu d’'un sous-ensemble de Z). Si K est fini, le
théoreme 1 implique notre résultat antérieur de [B-S]. Nous mon-
trons également (théoreme 2) que si K est dénombrable alors G
ne peut pas étre caractérisé par un sous-ensemble de Z (ou une
suite d’entiers) au sens de [B-D-S].

ABSTRACT. In recent years, starting with the paper [B-D-S|, we
have investigated the possibility of characterizing countable sub-
groups of the torus T = R/Z by subsets of Z. Here we consider
new types of subgroups: let X C T be a Kronecker set (a com-
pact set on which every continuous function f : K — T can be
uniformly approximated by characters of T'), and G the group gen-
erated by K. We prove (Theorem 1) that G can be characterized
by a subset of Z? (instead of a subset of Z). If K is finite, Theo-
rem 1 implies our earlier result in [B-S]. We also prove (Theorem
2) that if K is uncountable, then G cannot be characterized by a
subset of Z (or an integer sequence) in the sense of [B-D-S].

1. Introduction

Let T =R/Z, where R denotes the additive group of the real numbers,
Z is its subgroup consisting of the integers. If x € R, then ||z| denotes
its distance to the nearest integer; this function is constant on cosets by
Z, so it is well-defined on T. A set K C T is called a Kronecker set if it
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is nonempty, compact, and for every continuous function f : K — T and
0 > 0 there is an n € Z such that

max || f(e) — naf <4

If K C T is a finite set, it is a Kronecker set if and only if its elements
are independent over Z (this is essentially Kronecker’s classical theorem on
simultaneous diophantine approximation). There are many uncountable
Kronecker sets, see e.g. [L-P], Ch. 1.

In [B-D-S] and in [B-S], we proved for a subgroup G C T generated by a
finite Kronecker set that G' can be characterized by a subset of the integers
in certain ways. In fact we dealt with any countable subgroup of T" in [B-D-
S], and the result of [B-S] was generalized also for any countable subgroup
in [B]. For further generalizations and strengthenings of these results, see
[Bil], [Bi2], [D-M-T], [D-K], [B-S-W].

In the present paper, we prove such a characterization of a group gener-
ated by a general Kronecker set by a subset of Z? (instead of a subset of
Z). We also show, on the contrary, that using a subset of Z, the charac-
terization is impossible, if K is uncountable. More precisely, we prove the
following results.

Throughout the paper, let K be a fixed Kronecker set, G the subgroup
of T generated by K, and let € > 0 be a fixed number. Write

[(x) for 0 <z <1/2,

- log, x
and extend it to every z > 0 by {(0) =0, and I(z) =1 for x > 1/2.

Theorem 1. There is an infinite subset A C Z? such that for every o € G
we have

> M (min([mall, n2al) < oo, (1.1)
n=(ni,n2)€A

and if B € T satisfies

. 1
min ([[n1 B}, [In26l) < 75 (1.2)
for all but finitely many n = (ni1,n2) € A, then 5 € G. Moreover, A has
the additional property that if a1, o, ..., € G are finitely many given

elements, then there is a function f : A — Z such that f(n) = ny or
f(n) =ngy for every n = (n1,n2) € A, and for every 1 <i <t we have

Do m)al) < oo (1.3)
ncA

If K is finite, the theorem of [B-S] follows at once from Theorem 1, since
we can take all elements of K as aj,ag,...,q; (see also Lemma 2 (i) in
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Section 3). Note that the statement of the Theorem in [B-S] contains a
misprint: liminf should be replaced by lim sup there.

Theorem 2. If K is uncountable, and A C Z is an infinite subset, then
G;«é{ﬁeT: lim||nﬁ||:O}.
neA

This is in fact an easy corollary of a result of Aaronson and Nadkarni,
but since the proof of that result is very sketchy in [A-N], we present its
proof (see Section 4, Prop. 1.).

We give the proof of Theorem 1 in Section 2. We mention that the basic
idea is the same as in [Bi2]. Some lemmas needed in the proof of Theorem
1 are presented in Section 3. We remark that Lemma 4 is very important
in the proof, and it provides the main reason why we need an € > 0 in the
theorem. The proof of Theorem 2 is given in Section 4. Section 5 contains
a few comments and open questions.

2. Proof of Theorem 1

We will use Lemmas 2, 3 and 4, these lemmas are stated and proved in
Section 3, so see that section if we refer to one of these lemmas.

If € R, we also write = for the coset of x modulo Z, so we consider x
as an element of 7. The fractional part function {z} is well-defined on T
Let T3 be the subgroup of T defined by

ﬂ”:{%fzvza1gagfq.

For N >0and 1 <a <2V let

a a
KN,a:{aeK: SN <{a}<2N}.

Since K is a Kronecker set, we can easily see that K N T®? = (), and so
every K 4 is an open-closed subset of K, and

2N
K=|JEKna
a=1
(disjoint union). Let F be the set of functions f : K — T(? which are
constant on each small set of one of these subdivisions, i.e.

for some N >0 }

_ . (2) .
F{f'K_)T Hf(Ena)l <1 and for every 1 < a <2V

where |f(Kn,q)| denotes the cardinality of the set f(Ky,), and we write
< 1 because it may happen that some set Ky, is empty. Observe that
F' is countable. Every element of F' is a continuous function on K, and
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F is a group under pointwise addition. For a pair (/V,a) with N > 0 and
1<a<2V let Fyn, < F be the subgroup

FN,a = {f cF: f(Oé) =0 for a € K\KN,m ‘f(KN7a)| < 1}.
For any N > 0 let gy € F be defined by

gn(a) = 2% for every o € Ky, and for every 1 <a < 2N,
and let fnq, € Fin, be defined by (N >0,1<a < 2N r > 1 are fixed):

27", ifa € KN,a

INar (@) = {O, ifaoe K\ Kng.

Clearly
ma;;{c llgn () — af| < 2N for every N > 0. (2.1)
ac

Remark that the functions gy are not necessarily distinct, but if N > 0 is
fixed, then
Hr >0: g, =gn}| < o0, (2.2)
since otherwise (2.1), applied for the elements v of this set, would give
gn(a) = a for every o € K, which is impossible by K N T2 = (.
For every f € F take a number C(f) > 0, and for every N > 0 a number
R(N) > 0, we assume the following inequalities:

> () <o, > R(N) < oo, (2.3)
N=0

feFr
and (it is possible by (2.2)):
C(gn) > N for every N > 0. (2.4)

For every f € F and for every integer j > 1 we take an integer m;(f) such
that

max | f(a) —m;(fal < 27720, (2.5)

which is possible, since K is a Kronecker set. Moreover, we can assume
that if j,j* > 1, f, f* € F, then

m« (f%) #m;(f) if (5, f) #(7 ). (2.6)
Indeed, there are countably many pairs (j, f), and for a fixed pair (j, f)
there are infinitely many possibilities for m;(f) in (2.5), so we can define
recursively the integers m;(f) to satisfy (2.5) and (2.6).
Let j(N,a,r) > 1 be integers for every triple (N,a,r) € V, where

V={(N,ar): N>0,1<a<2V r>R(N)},
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satisfying that if (N*,a*,r*) € V is another such triple, then
J(N,a,r) # j(N*,a*,r), if (N,a,r)# (N*,a*,r%). (2.7)

We easily see from (2.6) and (2.7) that for (N,a,r),(N*,a*,r*) € V we
have

mj(N,a.r) (fN,a,T) 7& mj(N*,a*,r*) (fN*,a*,T*)a if (N,G,T) 7& (N*,CL*,T‘*).

(2.8)
Define
H, = {mj(N,a,r)(fN,a,T) : (N,G,T’) S V} . (29)
We claim that
> M ([lnal) < o (2.10)
neHy
for every a € K. Indeed, let o € K be fixed. We have
msvan(Unar)al < Inar(@)] + 27770 (21

by (2.5). Now, on the one hand,

2N
Y nar (@) = 127, Z Yo M) <o (212)
a=1

N=07r>R(N)
by (2.3); on the other hand, using (2.7) and (2.3), we get

Z Ji+e (2—1 2i(N,a,m) ¢ ( me)> Z Z —(1+9) < 00

(N,a,r)eV feF j>1
(2.13)
In view of Lemma 2 (i), (2.11)-(2.13), and the definition of H; in (2.9), we
get (2.10).

If s is a nonnegative integer, the following set is a compact subset of T :

t
t>1, aj,a9,...,00 € K,
K, =< a= ko t .
s { ; L kl,kz,...,ktez, Zizllkﬂgs
Lemma 1. There is a subset H of the integers such that Hy C H and on

the one hand we have
> 1 (nal)) < oo (2.14)

ncH
for every a € K; on the other hand, if 8 € T has the property that

1
Indl < (215)

for all but finitely many n € H, then there is a group homomorphism
¢p = ¢ : F' — T which satisfies the following properties:
(i) for all but finitely many pairs (f,j) with f € F, j > 1 we have

l6(f) —m;(f)B| < 27~ (2.16)
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(ii) for every (N, a) pair with N >0, 1 <a <2V if Ky, # 0, there is
a unique integer ky o for which
O(f) = knaf() (2.17)
for every f € Fngq, where a € Ky is arbitrary; if Kno, = 0, we put
kna = 0, and then for large N we have

max |kyq| < 28, (2.18)
1<a<2N ’

(i) if ]\}fl Z}SL large enough, then writing s = 2211 |kna|, there is an
a € K such that
1
oo — B < ~ 7+ 527N, (2.19)

Proof. Define
Hy =A{2"(mja(f) —m;(f)): fEF j=1,0<r<j-14+C(f)}.

Let us choose for every triple fi, fo, f3 € F with f3 = fi; + f2 an infinite
subset Jy, ¢, r, of the positive integers such that (the first summation below
is over every such triple from F')

Si= 0y > (Zmin(C(£),C(f2),C(fs))) " <oo.  (220)
fs=fi+120€d1, 15,15

Since C(f) > 0 for every f € F, ¢ > 0 and F' is countable, this is obviously
possible. Then define (we mean again that f1, f2, f3 run over every such
triple from F)

Ha = {2 (my (1) mgf) = () 02 L8 2 T € Tt |

Hy={2"(mi(gn)—1): N>1,0<r<logy,N}.
Let H = U?Zl H;. We first prove (2.14). If f € F, j > 1 and a € K, then
(mj1(f) = m;(£)) o] < 27 GFHEN-H='=1CW) (2.21)
by (2.5), therefore, using also Lemma 2 (ii) and (2.3), we obtain

1+e —€(9J _ 1)"¢€
> max 1 ([|nal]) < my ZC(f) (27 — 1)~ < . (2.22)
n€Hs fEF j>1
faeK, fi,fo,fs€F, fs= fi+ foand j € Jyf, 4, 45, then by (2.5) we get
[mg (1) + ms(f2) = () ] < 262022 min(CU L),
(2.23)
and so by Lemma 2 (ii) and (2.20) we get

g max [ (|na)) < m¥ < oco. (2.24)
acK
ne€Hs
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If N >1and a € K, then

I(m1(gn) = 1) afl < [lma(gn)a — gy ()| + llgn (@) — af <27 (2.25)
by (2.1), (2.4) and (2.5), so by the definition of H4, we obtain

1+e€ < 1+4€ ( 1-N—log, N) ) )
g}; max [+ (o) < Nzl (14 logy N) 1M (2 < oo, (2.26)
n 4 =

The relations (2.10), (2.22), (2.24) and (2.26) prove (2.14).

Now, assume that for a § € T we have an ng > 0 such that (2.15) is
true if n € H and |n| > ng. Since K is a Kronecker set, so ||nal| > 0 for
0#n€Z, ac K. Therefore, we see from (2.21) (and (2.3)) that

0 < |mjs1(f) —my(f)l < no
can hold only for finitely many pairs f € F, j > 1; we see from (2.23) that
if f1, fo, f3 € F are given with f3 = f; + fo, then

0 <[m;(f1) +m;(fa) —m;(f3)| < no
can hold only for finitely many j > 1; and from (2.25) that
0 <|mi(gn) — 1] <mng

can hold only for finitely many N. Then, by Lemma 3, we obtain the
following inequalities (using Ho C H, H3 C H, Hy C H, respectively):

2 (5) = ms (1) Bl < srtracy (2.27)

for all but finitely many pairs f € F, j > 1;

[(m; (f1) +mj(f2) —m;(f3)) Bl <

for every triple fi, fa, f3 € F with fg = f1 + fo and for large enough
j S Jf17f27f3;

1/10

(2.28)

1/10

s (o) = 1) Bl < 375

(2.29)

for large enough N.
Then from (2.27), for all but finitely many pairs f € F, j; > 1 we have

2/5 "<
Gz (F) =m0 () Bl < ey 2{:2 ! (2.30)
j=i
for every jo > ji. This implies that m;(f)3 is a Cauchy sequence for every
f €F, so
¢(f) == lim m;(f)5 (2.31)

j—00
exists, (2.16) is satisfied for all but finitely many pairs f € F, j > 1 by
(2.30), and since every Jy, r, f, is an infinite set, ¢ : ' — T is a group
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homomorphism by (2.28) and (2.31). We also see that for large N, by
(2.16), (2.4) and (2.29), we have

1
I6(n) - B < .
If (N, a) is a fixed pair with N >0, 1 < a <2V and Ky, # 0,, then
”(b(fN,a,r)H < H¢(fN,a,r) - mj(N,a,r) (fN,a,r)BH + Hmj(N,a,r) (fN,a,r) ﬁ

and so

(2.32)

)

. 1
lim sup ||¢ (fN,a,r)H < 10
r—00

by (2.16), (2.7), using also the assumption on 3, (2.8) and H; C H. Then
(2.17) follows from Lemma 4, because Fy 4 is obviously isomorphic to 7@,
We now prove (2.18). Assume that N is large and

ko] > 28V (2.33)
for some 1 < a < 2. Take an integer r such that
2|knal <27 < 4lknal- (2.34)
Then r > R(N), so mj(n,q,r)(fNar) € Hi € H, and so for large N we have
(see (2.8)) that

1
[m5(N.ai) (FN,ar) B < (2.35)

TO-
But (2.34) and (2.17) imply
1

||¢(fN7CLﬂ")|| = 1
which contradicts (2.35) for large N by (2.16) and (2.7). Therefore (2.33)
cannot be true for large N, so (2.18) is proved. To prove (2.19), if N > 0,
1 < a < 2V are arbitrary and ky, # 0, which implies Ky, # 0 by
definition, we take an oy, €Ky 4, and then, by the definition of gy and
by the already proved properties of ¢, we have

2N
H(b(gN) - Z kN,aaN,aH < 27N Z ’kN7a| y
1<a<2N ko #0 a=1
and together with (2.32), this proves (2.19). O

Proof of Theorem 1. For every N > 0 we take some integer j(N) > 1 such
that the sequence j(INV) is strictly increasing and
(e.9]
32N (R(N) + 2) 1 (2—9‘<N>) < . (2.36)
N=0
Let

U:{(Nﬂa):N2071SGS2N717KN,2a—1#meN,Za?é@}a
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define A* C Z? as

* (N’ CL) € U7
A" = {(mj(N) (fNv2a=11) s iy (FN2a,2)) 1<ri,rm<RN)+2 [

and let A = A*U{(n,n):n € H}. Note that if (N,a),(N*,a*) € U, and
1<r <R(N)+2,1<r} <R(N*)+2, then

miny (fN2a—1m1) 7 Mjney (Fve2ar—100) 5 i (N, a) # (N*,a*) . (2.37)

Indeed, this follows from the fact that j is strictly increasing (so one-to-
one), using (2.6) and the definition of U.

Assume that § € T satisfies (1.2) for all but finitely many n = (ny,n2) €
A. Then (2.15) is true for all but finitely many n € H, we can apply Lemma
1. If N is large, and we assume that knoq—1 7# 0 and ky 2, # 0 for some
1 < a < 2NV=1 (this implies (N,a) € U by the definitions), then by (2.18)
we can take a pair 1 < ry,ry < R(NN) + 2 such that

2|kn2a—1| < 2™ < 4|kn2a—1], 2|kn2q| <27 < 4|kn 2] -
Then by (2.17), we have
1 1
6 rzocndl 2 5 16 Uzarll =

and, in view of (2.16), j(N) — oo, the definition of A, (2.37) and the
property of 3, this is a contradiction for large N. Therefore, if N is large,
then kno2q—1kn 2, = 0 for every 1 < a < 2N*1, and since clearly kyoq—1 +
kno2a = kNn—1,4, this easily implies that ZZL |kn,q| is constant for large
N. In view of (2.19) and the compactness of the sets K, this proves that
6 eq.

Now, let aq,ao,...,a; be given distinct elements of K. Then it is clear
that if N is large enough (N > Np), then for any 1 < a < 2V~! we can
take a §(N, a) €{0,1} such that

1,02, 50 & Ky oa—s(Na)s
i.e.
fN,QafzS(N,a),T(ai) =0

for every r > 1, 1 < i < t. Then, defining 6(N,a) €{0,1} arbitrarily for
0< N < Ny, 1<a<2V¥~1 by (2.5) and (2.36) we have

00 2]\]71

>N > Jte <||mj(N)(fzvga_(s(N,a),rz,&(N,a))Oéi||> < o0

N=0 a=1 1<ryre<R(N)+2

for 1 <4 <t. This, together with (2.14), means that defining f on A* by

S ((myovy (Inza—100) s mjny (fN2a,m))) = () (fN20-6(N,0) s 50301 )>
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(the definition is correct by (2.37)), and extending f to A by f ((n,n)) =n
for n € H, we have (1.3) for every 1 < i < t. We proved the existence of

such an f for a1, ae,...,a; € K, but since K generates G, such an f exists
also for aj,a,...,a¢ € G, in view of Lemma 2 (i). Then (1.1) follows
easily, so the theorem is proved. O

3. Some lemmas
Lemma 2. (i) There is a constant M > 0 such that if x,y > 0, then
lH'e(x—l-y) < M(l1+€(aj) +ll+€(y)).

(ii) There is an m > 0 constant such that for any a > 0 we have

[e.9]

le+e(2—r—a) < ma .

r=0

Proof. For statement (i) we may obviously assume that 0 < z,y < 1/4.

Then
% +y < 2max(z, ) < v/max(z, y),
and so
—(1+4€)
(w4 y) < 1 (Vimax(e,y) ) = (-~ log, (Vmax(z,y)) )
= 27U (max(z, y)) |
which proves (i). Statement (ii) is trivial from the definitions. O

Lemma 3. Ifw e T, k> 1 s an integer, and

1
k
el 1201, 4l . 125w ] <6 < 5.

then ||lwl|| < 2%.
Proof. This is easy, and proved as Lemma 3 of [B-S]. O

Lemma 4. If ¢ : T® — T is a group homomorphism and

(3=

then there is a unique integer k such that ¢p(a) = ko for every a € 7@,

lim sup
T—00

Proof. The uniqueness is obvious, we prove the existence. It is well-known
that the Pontriagin dual of the discrete group T® is the additive group Zs
of 2-adic integers. Hence there is a 0-1 sequence b, (r > 0) such that

o(a) = (Z br2r> o (3.2)
r=0
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for every o € T(?), hence

1\ b b b1
Cb <2r> = o or—1 4+ ...+ 5 (3.3)

for every r > 1. We see from (3.3) that if b,_1 = 1, b,_9 = 0, then

s<{e(3) =3

which is impossible for large enough r, in view of (3.1). Consequently, the
sequence b, is constant for large enough r. If this constant is 0, i.e. b, =0
for r > rp, then using (3.2), we get the lemma at once. If the constant is
1, so b, = 1 for r > rq, then, since

oo
door=-1
r=0

in Zs, one obtains the lemma from (3.2) with

k=-1—((1—bo)+2(1=b1)+...+ 207 (1 —bry-1)).

4. Proof of Theorem 2

If G is a group and d is a metric on G, we say that (G,d) is a Polish
group, if d is a complete metric, and G with this metric is a separable
topological group.

The following proposition essentially appears on p. 541. of [A-N], but
since they give only a brief indication of the proof, we think that it is worth
to include a proof here.

Proposition 1. Assume that K is an uncountable compact subset of T,
and K s independent over Z. Let G < T be the subgroup generated by K.
Let d be a metric defined on G such that (G,d) is a Polish group. Then the
injection map

i:(G,d) — T, i(g) = g for every g € G
is not continuous (we take on T its usual topology, inherited from R).

Proof. Let @ be a countable dense subgroup in (G,d) (such a subgroup
clearly exists, since (G, d) is separable). Consider () with the discrete topol-
ogy (discrete metric). Then (Q,G) is a Polish (polonais) transformation
group in the sense of [E|, moreover, it clearly satisfies Condition C on p.
41. of [E]. Since @ is not locally closed in G by our conditions, conditon
(5) of Theorem 2.6 of [E] is not satisfied. Hence (9) of that theorem is also
false, therefore there is a Borel measure p on G with (G) = 1 such that
(i) each @Q-invariant measurable subset of G has measure 0 or 1;
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(ii) each point of G has measure 0.

Indeed, pu(G) = 1 can be assumed, since p is nontrivial and finite by
[E], (i) follows since p is ergodic in the sense of [E], and (ii) is true by (i),
because p is not concentrated in a Q-orbit.

The measure p then has the following additional property, which is a
strengthening of (ii):

(iii) if ¥ C G is a closed subset (in the d-topology) and p(F') > 0, then
there is an A C F with 0 < u(A) < pu(F).

It follows by another application of Theorem 2.6 of [E]. Indeed, let {0}
be the trivial group, then ({0}, F') is a polonais transformation group sat-
isfying Conditon C on p.41. of [E], (5) of Theorem 2.6 is true, hence (8) of
Theorem 2.6, using (ii), gives (iii).

Now, we are able to prove the proposition. Assume that i : (G,d) — T
is continuous, and we will get a contradiction. For ¢t > 1, ni,ne,...,nt € Z
set

E(ny,ng,...,ny) = {nixy + noxo + ... + myzy 0 x1,29,..., 00 € K}

Every E(ni,ng,...,n;) is a closed set in (G,d), since it is closed in T' and
¢ is continuous. Since

G:U U E(ny,ng,...,n),
t>1n1,n2,...n€ZL

hence p (E(ni,na,...,nt)) > 0 for some values of the parameters.
Let ge G, t > 1, n1,no,...,n: € Z be minimal with the property that

p(g+ E(ni,ng,...,ng) >0,

in the sense that

pw(h+ E(mi,ma,...,m;)) =0 (4.1)

for every h € G, r > 1, m1,ma,...,m, € Z with
|ma| + |me| + ...+ |my| + 7] < |na| + |no| + ...+ |ne| + |2 (4.2)
By (iii), writing F' = g + E(n1,na,...,n;), there is an A C F with 0 <
p(A) < p(F). Then p (quQ(q + A)) > 0, hence (quQ(q + A)) =1by

(
i)

i). We prove that

pl U@+ | NFENA ] =o0.

q€Q

This will give a contradiction, because p (F'\ A) > 0. Since @ is countable,
it is enough to prove that p((¢ + A)(F) = 0 for every 0 # ¢ € @, which
follows, if we prove

" ((q +F)() F) -0 (4.3)

for every 0 #£ q € Q.
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Assume that ¢ + f1 = fo, fi = g+ e1, fo = g+ ea, where f1, fo € F,
e1, e € E(ny,ng,...,ng). Fori=1,2 let
€; = N1Tij1 + NoTi2 + ... NsTit
with z;; € K fori=1,2,1<j <t. Let
q = V1Tl + VoZo2 + ... VsZos

with s > 1, and v € Z, xg; € K for 1 <[ < s. Since g+ €1 = ea, ¢ # 0,
and K is independent over Z, there are integers 1 < <2, 1 <5 <t and
1 <1 < s such that z;; = xg;. Therefore, if

E.= U U U (mzo + E(my,ma,...,m.)),
1<I<s m€Z (r,m1,m2,....,m,)EH
where
H :={(rmi,ma,...,my): r > 1, mi,ma,...,m, € Z, (4.2) is true},

then e; € F for some 1 <4 < 2. Hence

fa € (g+E)U(g+q+E).
Since (g + E) =pu(g+q+ E) =0Dby (4.1), (4.2), so (4.3) is true, and the

proposition is proved. O

Proof of Theorem 2. Assume that

G= {ﬁ €T : lim ||ng|| :O}
neA
for some infinite A C Z. For x,y € G let
d(z,y) = ||z =yl + max|n(z —y)|. (4.4)

It is clear that d is a metric on G, and (G,d) is a topological group. We
show that d is complete. Let 8; € G, 7 > 1 be a Cauchy sequence with
respect to d. Then (; is a Cauchy sequence also in T" by (4.4), so there is
a (# € T such that ||3; — B|| — 0 as j — oo. Now, for n € A, ji,j2 > 1 we
have

I (Bjy = Bl < lIn (Bj, = Bia)Il + lIn (B, = B)| - (4.5)

Letting jo — oo for fixed n and j; we get

[nBIl < lInj, || + lim sup d(3;,, B,),

J2—00

and 3;, € G gives

c Ja—00
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for every j1 > 1, which proves § € G. Let € > 0, then we can take jo, N > 1
so that

In (B = Bl + sup d(Bj,, Bj,) < €

J1272
for every n € A, |n| > N. Hence for j; > jo, n € A, |n| > N we have
|ln(Bj, —B)|| < e by (4.5). Since for any fixed |n| < N we know that
|n (B, — B)|| = 0 as ji — oo, this proves d(f;,,5) — 0, so d is complete.
Let X be a countable dense subset in T', and for NV, > 1 integers, x € X

let
U — {ﬁe o 8=l +max, ) < N||n(5_$)\|}

+ maxn€A7|n| >N HnﬁH < %

It is easy to check that if we take an element from each nonempty Up s,
then we get a countable dense subset of (G, d). So the conditions of Propo-
sition 1 are satisfied, hence i : (G,d) — T is not continuous. But this
contradicts (4.4), so the theorem is proved. O

5. Some remarks and problems

If K is finite, it follows from [Bi2], Theorem 1 (ii) that Theorem 1 of the
present paper would be false for ¢ = 0. But we cannot decide the following

Problem 1. Let K be uncountable. Is Theorem 1 true with e =07

The following proposition is a consequence of [V], p.140, Theorem 2’ (the
quoted theorem of Varopoulos is stronger than this statement):

Proposition 2. Let L C T be a compact set with L NG = (), then there is
an infinite subset A C Z such that

G:{ﬁEGUL: limHnﬂHzO}.
neA

Compare Proposition 2 with our Theorem 2. We do not know whether
Proposition 2 can be strengthened in the following way:
Problem 2. Let L C T be a compact set with L NG = (. Is there an
infinite subset A C Z such that

G:{ﬁeGUL: lim ||| :o},
neA

> nall < oo

neA

and

for every o € G?

We state without proof our following partial result in this direction.
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Theorem 3. Let L C T be a compact set with LN G =0, and let v be a
strictly increasing continuous function on the interva [0,1/2] with v(0) = 0.
Then there is an infinite subset A C Z such that we have

> (Inal) < o

neA
for every a € G, but
> v (|lngl) = o0
neA
for every 8 € L.

Remark that this theorem implies at once the result mentioned on p.40.
of [H-M-P], namely that G is a saturated subgroup of T (for the definition
of a saturated subgroup, see [H-M-P] or [N], Ch. 14). We note that the
above-mentioned Theorem 2’ on [V], p.140, also implies that G is saturated.

Finally, we mention that Theorem 2 and Proposition 2 together show that
if K is uncountable, then G is a g-closed but not basic g-closed subgroup of
T in the terminology of [D-M-T]. This answers the question of D. Dikranjan
(oral communication) about the existence of such subgroups of T.
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