
Journal de Théorie des Nombres
de Bordeaux 19 (2007), 567–582

Characterizations of groups generated by

Kronecker sets

par András BIRÓ

Résumé. Ces dernières années, depuis l’article [B-D-S], nous
avons étudié la possibilité de caratériser les sous-groupes dénom-
brables du tore T = R/Z par des sous-ensembles de Z. Nous
considérons ici de nouveaux types de sous-groupes: soit K ⊆ T
un ensemble de Kronecker (un ensemble compact sur lequel toute
fonction continue f : K → T peut être approchée uniformément
par des caractéres de T ) et G le groupe engendré par K. Nous
prouvons (théorème 1) que G peut être caractérisé par un sous-
ensemble de Z2 (au lieu d’un sous-ensemble de Z). Si K est fini, le
théorème 1 implique notre résultat antérieur de [B-S]. Nous mon-
trons également (théorème 2) que si K est dénombrable alors G
ne peut pas être caractérisé par un sous-ensemble de Z (ou une
suite d’entiers) au sens de [B-D-S].

Abstract. In recent years, starting with the paper [B-D-S], we
have investigated the possibility of characterizing countable sub-
groups of the torus T = R/Z by subsets of Z. Here we consider
new types of subgroups: let K ⊆ T be a Kronecker set (a com-
pact set on which every continuous function f : K → T can be
uniformly approximated by characters of T ), and G the group gen-
erated by K. We prove (Theorem 1) that G can be characterized
by a subset of Z2 (instead of a subset of Z). If K is finite, Theo-
rem 1 implies our earlier result in [B-S]. We also prove (Theorem
2) that if K is uncountable, then G cannot be characterized by a
subset of Z (or an integer sequence) in the sense of [B-D-S].

1. Introduction

Let T = R/Z, where R denotes the additive group of the real numbers,
Z is its subgroup consisting of the integers. If x ∈ R, then ‖x‖ denotes
its distance to the nearest integer; this function is constant on cosets by
Z, so it is well-defined on T . A set K ⊆ T is called a Kronecker set if it
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is nonempty, compact, and for every continuous function f : K → T and
δ > 0 there is an n ∈ Z such that

max
α∈K
‖f(α)− nα‖ < δ.

If K ⊆ T is a finite set, it is a Kronecker set if and only if its elements
are independent over Z (this is essentially Kronecker’s classical theorem on
simultaneous diophantine approximation). There are many uncountable
Kronecker sets, see e.g. [L-P], Ch. 1.

In [B-D-S] and in [B-S], we proved for a subgroup G ⊆ T generated by a
finite Kronecker set that G can be characterized by a subset of the integers
in certain ways. In fact we dealt with any countable subgroup of T in [B-D-
S], and the result of [B-S] was generalized also for any countable subgroup
in [B]. For further generalizations and strengthenings of these results, see
[Bi1], [Bi2], [D-M-T], [D-K], [B-S-W].

In the present paper, we prove such a characterization of a group gener-
ated by a general Kronecker set by a subset of Z2 (instead of a subset of
Z). We also show, on the contrary, that using a subset of Z, the charac-
terization is impossible, if K is uncountable. More precisely, we prove the
following results.

Throughout the paper, let K be a fixed Kronecker set, G the subgroup
of T generated by K, and let ε > 0 be a fixed number. Write

l (x) =
−1

log2 x
for 0 < x < 1/2,

and extend it to every x ≥ 0 by l(0) = 0, and l(x) = 1 for x ≥ 1/2.

Theorem 1. There is an infinite subset A ⊆ Z2 such that for every α ∈ G
we have ∑

n=(n1,n2)∈A

l1+ε (min (‖n1α‖ , ‖n2α‖)) <∞, (1.1)

and if β ∈ T satisfies

min (‖n1β‖ , ‖n2β‖) <
1
10

(1.2)

for all but finitely many n = (n1, n2) ∈ A, then β ∈ G. Moreover, A has
the additional property that if α1, α2, . . . , αt ∈ G are finitely many given
elements, then there is a function f : A → Z such that f(n) = n1 or
f(n) = n2 for every n = (n1, n2) ∈ A, and for every 1 ≤ i ≤ t we have∑

n∈A
l1+ε (‖f(n)αi‖) <∞. (1.3)

If K is finite, the theorem of [B-S] follows at once from Theorem 1, since
we can take all elements of K as α1, α2, . . . , αt (see also Lemma 2 (i) in
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Section 3). Note that the statement of the Theorem in [B-S] contains a
misprint: lim inf should be replaced by lim sup there.

Theorem 2. If K is uncountable, and A ⊆ Z is an infinite subset, then

G 6=
{
β ∈ T : lim

n∈A
‖nβ‖ = 0

}
.

This is in fact an easy corollary of a result of Aaronson and Nadkarni,
but since the proof of that result is very sketchy in [A-N], we present its
proof (see Section 4, Prop. 1.).

We give the proof of Theorem 1 in Section 2. We mention that the basic
idea is the same as in [Bi2]. Some lemmas needed in the proof of Theorem
1 are presented in Section 3. We remark that Lemma 4 is very important
in the proof, and it provides the main reason why we need an ε > 0 in the
theorem. The proof of Theorem 2 is given in Section 4. Section 5 contains
a few comments and open questions.

2. Proof of Theorem 1

We will use Lemmas 2, 3 and 4, these lemmas are stated and proved in
Section 3, so see that section if we refer to one of these lemmas.

If x ∈ R, we also write x for the coset of x modulo Z, so we consider x
as an element of T . The fractional part function {x} is well-defined on T .
Let T (2) be the subgroup of T defined by

T (2) =
{ a

2N
: N ≥ 0, 1 ≤ a ≤ 2N

}
.

For N ≥ 0 and 1 ≤ a ≤ 2N let

KN,a =
{
α ∈ K :

a− 1
2N

< {α} < a

2N

}
.

Since K is a Kronecker set, we can easily see that K ∩ T (2) = ∅, and so
every KN,a is an open-closed subset of K, and

K =
2N⋃
a=1

KN,a

(disjoint union). Let F be the set of functions f : K → T (2) which are
constant on each small set of one of these subdivisions, i.e.

F =
{
f : K → T (2) : |f(KN,a)| ≤ 1

for some N ≥ 0
and for every 1 ≤ a ≤ 2N

}
,

where |f(KN,a)| denotes the cardinality of the set f(KN,a), and we write
≤ 1 because it may happen that some set KN,a is empty. Observe that
F is countable. Every element of F is a continuous function on K, and
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F is a group under pointwise addition. For a pair (N, a) with N ≥ 0 and
1 ≤ a ≤ 2N let FN,a ≤ F be the subgroup

FN,a = {f ∈ F : f(α) = 0 for α ∈ K \KN,a, |f(KN,a)| ≤ 1} .

For any N ≥ 0 let gN ∈ F be defined by

gN (α) =
a

2N
for every α ∈ KN,a and for every 1 ≤ a ≤ 2N ,

and let fN,a,r ∈ FN,a be defined by (N ≥ 0, 1 ≤ a ≤ 2N , r ≥ 1 are fixed):

fN,a,r (α) =

{
2−r, if α ∈ KN,a

0, if α ∈ K \KN,a.

Clearly
max
α∈K
‖gN (α)− α‖ ≤ 2−N for every N ≥ 0. (2.1)

Remark that the functions gN are not necessarily distinct, but if N ≥ 0 is
fixed, then

|{ν ≥ 0 : gν = gN}| <∞, (2.2)

since otherwise (2.1), applied for the elements ν of this set, would give
gN (α) = α for every α ∈ K, which is impossible by K ∩ T (2) = ∅.

For every f ∈ F take a number C(f) > 0, and for every N ≥ 0 a number
R(N) > 0, we assume the following inequalities:∑

f∈F
C(f)−ε <∞,

∞∑
N=0

R(N)−ε <∞, (2.3)

and (it is possible by (2.2)):

C(gN ) > N for every N ≥ 0. (2.4)

For every f ∈ F and for every integer j ≥ 1 we take an integer mj(f) such
that

max
α∈K
‖f(α)−mj(f)α‖ < 2−j−2jC(f), (2.5)

which is possible, since K is a Kronecker set. Moreover, we can assume
that if j, j? ≥ 1, f, f? ∈ F , then

mj?(f?) 6= mj(f) if (j, f) 6=(j?, f?). (2.6)

Indeed, there are countably many pairs (j, f), and for a fixed pair (j, f)
there are infinitely many possibilities for mj(f) in (2.5), so we can define
recursively the integers mj(f) to satisfy (2.5) and (2.6).

Let j(N, a, r) ≥ 1 be integers for every triple (N, a, r) ∈ V , where

V =
{

(N, a, r) : N ≥ 0, 1 ≤ a ≤ 2N , r > R(N)
}
,
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satisfying that if (N?, a?, r?) ∈ V is another such triple, then

j(N, a, r) 6= j(N?, a?, r?), if (N, a, r) 6= (N?, a?, r?). (2.7)

We easily see from (2.6) and (2.7) that for (N, a, r),(N?, a?, r?) ∈ V we
have

mj(N,a.r) (fN,a,r) 6= mj(N?,a?,r?) (fN?,a?,r?) , if (N, a, r) 6= (N?, a?, r?).
(2.8)

Define
H1 =

{
mj(N,a,r)(fN,a,r) : (N, a, r) ∈ V

}
. (2.9)

We claim that ∑
n∈H1

l1+ε (‖nα‖) <∞ (2.10)

for every α ∈ K. Indeed, let α ∈ K be fixed. We have∥∥mj(N,a,r)(fN,a,r)α
∥∥ ≤ ‖fN,a,r(α)‖+ 2−1−2j(N,a,r)C(fN,a,r) (2.11)

by (2.5). Now, on the one hand,
2N∑
a=1

l1+ε (‖fN,a,r(α)‖) = l1+ε(2−r),
∞∑
N=0

∑
r>R(N)

l1+ε(2−r) <∞ (2.12)

by (2.3); on the other hand, using (2.7) and (2.3), we get∑
(N,a,r)∈V

l1+ε
(

2−1−2j(N,a,r)C(fN,a,r)
)
≤
∑
f∈F

∑
j≥1

(
C(f)2j

)−(1+ε)
<∞.

(2.13)
In view of Lemma 2 (i), (2.11)-(2.13), and the definition of H1 in (2.9), we
get (2.10).

If s is a nonnegative integer, the following set is a compact subset of T :

Ks =

{
α =

t∑
i=1

kiαi :
t ≥ 1, α1, α2, . . . , αt ∈ K,
k1, k2, . . . , kt ∈ Z,

∑t
i=1 |ki| ≤ s

}
.

Lemma 1. There is a subset H of the integers such that H1 ⊆ H and on
the one hand we have ∑

n∈H
l1+ε (‖nα‖) <∞ (2.14)

for every α ∈ K; on the other hand, if β ∈ T has the property that

‖nβ‖ < 1
10

(2.15)

for all but finitely many n ∈ H, then there is a group homomorphism
φβ = φ : F → T which satisfies the following properties:

(i) for all but finitely many pairs (f, j) with f ∈ F , j ≥ 1 we have

‖φ(f)−mj(f)β‖ < 2−C(f)−j ; (2.16)
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(ii) for every (N, a) pair with N ≥ 0, 1 ≤ a ≤ 2N , if KN,a 6= ∅, there is
a unique integer kN,a for which

φ(f) = kN,af(α) (2.17)

for every f ∈ FN,a, where α ∈ KN,a is arbitrary; if KN,a = ∅, we put
kN,a = 0, and then for large N we have

max
1≤a≤2N

|kN,a| ≤ 2R(N); (2.18)

(iii) if N is large enough, then writing s =
∑2N

a=1 |kN,a|, there is an
α ∈ Ks such that

‖α− β‖ ≤ 1
N

+ s2−N . (2.19)

Proof. Define

H2 = {2r (mj+1(f)−mj(f)) : f ∈ F, j ≥ 1, 0 ≤ r ≤ j − 1 + C(f)} .
Let us choose for every triple f1, f2, f3 ∈ F with f3 = f1 + f2 an infinite
subset Jf1,f2,f3 of the positive integers such that (the first summation below
is over every such triple from F )

Σ :=
∑

f3=f1+f2

∑
j∈Jf1,f2,f3

(
2j min (C(f1), C(f2), C(f3))

)−ε
<∞. (2.20)

Since C(f) > 0 for every f ∈ F , ε > 0 and F is countable, this is obviously
possible. Then define (we mean again that f1, f2, f3 run over every such
triple from F )

H3 =
{

2r (mj(f1) +mj(f2)−mj(f3)) : f3 = f1 + f2, j ∈ Jf1,f2,f3 ,
0 ≤ r ≤ j − 2

}
,

H4 = {2r (m1(gN )− 1) : N ≥ 1, 0 ≤ r ≤ log2N} .

Let H =
⋃4
i=1Hi. We first prove (2.14). If f ∈ F, j ≥ 1 and α ∈ K, then

‖(mj+1(f)−mj(f))α‖ ≤ 2−(j+C(f)−1)−(2j−1)C(f) (2.21)

by (2.5), therefore, using also Lemma 2 (ii) and (2.3), we obtain∑
n∈H2

max
α∈K

l1+ε (‖nα‖) ≤ m
∑
f∈F

∑
j≥1

C(f)−ε(2j − 1)−ε <∞. (2.22)

If α ∈ K, f1, f2, f3 ∈ F , f3 = f1 + f2 and j ∈ Jf1,f2,f3 , then by (2.5) we get

‖(mj(f1) +mj(f2)−mj(f3))α‖ ≤ 2−(j−2)2−2j min(C(f1),C(f2),C(f3)),
(2.23)

and so by Lemma 2 (ii) and (2.20) we get∑
n∈H3

max
α∈K

l1+ε (‖nα‖) ≤ mΣ <∞. (2.24)
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If N ≥ 1 and α ∈ K, then

‖(m1(gN )− 1)α‖ ≤ ‖m1(gN )α− gN (α)‖+ ‖gN (α)− α‖ ≤ 21−N (2.25)

by (2.1), (2.4) and (2.5), so by the definition of H4, we obtain∑
n∈H4

max
α∈K

l1+ε (‖nα‖) ≤
∞∑
N=1

(1 + log2N) l1+ε
(

21−N−log2N
)
<∞. (2.26)

The relations (2.10), (2.22), (2.24) and (2.26) prove (2.14).
Now, assume that for a β ∈ T we have an n0 > 0 such that (2.15) is

true if n ∈ H and |n| > n0. Since K is a Kronecker set, so ‖nα‖ > 0 for
0 6= n ∈ Z, α ∈ K. Therefore, we see from (2.21) (and (2.3)) that

0 < |mj+1(f)−mj(f)| ≤ n0

can hold only for finitely many pairs f ∈ F, j ≥ 1; we see from (2.23) that
if f1, f2, f3 ∈ F are given with f3 = f1 + f2, then

0 < |mj(f1) +mj(f2)−mj(f3)| ≤ n0

can hold only for finitely many j ≥ 1; and from (2.25) that

0 < |m1(gN )− 1| ≤ n0

can hold only for finitely many N . Then, by Lemma 3, we obtain the
following inequalities (using H2 ⊆ H, H3 ⊆ H, H4 ⊆ H, respectively):

‖(mj+1(f)−mj(f))β‖ < 1/10
2j−2+C(f)

(2.27)

for all but finitely many pairs f ∈ F, j ≥ 1;

‖(mj(f1) +mj(f2)−mj(f3))β‖ < 1/10
2j−2

(2.28)

for every triple f1, f2, f3 ∈ F with f3 = f1 + f2 and for large enough
j ∈ Jf1,f2,f3 ;

‖(m1(gN )− 1)β‖ < 1/10
N/2

(2.29)

for large enough N .
Then from (2.27), for all but finitely many pairs f ∈ F, j1 ≥ 1 we have

‖(mj2(f)−mj1(f))β‖ < 2/5
2C(f)

j2−1∑
j=j1

2−j (2.30)

for every j2 > j1. This implies that mj(f)β is a Cauchy sequence for every
f ∈ F , so

φ(f) := lim
j→∞

mj(f)β (2.31)

exists, (2.16) is satisfied for all but finitely many pairs f ∈ F , j ≥ 1 by
(2.30), and since every Jf1,f2,f3 is an infinite set, φ : F → T is a group



574 András Biró

homomorphism by (2.28) and (2.31). We also see that for large N , by
(2.16), (2.4) and (2.29), we have

‖φ(gN )− β‖ ≤ 1
N
. (2.32)

If (N, a) is a fixed pair with N ≥ 0, 1 ≤ a ≤ 2N and KN,a 6= ∅,, then

‖φ (fN,a,r)‖ ≤
∥∥φ (fN,a,r)−mj(N,a,r) (fN,a,r)β

∥∥+
∥∥mj(N,a,r) (fN,a,r)β

∥∥ ,
and so

lim sup
r→∞

‖φ (fN,a,r)‖ ≤
1
10

by (2.16), (2.7), using also the assumption on β, (2.8) and H1 ⊆ H. Then
(2.17) follows from Lemma 4, because FN,a is obviously isomorphic to T (2).
We now prove (2.18). Assume that N is large and

|kN,a| > 2R(N) (2.33)

for some 1 ≤ a ≤ 2N . Take an integer r such that

2 |kN,a| ≤ 2r ≤ 4 |kN,a| . (2.34)

Then r > R(N), so mj(N,a,r)(fN,a,r) ∈ H1 ⊆ H, and so for large N we have
(see (2.8)) that ∥∥mj(N,a,r) (fN,a,r)β

∥∥ < 1
10
. (2.35)

But (2.34) and (2.17) imply

‖φ (fN,a,r)‖ ≥
1
4
,

which contradicts (2.35) for large N by (2.16) and (2.7). Therefore (2.33)
cannot be true for large N , so (2.18) is proved. To prove (2.19), if N ≥ 0,
1 ≤ a ≤ 2N are arbitrary and kN,a 6= 0, which implies KN,a 6= ∅ by
definition, we take an αN,a ∈KN,a, and then, by the definition of gN and
by the already proved properties of φ, we have

‖φ(gN )−
∑

1≤a≤2N ,kN,a 6=0

kN,aαN,a‖ ≤ 2−N
2N∑
a=1

|kN,a| ,

and together with (2.32), this proves (2.19). �

Proof of Theorem 1. For every N ≥ 0 we take some integer j(N) ≥ 1 such
that the sequence j(N) is strictly increasing and

∞∑
N=0

2N−1 (R(N) + 2)2 l1+ε
(

2−j(N)
)
<∞. (2.36)

Let

U =
{

(N, a) : N ≥ 0, 1 ≤ a ≤ 2N−1,KN,2a−1 6= ∅, ,KN,2a 6= ∅
}
,



Characterizations of groups generated by Kronecker sets 575

define A? ⊆ Z2 as

A? =
{(
mj(N) (fN,2a−1,r1) ,mj(N) (fN,2a,r2)

)
: (N, a) ∈ U,

1 ≤ r1, r2 ≤ R(N) + 2

}
,

and let A = A? ∪ {(n, n) : n ∈ H}. Note that if (N, a) , (N?, a?) ∈ U, and
1 ≤ r1 ≤ R(N) + 2, 1 ≤ r?1 ≤ R(N?) + 2, then

mj(N) (fN,2a−1,r1) 6= mj(N?)

(
fN?,2a?−1,r?1

)
, if (N, a) 6= (N?, a?) . (2.37)

Indeed, this follows from the fact that j is strictly increasing (so one-to-
one), using (2.6) and the definition of U .

Assume that β ∈ T satisfies (1.2) for all but finitely many n = (n1, n2) ∈
A. Then (2.15) is true for all but finitely many n ∈ H, we can apply Lemma
1. If N is large, and we assume that kN,2a−1 6= 0 and kN,2a 6= 0 for some
1 ≤ a ≤ 2N−1 (this implies (N, a) ∈ U by the definitions), then by (2.18)
we can take a pair 1 ≤ r1, r2 ≤ R(N) + 2 such that

2 |kN,2a−1| ≤ 2r1 ≤ 4 |kN,2a−1| , 2 |kN,2a| ≤ 2r2 ≤ 4 |kN,2a| .

Then by (2.17), we have

‖φ (fN,2a−1,r1)‖ ≥ 1
4
, ‖φ (fN,2a,r2)‖ ≥ 1

4
,

and, in view of (2.16), j(N) → ∞, the definition of A, (2.37) and the
property of β, this is a contradiction for large N . Therefore, if N is large,
then kN,2a−1kN,2a = 0 for every 1 ≤ a ≤ 2N−1, and since clearly kN,2a−1 +
kN,2a = kN−1,a, this easily implies that

∑2N

a=1 |kN,a| is constant for large
N . In view of (2.19) and the compactness of the sets Ks, this proves that
β ∈ G.

Now, let α1, α2, . . . , αt be given distinct elements of K. Then it is clear
that if N is large enough (N ≥ N0), then for any 1 ≤ a ≤ 2N−1 we can
take a δ(N, a) ∈{0, 1} such that

α1, α2, . . . , αt /∈ KN,2a−δ(N,a),

i.e.
fN,2a−δ(N,a),r(αi) = 0

for every r ≥ 1, 1 ≤ i ≤ t. Then, defining δ(N, a) ∈{0, 1} arbitrarily for
0 ≤ N < N0, 1 ≤ a ≤ 2N−1, by (2.5) and (2.36) we have

∞∑
N=0

2N−1∑
a=1

∑
1≤r1,r2≤R(N)+2

l1+ε
(
‖mj(N)(fN,2a−δ(N,a),r2−δ(N,a))αi‖

)
<∞

for 1 ≤ i ≤ t. This, together with (2.14), means that defining f on A? by

f
((
mj(N) (fN,2a−1,r1) ,mj(N) (fN,2a,r2)

))
= mj(N)(fN,2a−δ(N,a),r2−δ(N,a)),
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(the definition is correct by (2.37)), and extending f to A by f ((n, n)) = n
for n ∈ H, we have (1.3) for every 1 ≤ i ≤ t. We proved the existence of
such an f for α1, α2, . . . , αt ∈ K, but since K generates G, such an f exists
also for α1, α2, . . . , αt ∈ G, in view of Lemma 2 (i). Then (1.1) follows
easily, so the theorem is proved. �

3. Some lemmas

Lemma 2. (i) There is a constant M > 0 such that if x, y ≥ 0, then

l1+ε(x+ y) ≤M
(
l1+ε(x) + l1+ε(y)

)
.

(ii) There is an m > 0 constant such that for any a > 0 we have
∞∑
r=0

l1+ε(2−r−a) ≤ ma−ε.

Proof. For statement (i) we may obviously assume that 0 < x, y < 1/4.
Then

x+ y ≤ 2 max(x, y) ≤
√

max(x, y),
and so

l1+ε(x+ y) ≤ l1+ε
(√

max(x, y)
)

=
(
− log2

(√
max(x, y)

))−(1+ε)

= 21+εl1+ε (max(x, y)) ,

which proves (i). Statement (ii) is trivial from the definitions. �

Lemma 3. If ω ∈ T , k ≥ 1 is an integer, and

‖ω‖, ‖2ω‖, ‖4ω‖, . . . , ‖2kω‖ ≤ δ < 1
10
,

then ‖ω‖ ≤ δ
2k

.

Proof. This is easy, and proved as Lemma 3 of [B-S]. �

Lemma 4. If φ : T (2) → T is a group homomorphism and

lim sup
r→∞

∥∥∥∥φ( 1
2r

)∥∥∥∥ < 1
4
, (3.1)

then there is a unique integer k such that φ(α) = kα for every α ∈ T (2).

Proof. The uniqueness is obvious, we prove the existence. It is well-known
that the Pontriagin dual of the discrete group T (2) is the additive group Z2

of 2-adic integers. Hence there is a 0-1 sequence br (r ≥ 0) such that

φ(α) =

( ∞∑
r=0

br2r
)
α (3.2)
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for every α ∈ T (2), hence

φ

(
1
2r

)
=
b0
2r

+
b1

2r−1
+ . . .+

br−1

2
(3.3)

for every r ≥ 1. We see from (3.3) that if br−1 = 1, br−2 = 0, then

1
2
≤
{
φ

(
1
2r

)}
≤ 3

4
,

which is impossible for large enough r, in view of (3.1). Consequently, the
sequence br is constant for large enough r. If this constant is 0, i.e. br = 0
for r ≥ r0, then using (3.2), we get the lemma at once. If the constant is
1, so br = 1 for r ≥ r0, then, since

∞∑
r=0

2r = −1

in Z2, one obtains the lemma from (3.2) with

k = −1−
(
(1− b0) + 2(1− b1) + . . .+ 2r0−1(1− br0−1)

)
.

�

4. Proof of Theorem 2

If G is a group and d is a metric on G, we say that (G, d) is a Polish
group, if d is a complete metric, and G with this metric is a separable
topological group.

The following proposition essentially appears on p. 541. of [A-N], but
since they give only a brief indication of the proof, we think that it is worth
to include a proof here.

Proposition 1. Assume that K is an uncountable compact subset of T ,
and K is independent over Z. Let G ≤ T be the subgroup generated by K.
Let d be a metric defined on G such that (G, d) is a Polish group. Then the
injection map

i : (G, d)→ T, i(g) = g for every g ∈ G
is not continuous (we take on T its usual topology, inherited from R).

Proof. Let Q be a countable dense subgroup in (G, d) (such a subgroup
clearly exists, since (G, d) is separable). Consider Q with the discrete topol-
ogy (discrete metric). Then (Q,G) is a Polish (polonais) transformation
group in the sense of [E], moreover, it clearly satisfies Condition C on p.
41. of [E]. Since Q is not locally closed in G by our conditions, conditon
(5) of Theorem 2.6 of [E] is not satisfied. Hence (9) of that theorem is also
false, therefore there is a Borel measure µ on G with µ(G) = 1 such that

(i) each Q-invariant measurable subset of G has measure 0 or 1;
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(ii) each point of G has measure 0.
Indeed, µ(G) = 1 can be assumed, since µ is nontrivial and finite by

[E], (i) follows since µ is ergodic in the sense of [E], and (ii) is true by (i),
because µ is not concentrated in a Q-orbit.

The measure µ then has the following additional property, which is a
strengthening of (ii):

(iii) if F ⊆ G is a closed subset (in the d-topology) and µ(F ) > 0, then
there is an A ⊆ F with 0 < µ(A) < µ(F ).

It follows by another application of Theorem 2.6 of [E]. Indeed, let {0}
be the trivial group, then ({0} , F ) is a polonais transformation group sat-
isfying Conditon C on p.41. of [E], (5) of Theorem 2.6 is true, hence (8) of
Theorem 2.6, using (ii), gives (iii).

Now, we are able to prove the proposition. Assume that i : (G, d) → T
is continuous, and we will get a contradiction. For t ≥ 1, n1, n2, . . . , nt ∈ Z
set

E(n1, n2, . . . , nt) = {n1x1 + n2x2 + . . .+ ntxt : x1, x2, . . . , xt ∈ K} .
Every E(n1, n2, . . . , nt) is a closed set in (G, d), since it is closed in T and
i is continuous. Since

G =
⋃
t≥1

⋃
n1,n2,...,nt∈Z

E(n1, n2, . . . , nt),

hence µ (E(n1, n2, . . . , nt)) > 0 for some values of the parameters.
Let g ∈ G, t ≥ 1, n1, n2, . . . , nt ∈ Z be minimal with the property that

µ (g + E(n1, n2, . . . , nt)) > 0,

in the sense that
µ (h+ E(m1,m2, . . . ,mr)) = 0 (4.1)

for every h ∈ G, r ≥ 1, m1,m2, . . . ,mr ∈ Z with

|m1|+ |m2|+ . . .+ |mr|+ |r| < |n1|+ |n2|+ . . .+ |nt|+ |t| . (4.2)

By (iii), writing F = g + E(n1, n2, . . . , nt), there is an A ⊆ F with 0 <

µ(A) < µ(F ). Then µ
(⋃

q∈Q(q +A)
)
> 0, hence µ

(⋃
q∈Q(q +A)

)
= 1 by

(i). We prove that

µ

⋃
q∈Q

(q +A)

⋂ (F \A)

 = 0.

This will give a contradiction, because µ (F \A) > 0. Since Q is countable,
it is enough to prove that µ ((q +A)

⋂
F ) = 0 for every 0 6= q ∈ Q, which

follows, if we prove
µ
(

(q + F )
⋂
F
)

= 0 (4.3)

for every 0 6= q ∈ Q.
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Assume that q + f1 = f2, f1 = g + e1, f2 = g + e2, where f1, f2 ∈ F ,
e1, e2 ∈ E(n1, n2, . . . , nt). For i = 1, 2 let

ei = n1xi1 + n2xi2 + . . . ntxit

with xij ∈ K for i = 1, 2, 1 ≤ j ≤ t. Let

q = ν1x01 + ν2x02 + . . . νsx0s

with s ≥ 1, and νl ∈ Z, x0l ∈ K for 1 ≤ l ≤ s. Since q + e1 = e2, q 6= 0,
and K is independent over Z, there are integers 1 ≤ i ≤ 2, 1 ≤ j ≤ t and
1 ≤ l ≤ s such that xij = x0l. Therefore, if

E :=
⋃

1≤l≤s

⋃
m∈Z

⋃
(r,m1,m2,...,mr)∈H

(mx0l + E(m1,m2, . . . ,mr)) ,

where

H := {(r,m1,m2, . . . ,mr): r ≥ 1, m1,m2, . . . ,mr ∈ Z, (4.2) is true} ,

then ei ∈ E for some 1 ≤ i ≤ 2. Hence

f2 ∈ (g + E)
⋃

(g + q + E) .

Since µ (g + E) =µ (g + q + E) = 0 by (4.1), (4.2), so (4.3) is true, and the
proposition is proved. �

Proof of Theorem 2. Assume that

G =
{
β ∈ T : lim

n∈A
‖nβ‖ = 0

}
for some infinite A ⊆ Z. For x, y ∈ G let

d(x, y) = ‖x− y‖+ max
n∈A
‖n(x− y)‖ . (4.4)

It is clear that d is a metric on G, and (G, d) is a topological group. We
show that d is complete. Let βj ∈ G, j ≥ 1 be a Cauchy sequence with
respect to d. Then βj is a Cauchy sequence also in T by (4.4), so there is
a β ∈ T such that ‖βj − β‖ → 0 as j → ∞. Now, for n ∈ A, j1, j2 ≥ 1 we
have

‖n (βj1 − β)‖ ≤ ‖n (βj1 − βj2)‖+ ‖n (βj2 − β)‖ . (4.5)

Letting j2 →∞ for fixed n and j1 we get

‖nβ‖ ≤ ‖nβj1‖+ lim sup
j2→∞

d(βj1 , βj2),

and βj1 ∈ G gives

lim sup
n∈A

‖nβ‖ ≤ lim sup
j2→∞

d(βj1 , βj2)
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for every j1 ≥ 1, which proves β ∈ G. Let ε > 0, then we can take j2, N ≥ 1
so that

‖n (βj2 − β)‖+ sup
j1≥j2

d(βj1 , βj2) < ε

for every n ∈ A, |n| ≥ N . Hence for j1 ≥ j2, n ∈ A, |n| ≥ N we have
‖n (βj1 − β)‖ < ε by (4.5). Since for any fixed |n| < N we know that
‖n (βj1 − β)‖ → 0 as j1 →∞, this proves d(βj1 , β)→ 0, so d is complete.

Let X be a countable dense subset in T , and for N, l ≥ 1 integers, x ∈ X
let

UN,l,x =

{
β ∈ G :

‖β − x‖ + max
n∈A,|n| ≤ N ‖n (β − x)‖

+ max
n∈A,|n| > N ‖nβ‖ <

1
l

}
.

It is easy to check that if we take an element from each nonempty UN,l,x,
then we get a countable dense subset of (G, d). So the conditions of Propo-
sition 1 are satisfied, hence i : (G, d) → T is not continuous. But this
contradicts (4.4), so the theorem is proved. �

5. Some remarks and problems

If K is finite, it follows from [Bi2], Theorem 1 (ii) that Theorem 1 of the
present paper would be false for ε = 0. But we cannot decide the following

Problem 1. Let K be uncountable. Is Theorem 1 true with ε = 0?

The following proposition is a consequence of [V], p.140, Theorem 2’ (the
quoted theorem of Varopoulos is stronger than this statement):

Proposition 2. Let L ⊆ T be a compact set with L ∩G = ∅, then there is
an infinite subset A ⊆ Z such that

G =
{
β ∈ G ∪ L : lim

n∈A
‖nβ‖ = 0

}
.

Compare Proposition 2 with our Theorem 2. We do not know whether
Proposition 2 can be strengthened in the following way:

Problem 2. Let L ⊆ T be a compact set with L ∩ G = ∅. Is there an
infinite subset A ⊆ Z such that

G =
{
β ∈ G ∪ L : lim

n∈A
‖nβ‖ = 0

}
,

and ∑
n∈A
‖nα‖ <∞

for every α ∈ G?

We state without proof our following partial result in this direction.
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Theorem 3. Let L ⊆ T be a compact set with L ∩G = ∅, and let v be a
strictly increasing continuous function on the interva [0,1/2] with v(0) = 0.
Then there is an infinite subset A ⊆ Z such that we have∑

n∈A
l1+ε (‖nα‖) <∞

for every α ∈ G, but ∑
n∈A

v (‖nβ‖) =∞

for every β ∈ L.

Remark that this theorem implies at once the result mentioned on p.40.
of [H-M-P], namely that G is a saturated subgroup of T (for the definition
of a saturated subgroup, see [H-M-P] or [N], Ch. 14). We note that the
above-mentioned Theorem 2’ on [V], p.140, also implies that G is saturated.

Finally, we mention that Theorem 2 and Proposition 2 together show that
if K is uncountable, then G is a g-closed but not basic g-closed subgroup of
T in the terminology of [D-M-T]. This answers the question of D. Dikranjan
(oral communication) about the existence of such subgroups of T.
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