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The p-part of Tate-Shafarevich groups of elliptic

curves can be arbitrarily large

par Remke KLOOSTERMAN

Résumé. Nous montrons dans ce papier que pour chaque nombre
premier p ≥ 5, la dimension de la partie de p-torsion du groupe de
Tate et Shafarevich, X(E/K), peut être arbitrairement grande,
où E est une courbe elliptique définie sur un corps de nombres K
de degré borné par une constante dépendant seulement de p. En
utilisant ce résultat, nous obtenons aussi que la partie de p-torsion
du X(A/Q) peut être arbitrairement grande, pour des variétées
abéliennes A de dimension bornée par une constante dépendant
seulement de p.

Abstract. In this paper we show that for every prime p ≥ 5 the
dimension of the p-torsion in the Tate-Shafarevich group of E/K
can be arbitrarily large, where E is an elliptic curve defined over
a number field K, with [K : Q] bounded by a constant depending
only on p. From this we deduce that the dimension of the p-
torsion in the Tate-Shafarevich group of A/Q can be arbitrarily
large, where A is an abelian variety, with dimA bounded by a
constant depending only on p.

1. Introduction

For the notations used in this introduction we refer to Section 2.
The aim of this paper is to give a proof of

Theorem 1.1. There is a function g : Z → Z such that for every prime
number p and every k ∈ Z>0 there exist infinitely many pairs (E,K), with
K a number field of degree at most g(p) and E/K an elliptic curve, such
that

dimFp X(E/K)[p] > k.
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The proof of this theorem starts on page 796. Using Weil restriction of
scalars, we obtain as a direct consequence:

Corollary 1.2. For every prime number p and every k ∈ Z>0 there exist
infinitely many non-isomorphic abelian varieties A/Q, with dimA ≤ g(p)
and A is simple over Q, such that

dimFp X(A/Q)[p] > k.

In fact, a rough estimate using the present proof reveals that g(p) =
O(p4). It is an old open question whether g(p) can be taken 1, i.e., for any
p, the p-torsion of the Tate-Shafarevich groups of elliptic curves over Q are
unbounded.

For p ∈ {2, 3, 5}, it is known that the group X(E/Q)[p] can be arbitrarily
large. (See [1], [2], [5] and [8].) So we may assume that p > 5, in fact, our
proof only uses p > 3.

P.L. Clark communicated to the author that he proved by different meth-
ods that if E/K has full p-torsion then X(E/L)[p] can be arbitrarily large
if L runs over all extension of K of degree p, but E remains fixed. This
gives a sharper bound in the case that E has potential complex multiplica-
tion. The elliptic curves we describe in the proof of Theorem 1.1 all have
many primes p for which the reduction at p is split-multiplicative. Hence
these curves do not have potential complex multiplication.

The proof of Theorem 1.1 is based on combining the strategy used in [5]
to prove that dimF5 X(E/Q)[5] can be arbitrarily large and the strategy
used in [7] to prove that dimFp S

p(E/K) can be arbitrarily large, where E
and K vary, but [K : Q] is bounded by a function depending on p of type
O(p).

In [7] the strategy was to find a field K, such that [K : Q] is small and
a point P ∈ X0(p)(K) such that P reduces to one cusp for many primes
p and reduces to the other cusp for very few primes p. Then to P we can
associate an elliptic curve E/K such that an application of a Theorem of
Cassels [3] shows that Sp(E/K) gets large.

The strategy of [5] can be described as follows. Suppose K is a field
with class number 1. Suppose E/K has a K-rational point of order p, with
p > 3 a prime number. Let ϕ : E → E′ be the isogeny obtained by dividing
out the point of order p. Then one can define a linear transformation T ,
such that the ϕ-Selmer group is isomorphic to the kernel of T , while the
ϕ̂-Selmer group is isomorphic to the kernel of an adjoint of T . One can
then show that the rank of E(K) and of E′(K) is bounded by the number
of split multiplicative primes minus twice the rank of T minus 1.

Moreover, one can prove that if the difference between the dimension
of the domain of T and the domain of the adjoint of T is large, then the
dimension of the p-Selmer group of one of the two isogenous curves is large.
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If one has an elliptic curve with two rational torsion points of order p and
q respectively (or full p-torsion, if one wants to take p = q), one can hope
that for one isogeny the associated transformation has high rank, while for
the other isogeny the difference between the dimension of the domain of T
and its adjoint is large. Fisher uses points on X(5) to find elliptic curves
E/Q with two isogenies, one such that the associated matrix has large rank,
and the other such that the 5-Selmer group is large.

We generalize this idea to number fields, without the class number 1
condition. We can still express the Selmer group attached to the isogeny
as the kernel of a linear transformation T . In general, the transformation
for the dual isogeny turns out to be different from any adjoint of T .

Remark. Fix an element ξ ∈ Sp(E/K). Restrict this element to

H1(K(E[p]), E[p]) ∼= Hom(GK(E[p]), (Z/pZ)2).

Then ξ gives a Galois extension L of K(E[p]) of degree p or p2, satisfying
certain local conditions. (For the case of a cyclic isogeny, these conditions
are made more precise in Proposition 2.1.) To check whether a given class
in H1(K(E[p]), E[p]) comes from an element in Sp(E/K) we need also to
check whether the Galois group of L/K(E[p]) interacts in some prescribed
way with the Galois group of K(E[p])/K.

The examples of elliptic curves with large Selmer and large Tate-Shafare-
vich groups in [5], [7] and this paper have one thing in common, namely that
the representation of the absolute Galois group of K on E[p] is reducible. In
this case the conditions on the interaction of the Galois group ofK(E[p])/K
with the Galois group of L/K(E[p]) almost disappear.

The level of difficulty to construct large p-Selmer groups (and large p-
parts in the Tate-Shafarevich groups) seems to be encoded in the size of
the image of the Galois representation on E[p].

Elliptic curves E/K with complex multiplication over a proper extension
of K have an irreducible Galois-representation on E[p] for all but finitely
many p, but the representation is strictly smaller than GL2(Fp).

In view of the above remarks it seems that if one would like to produce
examples of elliptic curves with large p-Selmer groups, and an irreducible
representation of the Galois group on E[p], one could start with the case of
elliptic curves with complex multiplication. Unfortunately, we do not have
a strategy to produce such examples.

The organization of this paper is as follows: In Section 2 we prove several
lower and upper bounds for the size of ϕ-Selmer groups, where ϕ is an
isogeny with kernel generated by a rational point of prime order at least
5. In Section 3 we use the modular curve X(p) and the estimates from
Section 2 to prove Theorem 1.1.
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2. Selmer groups

In this section we give several upper and lower bounds for the p-Selmer
group of an elliptic curve E/K with a K-rational point of order p, and
ζp ∈ K. We combine two of these bounds to obtain a lower bound for
dimFp X(E/K)[p].

Suppose K is a number field, E/K is an elliptic curve and ϕ : E → E′ is
an isogeny defined over K. Let H1(K,E[ϕ]) be the first cohomology group
of the Galois module E[ϕ].

Definition. The ϕ-Selmer group of E/K is

Sϕ(E/K) := kerH1(K,E[ϕ]) →
∏

p prime

H1(Kp, E).

and the Tate-Shafarevich group of E/K is

X(E/K) := kerH1(K,E) →
∏

p prime

H1(Kp, E).

In the usual definition of the ϕ-Selmer group one takes the product
over all primes, also the archimedean ones. If ϕ is of odd degree then
H1(Kp, E[ϕ]) = 0 for all archimedean primes p, so in that case we may
exclude the archimedean primes.

Notation. For the rest of this section fix a prime number p > 3, a number
field K such that ζp ∈ K and an elliptic curve E/K such that there is a
non-trivial point P ∈ E(K) of order p. Let ϕ : E → E′ be the isogeny
obtained by dividing out 〈P 〉. Let ϕ̂ : E′ → E be the dual isogeny.

To ϕ we associate three sets of primes. Let S1(ϕ) be the set of primes p ⊂
OK , such that p does not divide p, the reduction of E is split multiplicative
at p, and P ∈ E0(Kp) (notation from [18, Chapter VII]). Let S2(ϕ) be the
set of primes p ⊂ OK , such that p does not divide p, the reduction of E
is split multiplicative at p, and P 6∈ E0(Kp). Let S3(ϕ) be the set of all
primes above p.

Suppose S is a finite sets of finite primes. Let

K(S, p) := {x ∈ K∗/K∗p : vp(x) ≡ 0 mod p ∀p 6∈ S, p non-archimedean}.

Let CK denote the class group of K. Denote GK the absolute Galois
group of K. Let M be a GK-module. Let H1(K,M ;S) be the subgroup of
H1(K,M) of all classes of cocycles not ramified outside S.

For any cocycle ξ ∈ H1(K,M) denote ξp := resp(ξ) ∈ H1(Kp,M). Let
δp be the map

E′(Kp)/ϕ(E(Kp)) → H1(Kp, E[ϕ])

induced by the boundary map.
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Note that S1(ϕ̂) = S2(ϕ) and S2(ϕ̂) = S1(ϕ). (To define Si(ϕ̂) we need
to start with a K-rational point P of order p. Since ζp ∈ K, we have that
#E′(K)[ϕ̂] = p, so we can take any generator P of the kernel of ϕ̂.) If no
confusion arises we write S1 and S2 for S1(ϕ) and S2(ϕ).

Proposition 2.1. We have that Sϕ(E/K) is the kernel of

H1(K,E[ϕ];S1 ∪ S3) → ⊕p∈S2H
1(Kp, E[ϕ])⊕p∈S3 (H1(Kp, E[ϕ])/ Im(δp)).

Proof. Suppose p is a prime such that p divides the Tamagawa number cE,p.
Since 4 < p ≤ cE,p, we have that the reduction at p is split multiplicative.
Using Tate curves one easily shows that cE,p/cE′,p 6= 1. This combined with
if p - (p) then dimFp H

1(Kp, E[ϕ]) ≤ 2 (see [21, Proposition 3]) and [15,
Lemma 3.8] gives that ι∗p : H1(Kp, E[ϕ]) → H1(Kp, E) is either injective
or the zero-map. A closer inspection of [15, Lemma 3.8] combined with
[7, Proposition 3] shows that ι∗p is injective if and only if p ∈ S2(ϕ). The
proposition then follows from [16, Proposition 4.6]. �

Remark. Proposition 2.1 is false when the degree of the isogeny is 2 or 3.
For degree 3 a similar proposition is stated in [16, Proposition 4.6]. First of
all, if the degree is 2, one need to include a conditions for the archimedean
primes. Moreover, one needs to give conditions for non-split multiplicative
primes (if the degree is 2) and conditions for the additive primes (if the
degree is either 2 or 3).

Consider for example the curve y2 = x(x+ ax+ a), for some square-free
odd integer a. Let ϕ be the isogeny obtained by dividing out {O, (0, 0)}.
Then S2 is an empty set, and S1 consists of a subset of all primes divid-
ing a − 4. We can twist this curve such that S2 remains empty and all
multiplicative primes are split. If the above proposition were true for de-
gree 2, then the size of the ϕ-Selmer group would depend on the number
of prime factors of a − 4. Using [18, Proposition X.4.9] one can produce
a such that the ϕ-Selmer group is much smaller than the kernel given in
Proposition 2.1.

Definition. Let S1 and S2 be two disjoint finite sets of finite primes of K,
such that none of the primes in these sets divides (p).

Let
T : K(S1, p) → ⊕p∈S2O∗

p/O
∗p
p

be the Fp-linear map induced by inclusion. Let m(S1,S2) be the rank of
T . In the special case of an isogeny ϕ : E → E′ with associated sets S1(ϕ)
and S2(ϕ) as above we write m(ϕ) := m(S1(ϕ), S2(ϕ)).

Lemma 2.2. We have

dimFp K(S, p) =
1
2
[K : Q] + #S + dimFp CK [p].

Hence the domain of T is finite-dimensional.
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Proof. Since ζp ∈ K we have that K does not admit any real embedding.
The above formula is a special case of [11, Proposition 12.6]. �

Proposition 2.3. We have

Sϕ(E/K) ⊂ {x ∈ K(S1 ∪ S3, p) : x ∈ K∗p
p for all p ∈ S2} = kerT

and
Sϕ(E/K) ⊃ {x ∈ K(S1, p) : x ∈ K∗p

p for all p ∈ S2 ∪ S3}.

Proof. This follows from the identification E[ϕ] ∼= Z/pZ ∼= µp, the fact
H1(L, µp) ∼= L∗/L∗p for any field L of characteristic different from p (see
[13, X.3.b]), and Proposition 2.1. �

Proposition 2.4. We have

#S1 −#S2 + dimFp CK [p]− 3
2
[K : Q] ≤ dimFp S

ϕ(E/K)

≤ #S1 + dimFp CK [p]

−m(ϕ) +
3
2
[K : Q].

Proof. Using Hilbert 90 ([13, Proposition X.3]) and [21, Proposition 3] we
obtain that for every prime p

dimFp O∗
p/O

∗p
p = dimFp H

1(Kp, µp)− 1 = 1 + e(p/p),

where e(p/p) is the ramification index of p/p, if p divides p and zero other-
wise. This yields

dim⊕p∈S3O∗
p/O

∗p
p =

∑
p∈S3

(1 + e(p/p)) ≤ 2[K : Q].

The above bound combined with Lemma 2.2 and Proposition 2.3 gives us

dimFp S
ϕ(E/K) ≥ dimFp K(S1, p)−#S2 −#S3

≥ −3
2
[K : Q] + #S1 + dimFp CK [p]−#S2.

For the other inequality, we obtain using Proposition 2.3

dimFp S
ϕ(E/K) ≤ dimFp kerT ≤ dimFp K(S1 ∪ S3, p)−m(ϕ).

Using #S3 ≤ [K : Q] and applying Lemma 2.2 to the right hand side of
this inequality yields

dimFp S
ϕ(E/K) ≤ #S1 + dimFp CK [p]−m(ϕ) +

3
2
[K : Q].

�

Lemma 2.5. We have

rankE(K) ≤ #S1(ϕ)+#S2(ϕ)+2 dimFp CK [p]+3[K : Q]−m(ϕ)−m(ϕ̂)−1.
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Proof. This follows from the following sequences of inequalities

1 + rankE(K) ≤ dimFp E(K)/pE(K)

≤ dimFp S
p(E/K)

≤ dimFp S
ϕ(E/K) + dimFp S

ϕ̂(E′/K).

The first inequality follows from the fact that E(K) has p-torsion, the
second one follows from the long exact sequence in cohomology associated
to 0 → E[p] → E → E → 0 and the third one follows from the exact
sequence

0 → E′(K)[ϕ̂]/ϕ(E(K)[p]) → Sϕ(E/K) → Sp(E/K) → Sϕ̂(E′/K).

(See [16, Lemma 9.1].)
Applying Proposition 2.4 gives

dimFp S
ϕ(E/K) + dimFp S

ϕ̂(E′/K)

≤ #S1(ϕ) + #S1(ϕ̂) + 2 dimFp CK [p] + 3[K : Q]−m(ϕ)−m(ϕ̂).

�

By a theorem of Cassels we can compute the difference of dimFp S
ϕ(E/K)

and dimFp S
ϕ̂(E′/K). We do not need the precise difference, but only an

estimate, namely

Lemma 2.6. There is an integer t, with |t| ≤ 2[K : Q] + 1 such that

dimFp S
ϕ̂(E′/K) = dimFp S

ϕ(E/K)−#S1(ϕ) + #S2(ϕ) + t.

Proof. This follows from [3] (see [7, Proposition 3] for the details). �

Lemma 2.7.

dimFp S
ϕ(E/K) + dimFp S

ϕ̂(E′/K)

≥ |#S1 −#S2|+ 2 dimFp CK [p]− 5[K : Q]− 1.

Proof. After possibly interchanging E and E′ we may assume that #S1 ≥
#S2. From Proposition 2.4 we know

dimFp S
ϕ(E/K) ≥ #S1 −#S2 + dimFp CK [p]− 3

2
[K : Q].

From this inequality and Lemma 2.6 we obtain that

dimFp S
ϕ̂(E′/K) ≥ dimFp S

ϕ(E/K)− 2[K : Q]− 1−#S1 + #S2

≥ dimFp CK [p]− 7
2
[K : Q]− 1.

Summing both inequalities gives the Lemma. �
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Lemma 2.8. Let s := dimFp S
ϕ(E/K) + dimFp S

ϕ̂(E′/K) − 1 and r :=
rankE(K), then

max(dimFp X(E/K)[p],dimFp X(E′/K)[p]) ≥ (s− r)
2

.

Proof. The exact sequence

0 → E′(K)[ϕ̂]/ϕ(E(K)[p]) → Sϕ(E/K) → Sp(E/K) →

→ Sϕ̂(E′/K) → X(E′/K)[ϕ̂]/ϕ(X(E/K)[p])

(See [16, Lemma 9.1]) implies

dimFp X(E′/K)[ϕ̂] + dimFp S
p(E/K) ≥ s− 1 + dimFp E(K)[p].

The lemma follows now from the following inequality coming from the long
exact sequence in Galois cohomology

dimFp X(E′/K)[p] + dimFp X(E/K)[p]

≥ dimFp X(E′/K)[ϕ̂] + dimFp S
p(E/K)− r − dimFp E(K)[p].

�

Lemma 2.9. Let ψ : E1 → E2 be some isogeny obtained by dividing out a
K-rational point of order p, with E1 K-isogenous to E. Then

max(dimFp X(E/K)[p],dimFp X(E′/K)[p])

≥ −min(#S1(ϕ),#S2(ϕ))− 5[K : Q]− 1 +
1
2
(m(ψ) +m(ψ̂)).

Proof. Use Lemma 2.5 for the isogeny ψ to obtain the bound for the rank
of E(K). Then combine this with Lemma 2.7 and Lemma 2.8 and use that

#S1(ϕ) + #S2(ϕ) = #S1(ψ) + #S2(ψ).

�

3. Modular curves

In this section we prove Theorem 1.1. We construct certain fields K/Q
such thatX(p)(K) contains points with certain reduction properties. These
reduction properties translate into certain properties of elliptic curves E/K
admitting two cyclic isogenies ϕ,ψ such that m(ψ) is much larger then
min(#S1(ϕ),#S2(ϕ)) (notation from the previous section). Then applying
the results of the previous section gives us a proof of Theorem 1.1.

The following result will be used in the proof of Theorem 1.1.

Theorem 3.1 ([6, Theorem 10.4]). Let f ∈ Z[X] be a polynomial of degree
at least 1. Let d be the number of irreducible factors of f . Suppose that
for every prime `, there exists a y ∈ Z/`Z such that f(y) 6≡ 0 mod `. Then
there exists a constant n depending on the degree of f and the degree of its
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irreducible factors such that there exist infinitely many primes `, such that
f(`) has at most n prime factors. Moreover, let

f(x) := #
{
y ∈ Z : 0 ≤ y ≤ x and the number of prime

factors of f(y) is at most n.

}
then there exist δ > 0, such that

f(x) ≥ δ
x

logd x

(
1 +O

(
1√

log(x)

))
as x→∞.

Any improvement on the n will give a better function g(p) (notation
from Theorem 1.1), but the new g(p) will still be of type O(p4).

The proofs for most of the below mentioned properties of X0(p) and
X(p) can be found in [17] or [20]. See also [4, Chapter 4].

Notation. Denote X(p)/Q the compactification of the curve parameteriz-
ing pairs ((E,O), f) where (E,O) is an elliptic curve and f is an isomor-
phism f : Z/pZ × µp → E[p] with the property that the standard pairing
on the left equals f composed with the Weil-pairing.

Denote X0(p)/Q the curve obtained by dividing out the Galois-invariant
Borel subgroup of Aut(X(p)) = SL2(Z/pZ), leaving invariant ((E,O),
f |Z/pZ×{1}). The curve X0(p) is a course moduli space for pairs ((E,O), ϕ)
where ϕ : E → E′ is an isogeny of degree p. (See for example [9, Chapter
2].)

Let R1 ∈ X0(p) be the unramified cusp (classically called ‘infinity’), let
R2 ∈ X0(p) be the ramified cusp.

Let πi : X(p) → X0(p) be the morphism obtained by mapping (E, f)
to (E,ϕi) where ϕi is the isogeny obtained by dividing out f(Z/pZ× {1})
when i = 1, and f({0} × µp) when i = 2. The maps πi are defined over Q.

Let P ∈ X(p) be a point, which is not a cusp. The isogeny ϕP,i is
obtained as follows: To πi(P ) ∈ X0(p) we can associate a pair (EP , ϕP,i)
representing πi(P ).

Definition. Let T be a cusp of X(p). We say that T is of type (δ, ε) ∈
{1, 2}2 if π1(T ) = Rδ and π2(T ) = Rε.

Being of type (δ, ε) is invariant under the action of the absolute Galois
group of Q, since the morphisms πi are defined over Q and the cusps on
X0(p) are Q-rational.

Suppose T is a cusp of type (δ, ε). Then for all number fields K/Q(ζp)
and all points P ∈ X(p)(K) we have that if p - (p) is a prime of K such
that P ≡ T mod p then p ∈ Sδ(ϕP,1) and p ∈ Sε(ϕP,2). This statement can
be shown by an easy consideration on the behavior of the Tate-parameter q
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of the curve representing the point P ∈ X(p)(K) and the relation between
q and the j-invariant. (Compare [7, Proof of Proposition 3].)

Lemma 3.2. X(p) has (p−1)/2 cusps of each of the types (2, 1) and (1, 2).
The other (p − 1)2/2 cusps are of type (2, 2). All cusps of type (1, 2) are
Q-rational.

Proof. A cusp of type (1, 1) would give rise to elliptic curves E/Kp, with
multiplicative reduction such that its reduction Ẽ modulo p has (Z/pZ)2

as a subgroup, but over an algebraically closed field L of characteristic p,
we have #Ẽ(L)[p] ≤ p, a contradiction.

The ramification index of every point in π−1
i (R1) is p, hence there are

(p−1)/2 points in π−1
i (R1). From this it follows that there exists (p−1)/2

cusps of type (1, 2) and (2, 1), respectively. The remaining cusps are of type
(2, 2).

An argument as in [12, page 44 and 45] shows that there is a cusp of
type (1, 2) that is Q-rational. From this it follows that all cusps of type
(1, 2) are Q-rational. (See [4, Chapter 4].) �

Proof of Theorem 1.1. Let D be an effective divisor onX(p), such that D is
invariant under GQ, the support of D is contained in the set of cusps of type
(1, 2), the dimension of the linear system |D| is at least 2 and the morphism
ϕ|D| : X(p) → Pn is injective at almost all geometric points of X(p). Let L
be a 2-dimensional linear subsystem of |D| containing D and such that the
corresponding morphism is injective at almost all geometric points. Let C ⊂
P2 be the image of X(p) given by L. We may assume that the intersection
of X = 0 with C is precisely D. An automorphism ψ of P2 fixing the line
X = 0, is of the form [X,Y, Z] 7→ [a1X, b1X+ b2Y + b3Z, c1X+ c2Y + c3Z].
It is easy to see that we can choose a1, bi, ci in such a way that none of
the cusps is on the line Z = 0, and the function x = X/Z takes distinct
values at any pair of cusps with x 6= 0. So we may assume that we have
a fixed (possibly singular) model C/Q for X(p) in P2, such that the line
X = 0 intersects C only in cusps of type (1, 2) and no other points, all x-
coordinates of other the cusps are distinct and finite, and all y-coordinates
of the cusps are finite. Denote H ∈ Z[X,Y, Z] a defining polynomial of C.
Set h(x, y) := H(X,Y, 1).

Let fδ,ε ∈ Z[X] be the square-free polynomial with roots all x-coordinates
of the cusps of type (δ, ε) of X(p) and content 1. After a simultaneous
transformation of the fδ,ε of the form x 7→ cx, we may assume that f2,1(0) =
1 and f2,1 ∈ Z[X]. Let n denote the constant of Theorem 3.1 for the
polynomial f2,1. The discriminant of f1,2f2,1f2,2 is non-zero, since every
cusp has only one type and all cusps have distinct x-coordinate.

Let B consist of p, all primes ` dividing the leading coefficient or the
discriminant of f1,2f2,1f2,2, all primes ` smaller then the degree of f2,1 and
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all primes dividing the leading coefficient of res(h, f2,2, x), the resultant of
h and f2,2 with respect to x.

Let P2 be the set of primes not in B such that every irreducible factor
of f2,1(x)(xp− 1) mod ` and every irreducible factor of res(h, f2,1, x) mod `
has degree 1. Note that by Frobenius’ Theorem ([19]) the set P2 is infinite.
The condition mentioned here, implies that if we take a triple (x0, `, y0)
with x0 ∈ Z, the prime ` ∈ P2 divides f2,1(x0) and y0 is a zero of h(x0, y)
then every prime q of Q(ζp, y0) over ` satisfies f(q/`) = 1, where f(q/`)
denotes the degree of the extension of the residue fields.

Fix S1 and S2 two finite, disjoint sets of primes, not containing an archi-
medean prime such that

m(S1,S2) > 2k + 2(n+ 5) deg(h)(p− 1) + 2,

S1 ∩B = ∅ and S2 ⊂ P2, with m(S1,S2) as defined in Section 2. (The exis-
tence of such sets follows from Dirichlet’s theorem on primes in arithmetic
progression and the fact that ` ∈ S2 implies ` ≡ 1 mod p.)

Lemma 3.3. There exists an x0 ∈ Z such that

• x0 ≡ 0 mod `, for all primes ` smaller then the degree of f2,1 and all
` dividing the leading coefficient of f2,1,

• x0 ≡ 0 mod `, for all ` ∈ S1,
• f2,2(x0) ≡ 0 mod `, for all ` ∈ S2,
• f2,1(x0) has at most n prime divisors,
• h(x0, y) is irreducible.

Proof. The existence of such an x0 can be proven as follows. Take an
a ∈ Z satisfying the above three congruence relations. Take b to be the
product of all primes mentioned in the above congruence relations. Define
f̃(Z) = f2,1(a + bZ). We claim that the content of f̃ is one. Suppose `
divides this content. Then ` divides the leading coefficient of f̃ . From this
one deduces that ` divides b. We distinguish several cases:

• If ` ∈ Si then fi,2(a) ≡ 0 mod ` and ` does not divide the discriminant
of the product of the fδ,ε, so we have f̃(0) ≡ f2,1(a) 6≡ 0 mod `.

• If ` divides b and is not in S1 ∪ S2 then f̃(0) ≡ f2,1(0) ≡ 1 mod `.

So for all primes ` dividing b we have that f̃ 6≡ 0 mod `. This proves the
claim on the content of f̃ .

Suppose ` is a prime smaller then the degree of f̃ , then f̃(0) ≡ 1 mod `.
If ` is different from these primes, then there is a coefficient of f̃ which is
not divisible by ` and the degree of f̃ is smaller then `. So for every prime
` there is an z` ∈ Z with f̃(z`) 6≡ 0 mod `. From this we deduce that we
can apply Theorem 3.1. The constant for f̃ depends only on the degree of
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the irreducible factors of f̃ , hence equals n. The set

{x1 ∈ Z : f̃(x1) has at most n prime divisors}
is not a thin set. So

H :=
{
x1 ∈ Z : f̃(x1) has at most n prime divisors

and h(a+ bx1, y) is irreducible.

}
is not empty by Hilbert’s Irreducibility Theorem [14, Chapter 9]. Fix such
an x1 ∈ H. Let x0 = a + bx1. This proves the claim on the existence of
such an x0. �

Fix an x0 satisfying the conditions of Lemma 3.3. Adjoin a root y0 of
h(x0, y) to Q(ζp). Denote the field Q(ζp, y0) by K1. Let P be the point
on X(p)(K1) corresponding to (x0, y0). Let E/K1 be the elliptic curve
corresponding to P . Let K = K1(

√
c4(E)). Then if q is a prime such

that E/Kq has multiplicative reduction then E/Kq has split multiplicative
reduction.

For every prime p of K over ` ∈ S1 we have that P mod q is a cusp
of type (1, 2). Over every prime ` ∈ S2 there exists a prime q such that
P mod q is a cusp of type (2, 2). From our assumptions on x0 it follows
that p does not divide f(q/`). Let T1 consists of the primes of K lying over
the primes in S1. Let T2 be the set of primes q such that q lies over a prime
in S2 and P mod q is a cusp of type (2, 2).

Note that the set of primes of K such that P reduces to a cusp of type
(2, 1) has at most n[K : Q] elements.

We have the following diagram

Q(S1, p) → ⊕`∈S2Z∗
`/Z

∗p
`

↓ ↓
K(T1, p) → ⊕q∈T2O∗

Kq
/O∗p

Kq
.

Since p - f(q/`) for all ` ∈ S2, the arrow in the right column is injective.
This implies

m(ϕP,1/K) ≥ m(T1, T2) ≥ m(S1,S2) = 2k + 4(n+ 5) deg(h)(p− 1) + 2.

Since S2(ϕp,2/K) ≤ [K : Q]n and [K : Q] ≤ 2(p − 1) deg(h) we obtain
by Lemma 2.9 that for some E′ isogenous to E we have

dimFp X(E′/K)[p] ≥ −#S1(ϕP,2)− 5[K : Q]− 1 +
1
2
m(S1,S2)

≥ −(n+ 5)[K : Q]− 1 +
1
2
m(S1,S2) = k.

Note that deg(h) can be bounded by a function of type O(p3), hence
[K : Q] can be bounded by a function of type O(p4). �

To finish, we prove Corollary 1.2.
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Proof of Corollary 1.2. Let E/K be an elliptic curve such that

dimFp X(E/K)[p] ≥ kg(p)

and [K : Q] ≤ g(p).
Let R := ResK/Q(E) be the Weil restriction of scalars of E. Then by

[10, Proof of Theorem 1]

dimFp X(R/Q)[p] = dimFp X(E/K)[p].

From this it follows that there is a factor A of R, with dimFp X(A/Q)[p] ≥
k. �
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