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RESUME. Les systémes canoniques de numération peuvent étre
considérés comme des généralisations naturelles de la numération
classique des entiers. Dans la présente note, une modification d’un
algorithme de B. KOVACS et A. PETHO est établie et appliquée
au calcul des systémes canoniques de numération dans certains
anneaux d’entiers de corps de nombres algébriques. L’algorithme
permet de déterminer tous les systémes canoniques de numération
de quelques corps de nombres de degré quatre.

ABSTRACT. Canonical number systems can be viewed as natu-
ral generalizations of radix representations of ordinary integers to
algebraic integers. A slightly modified version of an algorithm of
B. KovAcs and A. PETHO is presented here for the determina-
tion of canonical number systems in orders of algebraic number
fields. Using this algorithm canonical number systems of some
quartic fields are computed.

1. Introduction

The investigation of the question wether an algebraic number field is
monogenic is a classical problem in algebraic number theory (cf. [9]). Ac-
cording to B. KovAcs [19] the existence of a power integral basis in an
algebraic number field is equivalent to the existence of a canonical number
system for its maximal order. Moreover, using a deep result of K. GYORY
[13] on generators of orders of algebraic number fields B. KovAcs [19]
proved that up to translation by integers there exist only finitely many
canonical number systems in the maximal order of an algebraic number
field.

Let R be an order of an algebraic number field and o € R.
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Definition. (cf. [3], Definition 4.1, [5]) The algebraic integer « is called a
basis of a canonical number system (or CNS basis) for R if every nonzero
element of R can be represented in the form

n0+n1a+-~+nlal
with n; € {0,...,|Normg(ag(a)| — 1}, n; # 0.

Canonical number systems can be viewed as natural generalizations of
radix representations of ordinary integers (V. GRUNWALD [12]) to algebraic
integers. Originating from observations of D. E. KNUTH [17] (see also [18],
Ch. 4) the theory of canonical number systems was developed by I. KATAI
and J. SZABO [16], B. KovAcs [19], I. KATAl and B. KovAcs ([14], [15]),
W. J. GILBERT [10] and others. There are connections to the theories of
finite automata (see e.g. K. SCHEICHER [30], J. M. THUSWALDNER [32])
and fractal tilings (see e.g. S. AKIYAMA and J. M. THUSWALDNER [5]).
Recently S. AKIYAMA et al. [2] put canonical number systems (CNS) into
a more general framework thereby opening links to other areas, e.g. to a
long-standing problem on Salem numbers.

B. KovAcs and A. PETHO [20] established an algorithm for finding all
CNS bases of monogenic algebraic number fields (see also [27] for a com-
prehensive description of this algorithm and its background). In this note
we present a slightly modified version of this algorithm for the determi-
nation of CNS bases of orders of algebraic number fields. The method
is exploited here for some families of number fields of low degrees; our
main applications are cyclotomic and simple fields of degree four. CNS
bases in quadratic number fields were described by several authors (see
[14],[15],][10],[11],[32],[4] and others); further, CNS bases are explicitely
known for some cubic and quartic fields ([20], [3], [27]). The list of CNS
bases of simplest cubic fields given in [3] is extended in the present note
too.

The authors wish to express many thanks to Professors S. Akiyama and
J. M. Thuswaldner for their constant support.

2. CNS bases of algebraic number fields

In the sequel we denote by Q the field of rational numbers, by Z the
set of integers and by N the set of nonnegative integers. For an algebraic
integer v we let ;1 € Z[X] be its minimal polynomial and C, the set of all
CNS bases for Z[y]. We denote by C the set of CNS polynomials; for the
general definition of CNS polynomials we refer the reader to A. PETHO
[25], however, for our purposes it suffices to keep in mind that « is a CNS
basis for Z[a] if and only if 14 is a CNS polynomial. It can algorithmically
be decided whether a given integral polynomial is a CNS polynomial or not
(see [1]).
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B. KovAcs [19] introduced the following set of polynomials
K ={paX®+ pa1 X'+ - +po € Z[X]]|
d>1,1=ps<ps1=<...<p1 <po=>2}

which plays a decisive role in the theory of CNS polynomials (see [1], The-
orem 2.3).

Lemma 2.1. (B. KovAcs — A. PETHO) For every nonzero algebraic in-
teger a the following constants can be computed effectively:
ko = min{k € Z| po(X +n) € K for all n € Z with n > k},
o =min{k € Z | po(X + k) € C}.
Proof. See [20], Section 5. O

Note that ¢, < ko by ([19], Lemma 2) and that if 5 is a conjugate of «
then kg = ko and cg = c,.

Corollary 2.1. If o is a CNS basis for an order R then co < 0, — cq 18
a CNS basis for R, but a — cq + 1 is not a CNS basis for R.

Proof. This is clear by the definitions. O

To a polynomial P(X) = pgX¢ +pg_1 X9 4+ +py € Z[X],pa = 1 we
associate the mapping 7p = 7 : Z% — Z% defined by

Ay 4+ pgA
TP(A):<_ \‘pl ! 0 Pd dJ7A17"'7Ad—1>7

where A = (A1,..., Ay) € Z¢. This turned out very useful to prove P(X) €
C. Indeed Brunotte [7] proved the following theorem, that gives an efficient
algorithm for testing if a polynomial is CNS or not.

Theorem 2.1. Assume that E C Z% has the following properties:
(i) (1,0,...,0) € E,
(il) —EC E,
(iii) 7(F) C E,
(iv) for every e € E there exist some | > 0 with 7'(e) = 0.
Then P(X) € C.

The following notion seems to be convenient for the intentions of the
present note.

Definition. The algebraic integer « is called a fundamental CNS basis for
R if it satisfies the following properties:

(1) @ —n is a CNS basis for R for all n € N.
(2) a+ 1is a not CNS basis for R.
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Theorem 2.2. Let v be an algebraic integer. Then there exist finite effec-
tively computable disjoint subsets Fo(7y), Fi(v) C Cy with the properties:

(i) For every a € C, there exists some n € N with a+n € Fo(y) UF1(7).
(ii) Fi(y) consists of fundamental CNS bases for Z[y].

Proof. By (]20], Theorem 5) there exist finitely many effectively computable
al,...,oq4 €Z[y], ni,...,ny €Z, Ni,...,NyCZ, Ni,...,N;finite
such that for every a € Z[y| we have
(21) aelC, <=
a=a; —hforsomeie{l,...,t}, he€Zandh>n;orhéecN,.
Therefore the set

t
F::{ai—ni]i:1,...,t}UU{ai—h|heNi}
1=1

is a finite effectively computable subset of C,.
For every a € F' let

My={meZ|m<<kqy,a—kecC,forallk=m,... kq}.

Observing m > ¢, for all m € M, we see using Lemma 2.1 that M, is a
nonempty finite effectively computable set. Let

me = min M,
and
Fo(y) ={a—cala€ Fymg > cot, Fi(y)={a—cola € F,my=cy}.

We show that Fj(7) consists of fundamental CNS bases for Z[y]. Let
¢ € Fi(v), hence ¢ = a — ¢, with some « € F. By Corollary 2.1 we have
p€eCy,p+1¢C,. For n €N we find

p—n=a—(mq+n)€Cl,

because for m, + n < k, this is clear by the definition of m,, and for
Mo +n > ko we have pio—n = pio(X + (mq +n)) € K and therefore
¢ —n € Cy by ([19], Lemma 2).

Let 5 € Cy. By (2.1) there are i € {1,...,t} and h € Z with

B =ca; —hand h > n; or h € N;.

If h € N; then § € F and 8 — cg € Fo(y) U Fi(y) by Corollary 2.1. If
h>n; thena=«aq; —n; € F,h—n; —co, € N and

B+ (h—mn;—cq) =a—cq € Foly) UF1(y).
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Remark. Note that ¢ € Fy(y) implies ¢ —n € F1 () for some n € N\ {0}.
Therefore the theorem of B. KovAcs ([19], Lemma 2) can be rephrased in
the following form: An algebraic number field is monogenic if and only if
there exists a fundamental CNS basis for its maximal order.

Slightly modifying the algorithm of B. KovAcs and A. PETHO [20] we
now present the algorithm for finding the above mentioned sets Fy(y) and
Fi(y). The (finite) set T is introduced to keep track of the calculations
performed; in some cases (see e.g. Theorem 3.1) the amount of computa-
tions can thereby be reduced. Recall that algebraic integers «, 3 are called
equivalent if there is some z € Z such that § = z £ « (see e.g. [9]).

Algorithm 2.1. (CNS basis computation)

[Input] A nonzero algebraic integer v and a (finite) set B of represen-
tatives of the equivalence classes of gemerators of power integral bases of

Z[).
[Output] The sets Fo(y) and Fi(7).
(1.) [Initialize] Set {B1,...,0:} = BU(-B), i =F =T =0 andi=1.
(2.) [Compute minimal polynomial] Compute P = pg, .

(3.) [Element of Fy U Fy found?] If there exist k € Z,0 € {0,1} with
(P, k,0) € T insert B; — k into Fs and go to step 11.

(4.) [Determine upper and lower bounds| Calculate kg, and cg, .

(5.) [Insert element into F17] If kg, — cg, < 1 insert 3; — cg, into Fi,
(P,cg,, 1) into T and go to step 11, else perform step 6 for | = cg, +
1,...,kg, — 1, put Phs, = 1,k = cg, and go to step 8.

6.) [Check CNS property] If P(X +1) € C set p = 1, otherwise set
p=0.
(7.) [Check CNS basis condition] If pp = 0 then go to step 9.

(8.) [Insert element into Fo U Fy] If pg1 = -+ = pg, = 1 insert §; — k
into F1, (P,k,1) into T and go to step 11, else insert 3; — k into Fy and
(P, k,0) into T.

(9.) [Next value of k| Set k «— k + 1.

10.) [CNS basis check finished?| If k < kg. — 1 then go to step 7.
Bi
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(11.) [Next generator| Set i «— i+ 1.
(12.) [Finish?] Ifi <t then go to step 2.

(13.) [Terminate] Output Fo(y) = Fo and F1(y) = F1 and terminate the
algorithm.

We verify that the algorithm above delivers all CNS bases of a given
order Z[y].

Theorem 2.3. Let v be a nonzero algebraic integer and B a set of repre-
sentatives of the equivalence classes of generators of power integral bases of
Z[y]. Then Algorithm 2.1 computes the sets Fo(vy), Fi1(y) with properties
(i) and (ii) of Theorem 2.2.

Proof. It is easy to see that Fy(y) U Fi(y) C Cy and that Fi(y) consists of
fundamental CNS bases for Z[y]. Let a € C,, hence oo = n + 3 with some
n € Z,8 € BU(=B). Clearly, —n > cg. By construction there is some
integer k € [cg, kg] with B — k € Fo(y) UFi(7y). Let l,...,ls € [cg, kg] be
exactly those indices withp;, =0 (o0 =1,...,s)andcg <p1 <...<ps <
kg. If —n > Is+1then ¢ = f—(Is+1) € Fi(vy) and o = p— (—n—(Is+1)).
Finally, let —n < ls 4 1, and observe that —n & {l1,...,ls}. Then —n <1
or ly < —n < ly41 for some o € {1,...,s — 1} imply a € Fo(7). O

The following example illustrates the application of Algorithm 2.1. For
polynomials outside the set X the CNS property was checked by the algo-
rithm described in [7] (an improved version of this algorithm was imple-
mented by T. BORBELY [6]).

Remark. Note that if cg < kg and pg(X + k) € C for all k €
{ecg+1,..., kg — 1} then —cg + B € Fi(y).

Lemma 2.2. Let k € Z.
(i) For fr, = f(X + k) with f = X3 — X + 3 € Z[X] we have
frelkl < k>3

and

freC << k=0ork>2.
(ii) For fi = f(X + k) with f = X3 — X — 3 € Z|X] we have
ek < k>4

and

frielC <= k>3.
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(iii) For fr = f(X 4+ k) with f = X3 — 2X? — 69X — 369 € Z[X] we have
ek < k>13 < f,eC.
(iv) For fy = f(X + k) with f = X3 +2X? — 69X + 369 € Z[X] we have
frel < k>5
and
frelC <= k>4

Proof. (i) The first statement is clear because fi, = X3 + 3kX? +
(3k? — 1)X + k® — k + 3. Using this, Gilbert’s theorem (see [3], Theo-
rem 3.1) and ([3], Proposition 3.12) the second statement follows.

(ii) The first statement is clear because fr = X° + 3kX? + (3k% — 1)X +
k® — k — 3. Using this and Gilbert’s theorem (see [3], Theorem 3.1) and
checking fs € C the second statement follows.

(iii) Clearly, k < 13 implies fr = X® + (3k — 2)X? + (3k? — 4k — 69)X +
k? — 2k% — 69k — 369 ¢ K UC.

(iv) Observing fr = X3+ (3k+2) X2 — (3k%+4k—69) X +k3+2k*— 69k +369
and checking f; € C these statements can be proved analogously. O

For a monogenic algebraic number field K we write Fs5(K) instead of
Fs(y) where 7 is some generator of a power integral basis of K (§ € {0,1}).

Example. Let 9 be a root of the polynomial X3 — X + 3 € Z[X]. By ([9],
Section 11.1) up to equivalence all generators of power integral bases of
Z[V] are given by 9 and —59 + 392, By Lemma 2.2 we have ¢y = 0, ky = 3,
and therefore by Algorithm 2.1

¥ € Fo(Q()), =2+ 9 € F1(Q(0)).
Analogously, we have y_y = X3 — X —3,c_y9 = 3,k_y = 4, and then
=3+ 9 € F1(Q0)).

Similarly, we have j_sy 92 = X3 —2X? —69X — 369, c_59,92 = k_59.192 =
13, and

—13 — 59 + 92 € F1(Q(¥)),
and finally fi59_g2 = X3 4+ 2X? — 69X + 369, c59_g2 = 4, ksy_g2 = 5, and

—4 4 59 — 9% € F1(Q(1)).
Collecting our results we find Fo(Q(¥)) = {9} and
F1l(Q) ={-2+9,-3—10,-13 — 59 + 9%, —4 + 59 — 9%}

In some cases the determination of CNS bases is considerably easier if
~ is an algebraic integer with at least one real conjugate. We then denote
by M(7y) (m(y)) the integer part of the maximum (minimum) of the real
conjugates of ~.
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Proposition 2.1. Let v be a nonzero algebraic integer with at least one
real conjugate and B a set of representatives of the equivalence classes of
generators of power integral bases of Z[7).

(i) For a € Z[y] \ {0} we have cq, > M(a) +2 and c_o > —m(a) + 1.

(ii) Let B € B. Then B — M(B) —2 € F1(v) if ng—mp—2 € K, and
—B+m(B) =1 € F1(7) if p_pymp)-1 € K.

(iii) If gﬁ_M(ﬁ)_Q,u_ﬂer(ﬁ)_l € K for all B € B then we have Fy(vy) =0
an

Fi(y) ={B-M(B)—2,—-B+m(B)—1|8 € B}.
Proof. (0) For every o € Z[y] we have real embeddings 7, po of Q(7) with
M(a) < 1a(a),  pala) <m(a)+1.

(i) Assume cq = M(a) +2 —k for some k € N\ {0}. Then pq(X + M () +
2 — k) € C, thus by ([1], Theorem 2.1)

Tolo) = (M(a) +2—k) < —1
which by (0) yields the contradiction
M(o) < M(o) — k+ 1.

The other inequality is proved analogously.
(ii) It is enough to show that (6 — M (B) —2)+1,(=BF+m(6)—1)+1 ¢ C.
In view of ([1], Theorem 2.1) this is clear because by (0)

(0 — M(B) = 1) = 75(8) — M(B) =1 = M(B) - M(B) -1 = —1,

pa(=B+m(B)) > —m(B) — 1 +m(B) = —1.

(iii) Denoting by F = {8 — M (3) —2,—8+m(8) — 1| 8 € B} it suffices to
show that

CyC{p—n|peFneN}

Let a € Cy,8 € B,n € Z with a = n+ 3. In case « = n + 3 we have
—M(B) —2—n € N by (0) and

a+(=M(P)=2-n)=pF-M(@)-2€F,
and in case a = n —  we analogously find m() — 1 —n € N and

a+(m(B)—1—n)=—-F+m(B)—1€F.
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3. CNS bases in quadratic and cubic number fields

We conclude our observations by computing Fy and F; of several qua-
dratic, cubic and quartic number fields. For the sake of completeness we
start with the formulation of some well-known results in our language.

CNS bases of quadratic number fields were studied by several authors
(see [14],[15],[10], [11], [32],[4] and others).

Theorem 3.1. (I. KATar — B. KovAcs, W. J. GILBERT) Let D # 0,1
be a square-free rational integer and 9 = v/D. Then Fo(Q(9)) = 0 and

(- L”Z@J + =52, Ll‘;@J ~39Y D>0,D=1

(mod 4),
{—2- L\/T)J £, -2 L\/T)J —9} L ifD>0D#1
(mod 4),
FQW) = { {5 =257 Lif D=3,

,if D <0,D # —3,
D=1 (mod4),

{-1+9,-1-9} ,if D =—1,

{9, -9} ,if D <0,D # —1,

D#1 (mod4).

\

Proof. A representative of the generators of power integral bases of Q(¥)
is given by 0 = % if D=1 (mod4) (6 =91i D # 1 (mod4)). If

D > 0 we have m(3) = LI%EJ ,M(B) = {%J for D = 1 (mod 4)

(m(B) = {—\/EJ S M(B) = L\/EJ for D # 1 (mod 4)) and our assertions

follow from Proposition 2.1 and ([10], Theorem 1). For D < 0 Algorithm
2.1 and ([10], Theorem 1) yield the assertions. O

Using a theorem of S. KORMENDI [21] S. AKIYAMA et al. ([3], Theorem
4.5) described all CNS in a family of pure cubic number fields.

Theorem 3.2. (S. KORMENDI — S. AKIYAMA et al.) Let m € N\ {0}
be not divisible by 3 and m> + 1 squarefree. For ¥ = ~v/m3 +1 we have
Fo(Q()) =0 and

Fil(QW)) = {=0, —m — 2+ 9, —2m? — 2+ m1 + 9%, —m? — 2 — m¥ — ¥?}.

Further, S. AKIYAMA et al. ([3], Theorem 4.4) determined all CNS in
a family of simplest cubic number fields (for details see D. SHANKS [31]).
We state and slightly extend their result in our context.
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Theorem 3.3. (S. AKIYAMA et al.) Lett € Z,t > —1 and 9 denote a
root of the polynomial

X3 —tX% - (t+3)X — 1.

Then we have Fo(Q(¥)) = 0 and
FilQ() = {-3-10, —t—5—t9+0% -1+ (t+1)9—9*}UGUG_1UG UG,
where

G {—t—34+9,~1+t9 -9 —t—5—(t+ 1) +9%}, ift >0,

(0 otherwise,

{=3+9, -2 -9 — 9%, -5+ 9% —19 + 99 + 492, -5 — 99 — 4192

—22 + 50 4+ 992, =2 — 509 — 992, =25 — 49 + 592, 1 + 49 — 592,
Gg.1= —T— 9+ 9% -1+ 9 — 92, —6+ 20 + 92, —2 — 20 — ¥,

—6 4+ 9+ 202, -2 — 9 — 9%}, ift =1,
(0 otherwise,
[{—9+20+192,—2—219—02,—11 — 30 + 202, —1 + 30 — 202,
Go = —10 — 9 + 392, -1 +9 — 39%}, ift =0,
0 otherwise,
[{—37 + 309 4 292, —2 — 39 — 2092, —42 — 200 + 992,
Go = 34200 — 99?2, —43 — 239 + 792, —4 + 239 — T9?}, if t =2,

0 otherwise.

Proof. We proceed similarly as in Example 2, but leave the verifications of
computational details to the reader. By [9] up to equivalence all generators
of power integral bases of Z[¥] are the following:

e for arbitrary ¢: o, —td + 92, (t + 1) — 9%

o for t = —1 additionally: 99 + 492, 59 + 992, —49 + 592, =09 + 9%, 20 +
V2,9 + 202,

o for t = 0 additionally: 209 + 92, =39 + 292, —9 + 39?;

o for t = 2 additionally: 39 + 2092, —200 + 992, —230 + 792

The proof is now accomplished by Proposition 2.1 and Table 1 below where
we use the following notation: 3 is a generator of a power integral basis of
Q(9). The minimal polynomial g = X>+a1 X?+a2X +ag of 3 is given by
(a1, a2, as). Lower bounds for the constants cg, kg are given by Proposition
2.1. For their determination ([3], Theorem 3.1) and ([8], Theorem 5.1)
are used. Observe that in all cases considered here Remark 2 applies if
cg<kg—2orc_pg<k_g-—2. O
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4. CNS bases in quartic cyclotomic fields

In this section we treat the cyclotomic fields of degree 4.

Theorem 4.1. Let ¢ be a primitive eighth root of unity.
Fo(Q(¢)) = 0 and

Fi(Q) ={-3+¢F|k=1,35,7}.

| B t ] 115 | m(B) [MB) [ ¢cs | ks [ c5 ] kp]
9 >5[ (—t,—t—3, —2[ t+1[t+3[t+3 3 3
_1)
9 0...4| (—t,—t—3, -2 t+1[t+3|t+3 3 4
—1)
9 1] (1,-2,-1) -2 1 3 4 3 4
—t9 + 197 >5 (—2t — 6, 0 t+3[t+5[t+5 1 1
2+ 7649,
—t2 =3t —1)
—t9 4+ 92 2,3,4 (=2t — 6, 0] t+3[t+5][t+6 1 1
24+ Tt 49,
—t* -3t —1)
-9+ 97 1] (-8,17,-5) 0 4 6 7 1 2
97 0] (-6,9,—-1) 0 3 5 6 1 2
9+ 07 -1 (—4,3,1) -1 2 4 5 2 3
(t+1)9 —9° >3] (t+6,3t+9, |—t—4 -1 1 2|t+5[t+5
2t +3)
t+1)9—-097]0,1,2] (t+6,3t+9, | t—4 —1 1 2t+5[t+6
2t +3)
— 7 —1 (5,6,1) —4 —1 1 3 5 6
30 + 2097 2| (—34,-39, —1 35 37| 37 2 3
—11)
—200 + 997 2| (—86,2041, 4 40 42 43 —-3] -3
—8029)
—239 + 79° 2 (—52,477, 5 41 43 43 —4| =3
—1217)
99 + 4197 —1] (-11,-102, —4 17 19 19 5 6
—181)
59 + 997 —1 [ (—40,391,181) —1 20 22 23 2 2
—49 4 50?2 -1 (—29, 138, 2 23 25 25| —1 0
—181)
-9 + 97 —1] (-6,5,—-1) 0 5 7 7 1 2
20 + 97 0] (-=6,-9,-3) -1 7 9 9 2 3
20 + 97 —1| (=3,—4,-1) -1 4 6 6 2 3
—309 + 2092 0 (-12,27,-17) 1 9 11 11 0 1
— + 3097 0| (—18,87,—53) 0 8 10 11 1 1
J + 29° —1 (—9,20,1) —1 4 6 7 2 2
TABLE 1

Then we have
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Proof. By R. ROBERTSON [29] up to equivalence all generators of power
integral bases of Q(¢) are given by ¢*,k € Z,k odd. Observing pe =
X% + 1 one immediately finds k¢ = 4. The algorithm described in [7]
and ([4], Theorem 5.4) yield ¢, = 3, and a straightforward application of
Algorithm 2.1 concludes the proof. d

Theorem 4.2. Let ( be a primitive twelfth root of unity. Then we have
Fo(Q(¢)) =0 and

Fi(QS) = {=3+¢, =3-C, =3+¢ 7, =3¢, =1+ —24¢2 ¢
Proof. The proof works analogously as that of Theorem 4.1. (|

Theorem 4.3. Let ( be a primitive fifth root of unity. Then we have
Fo(Q(C)) =0 and
fl(@(C)) = {_2+<7 -3 - Ca _2+C+C3a_3_ C - Cg}
Proof. By [28] up to equivalence all generators of power integral bases of
Z[¢] are ¢ and ?IC One immediately checks that
fe(X)=pe(X +k) e = k>4,

hence k¢ = 4. By ([4], Theorem 5.4) one finds k > —5 for f;, € C. Trivially,
fo,f-1 ¢ C, and an application of the algorithm described in [7] yields
fr ¢ C for k = —5,—4,-3,—-2,1, but fy, f3 € C. Thus we have shown that

fielC < k>2,
hence ¢, =2 and f;, € C for all k € {c¢, ..., k¢}.

| B [ wg  Jcs kg[cp [khp]
¢ (1,1,1,1) 2] 4 3 5
(-1 (-2,4,-3,1)] 3| 5 2 4

TABLE 2

Therefore by Algorithm 2.1 we find —2 + ¢ € F1(Q(¢)). Similarly, the
other cases are dealt with. The main data are listed in Table 2 below where
we use the following notation: 3 is a generator of a power integral basis of
Q(¢), the minimal polynomial pg = X* 4+ a1 X3 + a2 X? + a3 X +aq of B is
given by (a17a27a37a4)' U

5. CNS bases in quartic number fields

For the convenience of the reader we rephrase a result of A. PETHO ([27],
Theorem 15) in our settings.
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Theorem 5.1. (A. PETHO) Let f € N, f > 3,f odd, m = f%>+ 2 and
n = f?—2. Then we have Fo(Q(v/m,/n)) =0 and

3
fl(@(\/ﬁ,\/ﬁ)):{—f—1+191,—f—1—’l91,—1—W—Fﬁ%
3 _
L, 2 Iy
where
191:\/772;_\/5’ ﬁQZfH;/m+\/ﬁ+(f2—l)W-

For t € Z\ {0, £3} let
P(X)=X*—tX?—6X%+tX +1.

Let ¥ = ¥ be a root of P;(X), then the infinite parametric family of
number fields Ky = K = Q(9;) is called simplest quartic fields. P. Olajos
[24] proved that K; admits a power integral bases if and only if ¢ = 2 and
t = 4, moreover he found all generators of power integral bases in these
fields. Using his result we are able to compute all CNS bases in such fields.

Theorem 5.2. We have Fo(Q(¥)) =0, F1(Q(V2)) = G2 and F1(Q(V4)) =
G4 where

ggz{—%ﬂ3+ﬂ2+%ﬂ—4,%ﬁ3—ﬂ2—gﬂ—zzﬁf“’—gﬂ?—lw—9,

9 19 1 13 23
—o3 L 29?2 119 — =2 293 _9 _7_73 9 _772 _ 49
07 SO 110 = 5, 07 =20 — 2, o0 4 20 S+ -
1 2 5 3 3 2 9 3 2 11
G0 =0 = 0 = ST — =0 +219 79— <
§193—2192—E0—6,—§03+2ﬂ2+§0—8—193—2192+719—1
2 2 2 2
—%193+2192f%ﬁfll,—ﬁ3+§ﬁ2+5ﬁf—193—7192751975
1 oo 9 1., 3 1o, 15 1, 3
S07 =0 = 5. =50+ 50— 5 5Y 2}
_ )Ll 32 7_913_,2_7 _ M Ly B2 Ty B
g4f{ AR LA 4419 i 9! 19 19 T
1 3 3 2 7 13 3 13 2 27 3 3 _ 2
1+ 419 T 19 -V 19 R 19 19 4
3 .3 11 2 11 3 2 25 3 5 23
PR 79 T 19 19 19 T 79 19 19 T
13 5 13 5 2, 19 1 5 ) 3 5
Y 40 19 T 19 + 19 19 1 419 0 4}.

Proof. Let v be a generator of power integral basis in Zg. P. Olajos [24]
showed that only the following cases can occur:
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2
(1) t:2,fy:ac~19+y-%+z ’9“9 where

(]I,y, Z) = (47 27 _1)7 (_137 _974-)7 (_27 ]-7 0)7 (17 ]-7 0)7 (_87 _37 2)7
(—12,-4,3), (0,-4,1), (6,5, —~2), (—1,1,0), (0, 1,0).

(2) t:4,’y:x-?9+y'1+2—ﬁ2+z-wwhere

(x,y,2) = (3,2,—-1),(—-2,-2,1),(4,8,-3),(—6,—7,3), (0,3, —1),
(1,3,-1).

From here on we proceed as in the proof of Theorem 5.3. The details
of the computation are given in Table 3 below where we use the following
notation: (z,y,z) denote the coordinates of v as in the table above, the
minimal polynomial p., = X4+ a1 X3 + asX? + a3 X + ay of 7 is given by
(a1> az, as, a/4)'

l(ac,y,z) I’Y lﬂ'y lcvlkwlcfwlkf'v‘
(4,2,-1) 1P+ 97+ To+1 (—8,19,-12,1) 517 1 3
(—13,-9,4) | 20° — 29> — 119 — § (36,451,2176,2641) | 0 | 0 | 14 | 15
(—2,1,0) 19°—20+ 1 (—6,1,4,1) 7181 2 4
(1,1,0) 1 +9+ 1 (—12,19,-8,1) 12012 2, | 3
(—8,-3,2) | 9®—39>—70-3 (6,1,—4,1) 2 14| 7 8
(—12,-4,3) | 39° —29> — 2y —2 (4,29, 44, —19) 4 15|10 | 10
(0,—4,1) 19° — 297 + 19 —2 (20,115,260, 205) 01| 14 | 14
(6,5, —2) —9% + 29° + 504 3 (—22,169,—-508,421) | 9 | 11| 0 1
(—=1,1,0) %ﬁj—zfjt% (—8,19,-12,1) 517 1 3
(0,1,0) 97+ 1 (—10,25, —20, 5) 8191 1 3
(3,2,—1) — 3P+ 397+ o+ 3 [ (—4,2,4,-1) 476 2 4
(-2,-2,1) 1193 192 —Iy-3 (0,-8,-8,-2) 516 | 4 5
(4,8,-3) —39% 4 1392 4 18y 4 13| (-24,208,-760,958) | 10 | 11 | =1 | 0
(—6,—17,3) 3193 141192 2119 71 (16, 88,200, 158) 01| 9|10
(0,3,-1) —593 S9* — 1q9+ 2 (—8,16,—8,—2) 7181 2 3
(1,3,-1) —30° 4+ 59° + 319 + 3 (12,50, —84, 47) 6181 0 2

TABLE 3
O

Power integral bases in the polynomial order Z[a] of K; were described
by G. Lettl and A. Pethé [22].

Theorem 5.3. Let t € N\ {0,3} and ¥ denote a root of the polynomial

X4 X3 —6X2+tX + 1.
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Then we have Fo(Q(¥)) = 0 and F1(Q(¥)) = GUG1 U Ga U Gy where

(=3 -0, —t -2+, -2 — 609 — t9? + 93, —t — 3+ 69 + 92 — 93},
g=qift>5,
(0 otherwise,
{—4+9,-4 -9, -5+ 69 + 9% — 93, =3 — 69 — 92 + 93,
—23 + 3092 — 93, —1 — 392 + 93, —14 + 259 + 2092 — 493,
—10 — 2509 — 2092 + 493}, if t = 1,
(0 otherwise,
[{—5+29, —3— 0, =5+ 60 + 202 — 93, —3 — 69 — 202 + 93},
Ga =4 ift =2,
(0 otherwise,
({—6+19, -3 — 0,1+ 99 — 22092 + 4093, —78 — 90 + 22092 — 4993,
—T 4609+ 492 — 93, =3 — 609 — 492 4+ 93, —62 + 749 + 309% — 993,
—15 — 749 — 30092 + 993}, ift = 4,
L0 otherwise.

g1 =

Before embarking on the proof of Theorem 5.3 we need some preparation.
For checking the CNS property of some polynomials we exploit a technical
lemma.

Lemma 5.1. The polynomial X* 4+ p3 X3 4+ po X2 + p1 X + po € Z[X] with
the properties

is a CNS polynomial.

Proof. Let

E:{(elv"'ae4)ez4||ei|§2 (Z:1774)7 (62761)#(07:&2)’

€i€i+1 <0 (Z = 1,2,3)’ |el| =2 = €1 7& 0 (,L = 2a3a4)}

and 7p(A) be the mapping defined in Section 2. Clearly, property (i) of
Theorem 2.1 is satisfied. We show(ii) and (iii) of the same Theorem in
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several steps thereby using the notation of ([26], Lemma 1): a B, indicates
that 7p(A) falls into step(s) S considered before.

(1) e4 > 0,7p(0,0,0,e4) =0

(1)

(2) e4 <0,(0,0,1,e4) —>

(3) (0,1, -1, eq) 2

(4) e3 € {0,1), (1, -1, e3,e4) ~2
(5) (~1,1,~1,eq) %

(6) (1,—1,2,e4) ‘3_52

(7) (—1,1,0,e4) 1N

(8) €5 € {01}, (1,0, ea,e4) >
(9) (0,0, e3,e4) =

(10) (0 1,0,e4) 2

(11) (1,0,-1,e4) 72

(12) (0,-1,2,e4) 12

(13) (~1,2, —1,eq) &2

(14) (2, - 1,1,64)@

(15) (=1,1, e5,eq) 200

(16) e < —1,(~1,2, 3, e4) 22
(17) (2,—1,0, e4) @

(18) (~1,0,1, e4) &7

(19) (0,1,e3,6e4) — ),

(20) (0,1, 5, e4) L2

(21) (0, 62,63,64) (91920

(22) e; > 1, (e1,e2,€3,€4) (13£>21)
(23) (1, 1,2, e0) 22

(24) (—1, e9, €5, 4) 2L

(25) (e1,e2,e3,€4) (21ﬁ>24)

This concludes the proof. O

We are now in a position to verify Theorem 5.3.
Proof of Theorem 5.3. By [9] up to equivalence all generators of power
integral bases of Z[v] are the following:

o for t € N\ {0,3}: 9,69 + t9% — 93,
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e for t = 1 additionally: 392 — 93,259 + 2092 — 493,
o for t = 4 additionally: 99 — 22092 + 493, —749 — 3092 4+ 99°.

We proceed analogously as in the proof of Theorem 3.3 by using Proposition
2.1 and Table 4 below with the following notation: S is a generator of a
power integral basis of Q(). The minimal polynomial pg = X* + a; X3 +
as X%+ a3z X +ay of 3 is listed in the form (a1, az, a3, as). Lower bounds for
the constants cg, kg are given by Proposition 2.1. For their determination
([3], Theorem 3.1) and Corollary 5.1 are used in a straightforward way.

Similarly as in the proof of Theorem 3.3 Remark 2 is used. O
l B [t ] 115 [m@B) [MB)] cs | ks [cp [ ks ]
9 £1,2 (—t,—6,t,1) —2 t[t+2]t+2 3 4
9 1 (—1,-6,1,1) -3 2 4 6 4 5
9 2 (-2,-6,2,1) —2 3 5 6 3 5
60 + t19° #1, (—3t,3t> — 6, —1[ t+1[t+3|t+4 2 2
—93 2,4 —t3 4+ 11¢,
—5t% + 1)
60 + 097 1 (—1,-6,1,1) -3 2 4 6 4 5
93
60 + 207 2 (—6,—6,14, —19) -2 3 5 7 3 4
93
69 + 497 4 (—12, 42, -2 5 7 8 3 3
—93 —20, —79)
3097 — 93 1 (—23,39, —22,4) 0 21 23 23 1 3
259 + 2097 1 (13, —96, -9 12 14 4] 10] 12
—493 —1993, —7241)
99 — 2202 4 (84, 618, —77 -3 -1 1] 78] 78
+49° 1580, 1361)
—7409 — 3002 4 (20, —1878, —61 13 15 17 62| 62
+99° 29932, —144239)
TABLE 4

Finally we consider another family of orders in a parametrized family of
quartic number fields, where all power integral bases are known. Let ¢ € 7Z,
t>0,and P(X) = X*—tX3— X2 +tX + 1. Denote by a one of the zeros
of P(X). In the following we deal with the order O = Z[a] of Q(«).

M. Mignotte, A. Pethé and R. Roth [23] gave the following result:

Theorem 5.4. (M. MIGNOTTE, A. PETHO, R. ROTH) Let t > 4. Then
every element v € O such that Z[y] = O 1is equivalent to some element
v = za + ya? + za? with
(x,y,2) € {(1,0,0),(1,¢t,—1),(¢,t —1,—1),(¢t,—t — 1,1),(1,0,—1),
(17 _t<t2 + 1)7t2)}
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except when t = 4, in which case additionally (x,y,z) € {(209, 140, —49),
(209, —312,64)}. 1

Theorem 5.5. Let t > 4. We have Fo(Q(«)) = 0 and F1(Q(a)) = G4 UG,

where

Gs = {209a + 140a” — 490 + 350,209 — 312a° + 64 — 71}
Gy = {a+t+1,a—|—ta2—a3+t+2,ta+(t—1)a2—0z3+8,

ta— (t+1)a? +a’ +2,a—a® + 2,0 —t({t* + 1)a® +t?a® —t + 1}.
Proof. We follow the same line as in the proof of Theorem 5.3. First we

compute the data necessary to apply Algorithm 2.1. For the zeroes of the
polynomial P(X) we use the following estimates:

g =t — 1/t =1/t =4/t —9/t%, g =1/t —1/t° —1/t" — 5/1°,
a3 =1+1/2t +1/86% +1/2t%, oy =—141/2t —1/8t.

In a straightforward way we obtain M (y) for any possible value of v. Know-
ing M(v) it is easy to establish k,. Because of the special form of P(X)
we do not need k_,. Indeed denote by ¢ the automorphism of Q(«), which
maps « to —é. Then an easy computation shows that

o(—a)=a+ta® —a®—t
o(—(ta+ (t—1)a?—a?)) =ta—(t—1)a’+a®+1
o(—(a—a?) =a—t{t*+1)a? +t?a® + 3
and if ¢ = 4 then
o(—(209a + 14002 — 4903)) = 209a — 31202 + 64> + 116.

The details of the computation are given in Table 5 below where we use the
following notation: (z,v, 2) denote the coordinates of v = za+ya?+za3 as
in Theorem 5.4, the minimal polynomial p., = X4 a1 X3+ as X2+ a3X +ay
of 7 is given by (a1, a2, a3, a4).

By the intention of the journal we had to omit further details of the
proof, because it is quite complicated and long especially in the case v = a+
ta? —a3. The interested reader may find the complete version electronically
under the URL:
http://www.inf.unideb.hu/~pethoe/Publications.html. O

4n Theorem 4 of (23] the last vector reads (209, —352,64), but its correct value is
(209, —312, 64).
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o Hy m(y) ‘ M(y) ‘ Cy ky
@ (—t,—1,¢,1) -1 t—1 t+1| t+3,ift=4
t+2,ift >4
a+ta® —a’ (=3t,3t7 — 1,t — £3,1) 0 t] t+2 t+4
ta+ (t — 1)a? (2—2t,—3t + 5, -1 6 8 8,ift =4
—a? —t44,1) 2—11| 2t+1|2t+1,ift >4
ta—(t+1)a? | (2t +2,3t+5,t+4,1) | —2t—1 —2 2 3
+a?
a—a® (t7 —t,3t7 —1,3t,1) 5+t -1 2 3
a (3% + ¢, 1 —t—1|—-t+1 —t+1
—t(t? + 1) 35 + 3¢t 4312 — 1,
+t2a3 t° + 3t7 + 6t° — 2t3 — 3¢,
10 +36% — 15 — 3t* + 1)
209 + 14007 (—4,2,4,-1) —43 348 350 350
—4903
2090 — 31207 (0, -8, —8,—2) —465 —74 —T71 —70
+64a°
TABLE 5
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