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filtration in the 2-dimensional case

par Victor ABRASHKIN

Résumé. Le résultat principal de cet article est une description
explicite de la structure des sous-groupes de ramification du grou-
pe de Galois d’un corps local de dimension 2 modulo son sous-
groupe des commutateurs d’ordre ≥ 3. Ce résultat joue un role
clé dans la preuve par l’auteur d’un analogue de la conjecture de
Grothendieck pour les corps de dimension supérieure, cf. Proc.
Steklov Math. Institute, vol. 241, 2003, pp. 2-34.

Abstract. The principal result of this paper is an explicit de-
scription of the structure of ramification subgroups of the Galois
group of 2-dimensional local field modulo its subgroup of commu-
tators of order ≥ 3. This result plays a clue role in the author’s
proof of an analogue of the Grothendieck Conjecture for higher
dimensional local fields, cf. Proc. Steklov Math. Institute, vol.
241, 2003, pp. 2-34.

0. Introduction

Let K be a 1-dimensional local field, i.e. K is a complete discrete valu-
ation field with finite residue field. Let Γ = Gal(Ksep/K) be the absolute
Galois group of K. The classical ramification theory, cf. [8], provides Γ
with a decreasing filtration by ramification subgroups Γ(v), where v ≥ 0
(the first term of this filtration Γ(0) is the inertia subgroup of Γ). This ad-
ditional structure on Γ carries as much information about the category of
local 1-dimensional fields as one can imagine: the study of such local fields
can be completely reduced to the study of their Galois groups together with
ramification filtration, cf. [6, 3]. The Mochizuki method is a very elegant
application of the theory of Hodge-Tate decompositions, but his method
works only in the case of 1-dimensional local fields of characteristic 0 and
it seems it cannot be applied to other local fields. The author’s method
is based on an explicit description of ramification filtration for maximal
p-extensions of local 1-dimensional fields of characteristic p with Galois
groups of nilpotent class 2 (where p is a prime number ≥ 3). This infor-
mation is sufficient to establish the above strong property of ramification
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filtration in the case of local fields of finite characteristic and can be applied
to the characteristic 0 case via the field-of-norms functor.

Let now K be a 2-dimensional local field, i.e. K is a complete discrete
valuation field with residue field K(1), which is again a complete discrete
valuation field and has a finite residue field. Recently I.Zhukov [9] pro-
posed an idea how to construct a higher ramification theory of such fields,
which depends on the choice of a subfield of “1-dimensional constants” Kc

in K (i.e. Kc is a 1-dimensional local field which is contained in K and
is algebraically closed in K). We interpret this idea to obtain the ramifi-
cation filtration of the group Γ = Gal(Ksep/K) consisting of ramification
subgroups Γ(v), where v runs over the ordered set J = J1 ∪ J2 with

J1 = {(v, c) ∈ Q× {c} | v ≥ 0} , J2 =
{
j ∈ Q2 | j ≥ (0, 0)

}
.

Notice that the orderings on J1 and J2 are induced, respectively, by the
natural ordering on Q and the lexicographical ordering on Q2, and by
definition any element from J1 is less than any element of J2. We no-
tice also that the beginning of the above filtration {Γ(j)}j∈J1 comes, in
fact, from the classical “1-dimensional” ramification filtration of the group
Γc = Gal(Kc,sep/Kc) and its “2-dimensional” part {Γ(v)}j∈J2 gives a filtra-
tion of the group Γ̃ = Gal(Ksep/KKc,sep). Notice also that the beginning
of the “J2-part” of our filtration, which corresponds to the indices from the
set {(0, v) | v ∈ Q≥0} ⊂ J2 comes, in fact, from the classical ramification
filtration of the absolute Galois group of the first residue field K(1) of K.

In this paper we give an explicit description of the image of the ramifica-
tion filtration {Γ(j)}j∈J in the maximal quotient of Γ, which is a pro-p-group
of nilpotent class 2, when K has a finite characteristic p. Our method is, in
fact, a generalisation of methods from [1, 2], where the ramification filtra-
tion of the Galois group of the maximal p-extension of 1-dimensional local
field of characteristic p modulo its subgroup of commutators of order ≥ p
was described. Despite of the fact that we consider here only the case of
local fields of dimension 2, our method admits a direct generalisation to
the case of local fields of arbitrary dimension n ≥ 2.

In a forthcoming paper we shall prove that the additional structure on Γ
given by its ramification filtration {Γ(j)}j∈J with another additional struc-
ture given by the special topology on each abelian sub-quotient of Γ (which
was introduced in [5] and [7]) does not reconstruct completely (from the
point of view of the theory of categories) the field K but only its composite
with the maximal inseparable extension of Kc. The explanation of this
phenomenon can be found in the definition of the “2-dimensional” part of
the ramification filtration: this part is defined, in fact, over an algebraic
closure of the field of 1-dimensional constants.
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1. Preliminaries: Artin-Schreier theory for 2-dimensional local
fields

1.1. Basic agreements. Let K be a 2-dimensional complete discrete val-
uation field of finite characteristic p > 0. In other words, K is a complete
field with respect to a discrete valuation v1 and the corresponding residue
field K(1) is complete with respect to a discrete valuation v̄2 with finite
residue field k ' FpN0 , N0 ∈ N. Fix a field embedding s : K(1) −→ K, which
is a section of the natural projection from the valuation ring OK onto K(1).
Fix also a choice of uniformising elements t0 ∈ K and τ̄0 ∈ K(1). Then
K = s(K(1))((t0)) and K(1) = k((τ̄0)) (note that k is canonically identified
with subfields in K(1) and K). We assume also that an algebraic closure
Kalg of K is chosen, denote by Ksep the separable closure of K in Kalg, set
Γ = Gal(Ksep/K), and use the notation τ0 = s(τ̄0).

1.2. P -topology. Consider the set P of collections ω = {Ji(ω)}i∈Z, where
for some I(ω) ∈ Z, one has Ji(ω) ∈ Z if i ≤ I(ω), and Ji(ω) = −∞
if i > I(ω). For any ω = {Ji(ω)}i∈Z ∈ P, consider the set A(ω) ⊂ K

consisting of elements written in the form
∑

i∈Z s(bi)t
i
0, where all bi ∈ K(1),

for a sufficiently small i one has bi = 0, and bi ∈ τ̄Ji(ω)
0 OK(1) if Ji(ω) 6= −∞.

The family {A(ω) | ω ∈ P} when taken as a basis of zero neighbourhoods
determines a topology of K. We shall denote this topology by PK(s, t0)
because its definition depends on the choice of the section s and the uni-
formiser t0. In this topology s(bi)ti0 → 0 for i → +∞, where {bi} is an
arbitrary sequence in K(1). Besides, for any a ∈ Z, we have τ j0 t

a
0 → 0 if

j → +∞ and, therefore, s is a continuous embedding of K(1) into K (with
respect to the valuation topology on K(1) and the PK(s, t0)-topology on
K). It is known, cf. [5], if t1 ∈ K is another uniformiser and s1 is an an-
other section from K(1) to K, then the topologies PK(s, t0) and PK(s1, t1)
are equivalent. Therefore, we can use the notation PK for any of these
topologies. The family of topologies PE for all extensions E of K in Kalg

is compatible, cf. [7, 5]. This gives finally the topology on Kalg and this
topology (as well as its restriction to any subfield of Kalg) can be denoted
just by P .

1.3. Artin-Schreier theory. Let σ be the Frobenius morphism of K.
Denote by Γab

1 the maximal abelian quotient of exponent p of Γ. Consider
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the Artin-Schreier pairing

ξ1 : K/(σ − id)K ⊗Fp Γab
1 −→ Fp.

This pairing is a perfect duality of topological Fp-modules, where
K/(σ− id)K is provided with discrete topology, and Γab

1 has the pro-finite
topology of projective limit Γab

1 = lim←−ΓE/K , where E/K runs over the
family of all finite extensions in Kalg with abelian Galois group of exponent
p.

Consider the set Z2 with lexicographical ordering, where the advantage
is given to the first coordinate. Set

A2 = {(i, j) ∈ Z2 | (i, j) > (0, 0), j 6= 0, (i, j, p) = 1},

A1 = {(i, 0) | i > 0, (i, p) = 1},A = A2 ∪ A1 and A0 = A ∪ {(0, 0)}.
Consider K/(σ − id)K with topology induced by the P -topology of K

(in this and another cases any topology induced by the P -topology will
be also called the P -topology). Choose a basis {αr | 1 ≤ r ≤ N0} of the
Fp-module k and an element α0 ∈ k such that Trk/Fp

α0 = 1. Then the
system of elements{

αrτ
−j
0 t−i0 | (i, j) ∈ A, 1 ≤ r ≤ N0

}
∪ {α0}, (1)

gives a P -topological basis of the Fp module K/(σ − id)K.
Let Ω be the set of collections ω = {Ji(ω)}0≤i≤I(ω), where I(ω) ∈ Z≥0

and Ji(ω) ∈ N for all 0 ≤ i ≤ I(ω). Set

A0(ω) =
{
(i, j) ∈ A0 | 0 ≤ i ≤ I(ω), j ≤ Ji(ω)

}
and A(ω) = A0(ω) ∩ A = A0(ω) \ {(0, 0)} (notice that (0, 0) ∈ A0(ω)).
Denote by U1(ω) the Fp-submodule of K/(σ−id)K generated by the images
of elements of the set{

αrτ
−j
0 t−i0 | (i, j) ∈ A(ω), 1 ≤ r ≤ N0

}
∪ {α0}, (2)

where τ0 = s(τ̄0). This is a basis of the system of compact Fp-submodules
in K/(σ − id)K with respect to P -topology.

Let
G1 =

{
D

(r)
(i,j) | (i, j) ∈ A, 1 ≤ r ≤ N0

}
∪ {D(0,0)}

be the system of elements of Γab
1 dual to the system of elements (1) with

respect to the pairing ξ1. For ω ∈ Ω, set

G1(ω) =
{
D

(r)
(i,j) ∈ G1 | (i, j) ∈ A(ω), 1 ≤ r ≤ N0

}
∪ {D(0,0)}.

Denote by Mf
1 (resp., Mf

1(ω)) the Fp-submodule in Γab
1 generated by ele-

ments of G1 (resp., G1(ω)). Notice that G1 (resp., G1(ω)) is an Fp-basis of
Mf

1 (resp.,Mf
1(ω)).
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For any ω ∈ Ω, set Γ1(ω)ab = Hom(U1(ω),Fp), then

Γab
1 = lim←−

ω∈Ω

Γ1(ω)ab.

We shall use the identification of elements D
(r)
(i,j) where (i, j) ∈ A(ω),

1 ≤ r ≤ N0, and D(0,0) with their images in Γ1(ω)ab. Then

Mf
1(ω) = HomP -top(U1(ω),Fp) ⊂ Γab

1

and Γ1(ω)ab is identified with the completion of Mf
1(ω) in the topology

given by the system of zero neibourghoods consisting of all Fp-submodules
of finite index. Denote byMpf

1 (ω) the completion ofMf
1(ω) in the topology

given by the system of zero neibourghoods consisting of Fp-submodules,
which contain almost all elements of the set G1(ω). Then Mpf

1 (ω) is the
set of all formal Fp-linear combinations∑

(i,j)∈A(ω)
1≤r≤N0

α
(r)
(i,j)D

(r)
(i,j) + α(0,0)D(0,0)

and we have natural embeddings Mf
1(ω) ⊂ Γ1(ω)ab ⊂Mpf

1 (ω).
We notice that Γab

1 is the completion ofMf
1 in the topology given by the

basis of zero neibourghoods of the form V1 ⊕ V2, where for some ω ∈ Ω, V1

is generated by elements D(r)
(i,j) with 1 ≤ r ≤ N0 and (i, j) /∈ A0(ω), and

Fp-module V2 has a finite index inMf
1(ω). Denote byMpf

1 the completion
ofMf

1 in the topology given by the system of neibourghoods consisting of
submodules containing almost all elements of the set G1. ThenMpf

1 is the
set of all Fp-linear combinations of elements from G1, and we have natural
embeddings Mf

1 ⊂ Γab
1 ⊂M

pf
1 .

1.4. Witt theory. Choose a p-basis {ai | i ∈ I} of K. Then for any
M ∈ N and a field E such that K ⊂ E ⊂ Ksep, one can construct a lifting
OM (E) of E modulo pM , that is a fully faithful Z/pMZ-algebra OM (E)
such that OM (E)⊗Z/pM Z Fp = E. These liftings can be given explicitly in
the form

OM (E) = WM (σM−1E) [{[ai] | i ∈ I}] ,
where [ai] = (ai, 0, . . . , 0) ∈ WM (E). The liftings OM (E) depend functo-
rially on E and behave naturally with respect to the actions of the Galois
group Γ and the Frobenius morphism σ.

For any M ∈ N, consider the continuous Witt pairing modulo pM

ξM : OM (K)/(σ − id)OM (K)⊗Z/pM Z Γab
M −→ Z/pMZ,

where Γab
M is the maximal abelian quotient of Γ of exponent pM considered

with its natural topology, and the first term of tensor product is provided
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with discrete topology. These pairings are compatible for different M and
induce the continuous pairing

O(K)/(σ − id)O(K)⊗Zp Γ(p)ab −→ Zp,

where O(K) = lim←−OM (K) and Γ(p)ab is the maximal abelian quotient of
the Galois group Γ(p) of the maximal p-extension of K in Ksep.

Now we specify the above arguments for the local field K of dimension 2
given in the notation of n.1.1. Clearly, the elements t0 and τ0 give a p-basis
of K, i.e. the system of elements

{τ b0ta0 | 0 ≤ a, b < p}
is a basis of the Kp-module K. So, for any M ∈ N and K ⊂ E ⊂ Ksep, we
can consider the system of liftings modulo pM

OM (E) = WM (σM−1E)[t, τ ], (3)

where t = [t0], τ = [τ0] are the Teichmuller representatives.
Choose a basis {αr | 1 ≤ r ≤ N0} of the Zp-module W (k) and its

element α0 with the absolute trace 1. We agree to use the same notation
for residues modulo pM of the above elements αr, 0 ≤ r ≤ N0. Then the
system of elements{

αrτ
−jt−i | (i, j) ∈ A, 1 ≤ r ≤ N0

}
∪ {α0} (4)

gives a P -topological Z/pMZ-basis of OM (K)/(σ − id)OM (K).
For ω ∈ Ω, denote by UM (ω) the P -topological closure of the Z/pMZ-

submodule of OM (K)/(σ− id)OM (K) generated by the images of elements
of the set {

αrτ
−jt−i | (i, j) ∈ A(ω), 1 ≤ r ≤ N0

}
∪ {α0}. (5)

This is a basis of the system of compact (with respect to the P -topology)
submodules of OM (K)/(σ − id)OM (K) (i.e. any its compact submodule is
contained in some UM (ω)). As earlier, we introduce the system of elements
of Γab

M

GM =
{
D

(r)
(i,j) | (i, j) ∈ A, 1 ≤ r ≤ N0

}
∪ {D(0,0)},

which is dual to the system (4) with respect to the pairing ξM . Similarly
to subsection 1.3 introduce the Z/pMZ-modules Mf

M , Mpf
M and for any

ω ∈ Ω, the subset GM (ω) ⊂ GM and the Z/pMZ-submodules Mf
M (ω),

ΓM (ω)ab andMpf
M (ω) such that

Mf
M ⊂ Γab

M ⊂M
pf
M , Mf

M (ω) ⊂ ΓM (ω)ab ⊂Mpf
M (ω),

Γab
M = lim←−ΓM (ω)ab, and HomP -top(UM (ω),Fp) =Mf

M (ω).
Apply the pairing ξM to define the P -topology on Γab

M . By definition,
the basis of zero neibourghoods of Γab

M consists of annihilators UM (ω)D of
compact submodules UM (ω), ω ∈ Ω, with respect to the pairing ξM .
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We note that

UM (ω)D = Ker
(
Γab
M −→ ΓM (ω)ab

)
.

Finally, we obtain the P -topology on Γ(p)ab = lim←−
M,ω

ΓM (ω)ab and note that

the identity map id : Γ(p)abP -top −→ Γ(p)ab is continuous. Equivalently, if
E/K is a finite abelian extension, then there is an M ∈ N and an ω ∈ Ω
such that the canonical projection Γ(p)ab −→ ΓE/K factors through the
canonical projection Γ(p)ab −→ ΓM (ω)ab.

1.5. Nilpotent Artin-Schreier theory. For any Lie algebra L over Zp
of nilpotent class < p, we agree to denote by G(L) the group of elements
of L with the law of composition given by the Campbell-Hausdorff formula

(l1, l2) 7→ l1 ◦ l2 = l1 + l2 +
1
2
[l1, l2] + . . . .

Consider the system of liftings (3) from n.1.4 and set O(E) = lim←−OM (E),
where K ⊂ E ⊂ Ksep. If L is a finite Lie algebra of nilpotent class < p
set LE = L⊗Zp O(E). Then the nilpotent Artin-Schreier theory from [1] is
presented by the following statements:
a) for any e ∈ G(LK), there is an f ∈ G(LKsep) such that σf = f ◦ e;
b) the correspondence τ 7→ (τf) ◦ (−f) gives the continuous group homo-
morphism ψf,e : Γ −→ G(L);
c) if e1 ∈ G(LK) and f1 ∈ G(LKsep) is such that σf1 = f1 ◦ e1, then the ho-
momorphisms ψf,e and ψf1,e1 are conjugated if and only if e = c◦e1 ◦(−σc)
for some c ∈ G(LK);
d) for any group homomorphism ψ : Γ −→ G(L) there are e ∈ G(LK) and
f ∈ G(LKsep) such that ψ = ψf,e.

In order to apply the above theory to study Γ we need its pro-finite
version. Identify Γ(p)ab with the projective limit of Galois groups ΓE/K
of finite abelian p-extensions E/K in Ksep. With this notation denote by
L(E) the maximal quotient of nilpotent class < p of the Lie Zp-algebra
L̃(E) generated freely by the Zp-module ΓE/K . Then L̃ = lim←−L̃(E) is a
topological free Lie algebra over Zp with topological module of generators
Γ(p)ab and L = lim←−L(E) is the maximal quotient of L̃ of nilpotent class
< p in the category of topological Lie algebras.

Define the “diagonal element” ẽ ∈ O(K)/(σ − id)O(K)⊗̂ZpΓ(p)ab as
the element coming from the identity endomorphism with respect to the
identification

O(K)/(σ − id)O(K)⊗̂ZpΓ(p)ab = Endcont(O(K)/(σ − id)O(K))

induced by the Witt pairing (here O(K) is considered with the p-adic topol-
ogy). Denote by s the unique section of the natural projection from O(K)
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to O(K)/(σ − id)O(K) with values in the P -topological closed submodule
of O(K) generated by elements of the set (4). Use the section s to obtain
the element

e = (s⊗ id)(ẽ) ∈ O(K)⊗̂Γ(p)ab ⊂ LK := O(K)⊗̂L

such that e 7→ ẽ by the natural projection

LK −→ Lab
K mod(σ − id)Lab

K = O(K)/(σ − id)O(K)⊗̂Γ(p)ab.

For any finite abelian p-extension E/K in Ksep, denote by eE the projection
of e to LK(E) = L(E) ⊗Zp O(K), and choose a compatible on E system
of fE ∈ L(E)sep = L(E) ⊗ O(Ksep) such that σfE = fE ◦ eE . Then the
correspondences τ 7→ τfE ◦ (−fE) give a compatible system of group ho-
momorphisms ψE : Γ(p) −→ G(L(E)) and the continuous homomorphism

ψ = lim←−ψE : Γ(p) −→ G(L)

induces the identity morphism of the corresponding maximal abelian quo-
tients. Therefore, ψ̄ = ψmodCp(Γ(p)) gives identification of p-groups
Γ(p) modCp(Γ(p)) and G(L), where Cp(Γ(p)) is the closure of the sub-
group of Γ(p) generated by commutators of order ≥ p. Of course, if
f = lim←− fE ∈ G(Lsep), then σf = f ◦ e and ψ(g) = (gf) ◦ (−f) for any
g ∈ Γ. Clearly, the conjugacy class of the identification ψ̄ depends only on
the choice of uniformisers t0 and τ0 and the element α0 ∈W (k).

For ω ∈ Ω and M ∈ N, denote by LM (ω) the maximal quotient of
nilpotent class < p of the free Lee Z/pMZ-algebra L̃M (ω) with topological
module of generators ΓM (ω)ab. We use the natural projections Γ(p)ab −→
ΓM (ω)ab to construct the projections of Lie algebras L −→ LM (ω) and
induced morphisms of topological groups

ψM (ω) : Γ(p) −→ G(LM (ω)).

Clearly, the topology on the group G(LM (ω)) is given by the basis of neigh-
bourhoods of the neutral element consisting of all subgroups of finite index.

Consider Z/pMZ-modules Mf
M (ω) and Mpf

M (ω) from n.1.4. Denote by
LfM (ω) the maximal quotient of nilpotent class < p of a free Lie algebra over
Z/pMZ generated byMf

M (ω), and by LpfM (ω) the similar object constructed
for the topological Z/pMZ-module Mpf

M (ω). Clearly, LpfM (ω) is identified
with the projective limit of Lie sub-algebras of LM (ω) generated by all
finite subsystems of its system of generators{

D
(r)
(i,j) | 1 ≤ r ≤ N0, (i, j) ∈ A(ω)

}
∪

{
D

(0)
(0,0)

}
. (6)

Besides, we have the natural inclusions

LfM (ω) ⊂ LM (ω) ⊂ LpfM (ω),
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where LM (ω) is identified with the completion of LfM (ω) in the topology
defined by all its Lie sub-algebras of finite index. Let

eM (ω) =
∑

(i,j)∈A(ω)
1≤r≤N0

αrτ
−jt−iD

(r)
(i,j) + α0D

(0)
(0,0) ∈ OM (K)⊗̂Mpf

M (ω).

Lemma 1.1. There exists fM (ω) ∈ G(LM (ω)sep) such that σfM (ω) =
fM (ω) ◦ eM (ω) (and therefore eM (ω) ∈ OM (K)⊗̂Γab

M (ω)) and for any
g ∈ Γ(p),

ψM (ω)(g) = (gfM (ω)) ◦ (−fM (ω)).

Proof. Denote by e′M (ω) the image of e in OM (K)⊗̂ΓM (ω)ab. Let U0

be an open submodule of Mpf
M (ω) and U ′0 = U0 ∩ ΓM (ω)ab. Set e0 =

eM (ω) modOM (K)⊗̂U0 and e′0 = e′M (ω) modOM (K)⊗̂U ′0. Then

e0, e
′
0 ∈ V := OM (K)⊗ ΓM (ω)ab/U ′0 = OM (K)⊗Mpf

M (ω)/U0.

The residues e0 mod(σ − id)V and e′0 mod(σ − id)V coincide because the
both appear as the images of the “diagonal element” for the Witt pairing.
But e0 and e′0 are obtained from the above residues by the same section
V mod(σ − id)V −→ V , therefore,

e′M (ω) ≡ eM (ω) modOM (K)⊗̂U0.

Because intersection of all open submodules U0 of MM (ω) is 0, one has
e′M (ω) = eM (ω) and we can take as fM (ω) the image of f ∈ G(Lsep)
under the natural projection G(Lsep) −→ G(LM (ω)sep). The lemma is
proved. �

By the above lemma we have an explicit construction of all group mor-
phisms ψM (ω) with M ∈ N and ω ∈ Ω. Their knowledge is equivalent to
the knowledge of the identification ψ̄modCp(Γ(p)), because of the equality

ψ = lim←−
M,ω

ψM (ω)

which is implied by the following lemma.

Lemma 1.2. Let L be a finite (discrete) Lie algebra over Zp and let φ :
Γ(p) −→ G(L) be a continuous group morphism. Then there are M ∈ N,
ω ∈ Ω and a continuous group morphism

φM (ω) : G(LM (ω)) −→ G(L)

such that φ(ω) = ψM (ω) ◦ φM (ω).

Proof. Let e ∈ G(LK) and f ∈ G(Lsep) be such that σf = f ◦e and for any
g ∈ Γ(p), it holds

φ(g) = (gf) ◦ (−f).
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One can easily prove the existence of c ∈ G(LK) such that for
e1 = (−c) ◦ e ◦ (σc), one has

e1 =
∑

(a,b)∈A0

τ−bt−al(a,b),0,

where all l(a,b),0 ∈ Lk = L⊗W (k) and l(0,0),0 = α0l(0,0) for some l(0,0) ∈ L.
If f1 = f ◦ c then σf1 = f1 ◦ e1 and for any g ∈ Γ,

φ(g) = (gf1) ◦ (−f1).

Let h1, . . . , hu ∈ L be such that for some mi ∈ Z≥0 with 1 ≤ i ≤ u,
L = ⊕1≤i≤uhiZ/pmiZ.

If
l(a,b),0 =

∑
1≤i≤u

α(a,b),ihi,

where all coefficients α(a,b),i ∈W (k), then

e1 =
∑

1≤i≤u
Aihi,

where all coefficients

Ai =
∑

(a,b)∈A0

α(a,b),iτ
−bt−a ∈ OM (K)

with M = max {mi | 1 ≤ i ≤ u}. Clearly, there exists ω ∈ Ω such that
α(a,b),i = 0 for all 1 ≤ i ≤ u and (a, b) /∈ A0(ω).

Let β1, . . . , βN0 be the dualW (Fp)-basis ofW (k) for the basis α1, . . . , αN0

from n.1.4. Consider the morphism of Lie algebras φ′M (ω) : LM (ω) −→ L
uniquely determined by the correspondences

D(0,0) 7→ l(0,0), D
(r)
(a,b) 7→

∑
0≤n<N0

σn(βrl(a,b),0),

for all (a, b) ∈ A(ω) and 1 ≤ r ≤ N0.
Clearly, φ′M (ω) is a continuous morphism of Lie algebras, which trans-

forms eM (ω) to e1. Let f ′ ∈ G(Lsep) be the image of fM (ω), then σf ′ =
f ′ ◦ e1. So, the composition

φ′ = ψM (ω) ◦ φ′M (ω) : Γ(p) −→ G(L)

is given by the correspondence φ′(g) = (gf ′) ◦ (−f ′) for all g ∈ Γ(p).
Let c0 = f ′ ◦ (−f) ∈ G(Lsep). Then c0 ∈ G(Lsep)|σ=id = G(L). There-

fore, for any g ∈ Γ(p),

φ(g) = (gf) ◦ (−f) = (−c0) ◦ (gf ′) ◦ (−f ′) ◦ c0 = (−c0) ◦ φ′(g) ◦ c0.
So, we can take φM (ω) such that for any l ∈ LM (ω),

φM (ω)(l) = (−c0) ◦ φ′M (ω)(l) ◦ c0.
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The lemma is proved. �

2. 2-dimensional ramification theory

In this section we assume that K is a 2-dimensional complete discrete
valuation field of characteristic p provided with an additional structure
given by its subfield of 1-dimensional constants Kc and by a double valu-
ation v(0) : K −→ Q2 ∪ {∞}. By definition Kc is complete (with respect
to the first valuation of K) discrete valuation subfield of K, which has fi-
nite residue field and is algebraically closed in K. As usually, we assume
that an algebraic closure Kalg of K is chosen, denote by Esep the separable
closure of any subfield E of Kalg in Kalg, set ΓE = Gal(Esep/E) and use
the algebraic closure of Kc in E as its field of 1-dimensional constants Ec.
We shall use the same symbol v(0) for a unique extension of v(0) to E. We
notice that pr1(v(0)) : E −→ Q ∪ {∞} gives the first valuation on E and
pr2(v(0)) is induced by the valuation of the first residue field E(1) of E. The
condition v(0)(E∗) = Z2 gives a natural choice of one valuation in the set
of all equivalent valuations of the field E.

2.1. 2-dimensional ramification filtration of Γ̃E ⊂ ΓE. Let E be a
finite extension of K in Kalg. Consider a finite extension L of E in Esep

and set Γ̃L/E = Gal(L/ELc) (we note that Lc = (ELc)c). If lim←−
L

Γ̃L/E := Γ̃E

then we have the natural exact sequence of pro-finite groups

1 −→ Γ̃E −→ ΓE −→ ΓEc −→ 1. (7)

The 2-dimensional ramification theory appears as a decreasing sequence
of normal subgroups

{
Γ(j)
E

}
j∈J2

of Γ̃E , where

J2 =
{
(a, b) ∈ Q2 | (a, b) ≥ (0, 0)

}
.

Here Q2 is considered with lexicographical ordering (where the advantage is
given to the first coordinate), in particular, J2 = ({0} ×Q≥0)

⋃
(Q>0 ×Q).

Similarly to the classical (1-dimensional) case, one has to introduce the
filtration in lower numbering

{
ΓL/E,j

}
j∈J2

for any finite Galois extension
L/E. Apply the process of “eliminating wild ramification” from [4] to
choose a finite extension Ẽc of Lc inKc,alg such that the extension L̃ := LẼc

over Ẽ := EẼc has relative ramification index 1. Then the corresponding
extension of the (first) residue fields L̃(1)/Ẽ(1) is a totally ramified (usually,
inseparable) extension of complete discrete valuation fields of degree [L̃ : Ẽ].

If θ̄ is a uniformising element of L̃(1) then O
L̃(1) = O

Ẽ(1) [θ̄]. Introduce

the double valuation rings O
Ẽ

:=
{
l ∈ Ẽ | v(0)(l) ≥ (0, 0)

}
and O

L̃
:=
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l ∈ L̃ | v(0)(l) ≥ (0, 0)

}
. Then O

L̃
= O

Ẽ
[θ] for any lifting θ of θ̄ to

O
L̃
. This property provides us with well-defined ramification filtration of

Γ
L̃/Ẽ
⊂ ΓL/E in lower numbering

ΓL/E,j =
{
g ∈ Γ

L̃/Ẽ
| v(0)(gθ − θ) ≥ v(0)(θ) + j

}
,

where j runs over the set J2.
One can easily see that the above definition does not depend on the

choices of Ẽc and θ̄. The Herbrand function ϕ
(2)
L/E : J2 −→ J2 is defined

similarly to the classical case: for any (a, b) ∈ J (2) take a partition

(0, 0) = (a0, b0) < (a1, b1) < · · · < (as, bs) = (a, b),

such that the groups ΓL/E,j are of the same order gi for all j between
(ai−1, bi−1) and (ai, bi), where 1 ≤ i ≤ s, and set

ϕ
(2)
L/E(a, b) = (g1(a1−a0)+· · ·+gs(as−as−1), g1(b1−b0)+· · ·+gs(bs−bs−1)).

Let E ⊂ L1 ⊂ L be a tower of finite Galois extensions in Esep. Then the
above defined Herbrand function satisfies the composition property, i.e. for
any j ∈ J (2), one has

ϕ
(2)
L/E(j) = ϕ

(2)
L1/E

(
ϕ

(2)
L/L1

(j)
)
. (8)

This property can be proved as follows. Choose as earlier the finite
extension Ẽc of Lc, then all fields in the tower

L̃ ⊃ L̃1 ⊃ Ẽ,

where L̃ = LẼc, L̃1 = L1Ẽc, Ẽ = EẼc (note that L̃c = L̃1,c = Ẽc),
have the same uniformiser (with respect to the first valuation). If θ̄ is a
uniformiser of the first residue field L̃(1) of L̃ and θ ∈ O

L̃
is a lifting of θ̄,

then O
L̃

= O
Ẽ
[θ] and O

L̃
= O

L̃1
[θ]. But we have also O

L̃1
= O

Ẽ
[N

L̃/L̃1
(θ)]

because N
L̃/L̃1

(θ̄) is uniformizing element of L̃(1)
1 . Now one can relate the

values of the Herbrand function in the formula (8) by classical 1-dimensional
arguments from [8].

Similarly to classical case one can use the composition property (8) to
extend the definition of the Herbrand function to the class of all (not nec-
essarily Galois) finite separable extensions, introduce the upper number-

ing ΓL/E,j = Γ
(ϕ

(2)
L/E

(j))

L/E and apply it to define the ramification filtration{
Γ(j)
E

}
j∈J2

of the subgroup Γ̃E ⊂ ΓE .
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2.2. Ramification filtration of ΓE. The above definition of 2-dimen-
sional ramification filtration works formally in the case of 1-dimensional
complete discrete valuation fields K. Note that in this case there is a
canonical choice of the field of 0-dimensional constants Kc, and we do not
need to apply the process of eliminating wild ramification. This gives for
any complete discrete valuation subfield E ⊂ Kalg, the filtration

{
Γ(v)
E

}
v≥0

of the inertia subgroup Γ̃E ⊂ ΓE . Note also that this filtration depends on
the initial choice of the valuation v(0) : K −→ Q∪ {∞} and coincides with
classical ramification filtration if v(0)(E∗) = Z.

Consider the 2-dimensional ramification filtration
{

Γ(j)
E

}
j∈J2

and the

above defined 1-dimensional ramification filtration
{

Γ(v)
Ec

}
v≥0

for the (first)

valuation pr1(v(0)) : Kc −→ Q ∪ {∞}.
Let J = J1 ∪ J2, where J1 = {(v, c) | v ≥ 0}. Introduce the ordering on

J by the use of natural orderings on J1 and J2, and by setting j1 < j2 for
any j1 ∈ J1 and j2 ∈ J2. For any j = (v, c) ∈ J1, set Γ(j)

E = pr−1
(
Γ(v)
Ec

)
where pr : ΓE −→ ΓEc is the natural projection. This gives the complete
ramification filtration

{
Γ(j)
E

}
j∈J

of the group ΓE . For any finite extension

L/E, we denote by

ϕL/E : J −→ J

its Herbrand function given by the bijection ϕ
(2)
L/E : J2 −→ J2 from n.2.1

and its 1-dimensional analogue ϕ(1)
Lc/Ec

: J1 −→ J1 (which coincides with

the classical Herbrand function if v(0)(E∗) = Z2). We note also that the
above filtration contains two pieces coming from the 1-dimensional theory
and the both of them coincide with the classical filtration if v(0)(E∗) = Z2.
The first piece comes as the ramification filtration of ΓEc given by the
groups Γ(v)

Ec
= Γ(v,c)

E /Γ(0,0)
E for all v ≥ 0. The second piece comes from the

ramification filtration of the first residue field E(1) of E. Here for any v ≥ 0,
Γ(v)

E(1) = Γ(0,v)
E /Γ(0,∞)

E , where

Γ(0,∞)
E = the closure of

⋃ {
Γ(a,b)
E | (a, b) ∈ J (2), a > 0

}
.

2.3. n-dimensional filtration. The above presentation of the 2-dimen-
sional aspect of ramification theory can be generalised directly to the case
of n-dimensional local fields. If K is an n-dimensional complete discrete
valuation field, then we provide it with an additional structure by its (n−1)-
dimensional subfield of “constants” Kc and an n-valuation v(0) : K −→
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Qn ∪ {∞}. For any complete discrete valuation subfield E of K, the n-
dimensional ramification filtration appears as the filtration

{
Γ(j)
E

}
j∈J(n)

of

the group Γ̃E = Gal (Esep/Ec,sep) with indexes from the set

Jn = {a ∈ Qn | a ≥ (0, . . . , 0)}

(where Ec is the algebraic closure of Kc in E). The process of eliminating
wild ramification gives for any finite Galois extension L/E a finite extension
Ẽc of Lc such that for the corresponding fields L̃ = LẼc and Ẽ = EẼc, the
ramification index of each residue field L̃(r) of L̃ with respect to the first
r ≤ n − 2 valuations over the similar residue field Ẽ(r) of Ẽ is equal to 1.
Then one can use the lifting Θ of any uniformising element of the residue
field L̃(n−1) to the n-valuation ring O

L̃
=

{
l ∈ L̃ | v(0)(l) ≥ (0, . . . , 0)

}
to

obtain the property
O
L̃

= O
Ẽ
[Θ].

This property provides us with a definition of ramification filtration of
Γ
L̃/Ẽ
⊂ ΓL/E in lower numbering. Clearly, if L1 is any field between E and

L, and L̃1 = L1Ẽc, then one has the property

O
L̃1

= O
Ẽ

[
NL/L1

Θ
]
.

This provides us with the composition property for Herbrand function, and
gives finally the definition of the ramification filtration {Γ(j)

E }j∈Jn of Γ̃E in
upper numbering.

One can choose a subfield of (n − 2)-dimensional constants Kcc ⊂ Kc

and apply the above arguments to obtain the ramification filtration of
Gal(Kc,sep/Kcc,sep). This procedure gives finally the ramification filtra-
tion of the whole group ΓE , which depends on the choice of a decreasing
sequence of fields of constants of dimensions n− 1, n− 2, ... , and 1.

3. Auxiliary facts

In this section K is a 2-dimensional complete discrete valuation field
given in the notation of n.1.1. We assume that an additional structure
on K is given by its subfield of 1-dimensional constants Kc and a double
valuation v(0) such that Kc = k((t0)) and v(0)(K∗) = Z2 (or, equivalently,
v(0)(t0) = (1, 0) and v(0)(τ0) = (0, 1)). As in n.1.4 we use the construction
of liftings of K and Ksep, which corresponds to the p-basis {t0, τ0} of K.
We reserve the notation t and τ for the Teichmuller representatives of t0
and τ0, respectively. For any tower of field extensions K ⊂ E ⊂ L ⊂ Kalg,
we set

j(L/E) = max
{
j ∈ J | Γ(j)

E acts non-trivially on L
}
,
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where Γ(j)
E is the ramification subgroup of ΓE = Gal(Esep/E) with the

upper index j ∈ J . Similarly to the 1-dimensional case, j(L/E) is the
value of the Herbrand function of the extension L/E in its maximal “ edge
point”. Then the composition property (8) from n.2.1 gives for arbitrary
tower of finite extensions E ⊂ L1 ⊂ L,

j(L/E) = max
{
j(L1/E), ϕL1/E(j(L/L1))

}
. (9)

If α ∈W (k), then as usually

E(α,X) = exp
(
αX + σ(α)Xp/p+ · · ·+ σn(α)Xpn

/pn + . . .
)
∈W (k)[[X]].

3.1. Artin-Schreier extensions. Let L = K(X), where

Xp −X = α0τ
−b
0 t−a0 , (10)

with α0 ∈ k∗ and (a, b) ∈ A, i.e. a, b ∈ Z, a ≥ 0, (a, b, p) = 1.

Proposition 3.1. a) If b = 0, then j(L/K) = (a, c);
b) if b 6= 0 and vp(b) = s ∈ Z≥0, then j(L/K) = (a/ps, b/ps).

Proof. The above examples can be found in [9]. The property a) is a well-
known 1-dimensional fact. The property b) follows directly from definitions,
we only note that one must take the extension Mc = Kc(t1), t

ps+1

1 = t0, to
kill the ramification of L/K and to rewrite the equation (10) in the form

τp1 − t
a(p−1)
1 τ1 = α1τ

−b1
0 ,

where b1 = b/ps, αp
s

1 = α0 and X =
(
τ1t

−a
1

)ps

. Then for any j ∈ J ,

ϕL/K(j) =
{
pj, for j ≤ (a/ps+1, b1/p),
j + (1− 1/p)(a/ps, b1), otherwise.

So, Γ(j)
L/K = e if and only if j > (a/ps, b1), that is j(L/K) = (a/ps, b/ps).

The proposition is proved. �

3.2. The field K(N∗, j∗). Let N∗ ∈ N, q = pN
∗

and let j∗ = (a∗, b∗) ∈ J2

be such that A∗ := a∗(q−1) ∈ N[1/p], B∗ := b∗(q−1) ∈ Z and (B∗, p) = 1.
Set s∗ = max{0,−vp(a∗)} and introduce t10, t20 ∈ Kalg such that tq10 = t0

and tp
s∗

20 = t10.

Proposition 3.2. There exists an extension K0 = K(N∗, j∗) of K in Ksep

such that
a) K0,c = Kc and [K0 : K] = q;
b) for any j ∈ J2, one has

ϕ
(2)
K0/K

(j) =
{
qj, for j ≤ j∗/q,
(q − 1)j∗ + j, otherwise.
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(what implies that j(K0/K) = j∗);
c) if K ′

2 := K0(t20), then its first residue field K ′(1)
2 equals k((τ10)), where

τ q10E(−1, τB
∗

10 t
A∗
10 ) = τ0

(here tA
∗

10 := tp
s∗A∗

20 and E is an analogue of the Artin-Hasse exponential
from the beginning of this section).

Proof. We only sketch the proof, which is similar to the proof of proposition
of n.1.5 in the paper [2].

Let tq−1
1 = t0, τ

q−1
1 = τ0, and K1 = K(t1, τ1). Let L1 = K1(U), where

U q + b∗U = τ
−b∗(q−1)ps∗

1 t
−a∗(q−1)ps∗

1 .

It is easy to see that [L1 : K1] = q and the “2-dimensional component” of
the Herbrand function ϕ

(2)
L1/K1

is given by the expression from n.b) of our
proposition. Then one can check the existence of the field K ′ such that
K ⊂ K ′ ⊂ L1, [K ′ : K] = q and L1 = K ′K1. We notice that K ′

c = Kc and
one can assume that K ′ = K(U q−1). Now the composition property of the
Herbrand function implies that ϕ(2)

L1/K1
= ϕ

(2)
K′/K .

To verify the property c) of our proposition let us rewrite the above
equation for U in the following form(

U1t
a∗(q−1)
2

)q
+ b∗t

a∗(q−1)2

2

(
U1t

a∗(q−1)
2

)
= τ

−b∗(q−1)
1 ,

where Up
s∗

1 = U and tq2 = t1 (notice that tq−1
2 = t10). This implies the

existence of τ2 ∈ L1 such that U1t
a∗(q−1)
2 = τ

−b∗(q−1)
2 , i.e. the last equation

can be written in the form

τ
−b∗q(q−1)
2

(
1 + b∗t

a∗(q−1)2

2 τ
b∗(q−1)2

2

)
= τ

−b∗(q−1)
1 .

One can take τ2 in this equality such that τ q−1
2 = τ ′10 ∈ K ′ and after taking

the −(1/b∗)-th power of the both sides of that equality, we obtain

τ ′10
q
(
1 + b∗t

a∗(q−1)
10 τ ′10

b∗(q−1)
)−1/b∗

= τ0.

This gives the relation

τ ′10
q
(
1− τ ′10

b∗(q−1)
t
a∗(q−1)
10

)
= τ0 + τ0τ

′
10

2b∗(q−1)
t
2a∗(q−1)
10 A,

whereA ∈ K ′(t20) is such that v0(A) ≥ (0, 0). Then a suitable version of the
Hensel Lemma gives the existence of B ∈ K ′(t20) such that v0(B) ≥ (0, 0)
and the equality of n.c) of our proposition holds with

τ10 = τ ′10 +Bτ
b∗(q−1)+1
10 t

a∗(q−1)
10 .

�
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3.3. Relation between different liftings. Choose j∗ ∈ J2 and N∗ ∈ N,
which satisfy the hypothesis from the beginning of n.3.2 and consider the
corresponding field K0 = K(N∗, j∗). Let K ′ = K0(t10), then K ′ is a
purely inseparable extension of K0 of degree q and K ′

sep = KsepK
′. Clearly,

K ′ = K ′(1)((t10)), where K ′(1) = k((τ10)).
Consider the field isomorphism η : K −→ K ′, which is uniquely defined

by the conditions η|k = σ−N
∗
, η(t0) = t10 and η(τ0) = τ10. Denote by ηsep

an extension of η to a field isomorphism of Ksep and K ′
sep.

For M ≥ 0, denote by O′M+1(K
′) and O′M+1(K

′
sep), respectively, the lift-

ings modulo pM+1 ofK ′ andK ′
sep with respect to the p-basis {t10, τ10} ofK ′.

We reserve now the notation t1 and τ1 for the Teichmuller representatives of
elements t10 and τ10, respectively. Clearly, η(OM+1(K)) = O′M+1(K

′) and
ηsep(OM+1(Ksep)) = O′M+1(K

′
sep). On the other hand, by n.c) of Prop. 3.2,

K ′
2 := K ′(t20) = K0(t20) is a separable extension of K2 := K(t20). We note

that K ′
2,sep = K ′

sepK
′
2 and K2,sep = KsepK2. Denote by OM+1(K2) and

OM+1(K2,sep), respectively, the liftings modulo pM of K2 and K2,sep with
respect to the p-basis {t20, τ0} of K2 (as earlier, t2 and τ are the Teichmuller
representatives of elements t20 and τ0, respectively).

Clearly, one has the natural embeddings

OM+1(K) ⊂ OM+1(K2), OM+1(Ksep) ⊂ OM+1(K2,sep).

With respect to these embeddings we have t = tqp
s∗

2 . Denote by O′M+1(K
′
2)

and O′M+1(K
′
2,sep) the liftings of K ′

2 and K ′
2,sep with respect to the p-basis

{t20, τ10} of K ′
2 (as usually, t2 and τ1 are the Teichmuller representatives of

elements t20 and τ10, respectively). Clearly,

O′M+1(K
′) ⊂ O′M+1(K

′
2), O′M+1(K

′
sep) ⊂ O′M+1(K

′
2,sep).

With respect to these embeddings we have tp
s∗

2 = t1.
The first group of the above liftings can be related to the liftings of the

second group by the following chain of embeddings

σMOM+1(K2) ⊂WM+1(σMK2) ⊂WM+1(σMK ′
2) ⊂ OM+1(K ′

2).

Similarly, one has the embedding σMOM+1(K2,sep) ⊂ O′M+1(K
′
2,sep). The

above embeddings correspond to the relation

τ qp
M

1 E(−1, τB
∗

1 tA
∗

1 )p
M ≡ τpM

mod pM+1,

which follows from the basic equation given by n.c) of Prop. 3.2.

3.4. A criterion. Let L be a finite Lie algebra over Zp of nilpotent class
< p and let M ∈ N be such that pM+1L = 0. Consider the group homomor-
phism ψ0 : Γ −→ G(L). By the nilpotent Artin-Schreier theory there exists
an e ∈ G(LK) = L⊗OM+1(K) and an f ∈ G(Lsep) = L⊗OM+1(Ksep) such
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that σf = f ◦e and for any g ∈ Γ, ψ0(g) = (gf)◦(−f). Let K(f) = KKerψ0
sep

be the field of definition of f over K. Note that for j0 ∈ J , the ramification
subgroup Γ(j0) ⊂ Kerψ0 if and only if j(f/K) := j(K(f)/K) < j0.

Consider f1 = ηsep(f) ∈ L′sep := L ⊗ O′M+1(K
′
sep). We use the embed-

dings from n.3.3

σMOM+1(Ksep) ⊂ σMOM+1(K2,sep) ⊂ O′M+1(K
′
2,sep),

and O′M+1(K
′
sep) ⊂ O′M+1(K

′
2,sep) to define X ∈ L′2,sep := L⊗O′M+1(K

′
2,sep)

such that
σMf =

(
σM+N∗

f1

)
◦X.

Let Γ2 = Gal(K2,sep/K2) and let {Γ(j)
2 }j∈J be the ramification filtration

of Γ2 related to the additional structure onK2 given by the valuation v(0)|K2

and the subfield of 1-dimensional constants K2,c = Kc(t20).
Let K ′

2(X) be the field of definition of X over K ′
2. Set

j2(X/K2) = max
{
j ∈ J | Γ(j)

2 acts non-trivially on K ′
2(X)

}
.

Proposition 3.3. j2(X/K2) = max {j∗, j(f/K)}.

Proof. One has the natural identification Γ = Γ2, because K2,sep = KsepK2

and K2 is purely inseparable over K. With respect to this identification
for any j ∈ J2, we have Γ(j) = Γ(j)

2 , because the extension K2/K is in-
duced by the extension of 1-dimensional constants K2,c/Kc. This implies
ϕ

(2)
K′

2/K2
= ϕ

(2)
K0/K

, j2(K ′
2/K2) = j∗ and j2(X/K2) ≥ j∗.

If j(f/K) ∈ J1, then K(f) ⊂ Kc,sep, K ′(f1) ⊂ K ′
c,sep and, therefore, X

is defined over K ′
2,c,sep and j2(X/K2) = j2(K ′

2/K2) = j∗, i.e. in this case
the proposition is proved.

Now we can assume that A = j(f/K) ∈ J2. Let Γ′ = Gal(K ′
sep/K

′) and
let {Γ′(j)}j∈J be the ramification filtration corresponding to the valuation
v′(0) = η(v(0)) and K ′

c = Kc(t10). Then j′(f1/K
′) = A, where j′(f1/K

′) is
defined similarly to j(f/K) but with the use of the filtration {Γ′(j)}j∈J .

Because K ′
2 = K ′(t20) is obtained from K ′ by extension of its field of

constants, there is an equality

j′(f1/K
′) = j′(f1/K

′
2) = A.

But the relation v′(0) = qv(0) implies that

q−1A = q−1j′(f1/K
′
2) = j2(f1/K

′
2).

This gives

j2(K ′
2(f1)/K2) = max

{
j(K ′

2/K2), ϕ
(2)
K′

2/K2
(q−1A)

}
.
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Because j(K ′
2/K2) = j∗ and ϕ

(2)
K′

2/K2
= ϕ

(2)
K0/K

, it remains to consider the
following two cases:

— let A = j(f/K) = j(K2(f)/K2) ≤ j∗, then j2(K ′
2(f1)/K2) =

j(K ′
2/K2) = j∗ and, therefore, j(K ′

2(X)/K2) ≤ j∗, i.e. j(K ′
2(X)/K2) = j∗;

— let A ≥ j∗, then j2(K ′
2(f1)/K2) = ϕ

(2)
K′

2/K2
(q−1A) = j∗+(A− j∗)/q <

A = j(K ′
2(f)/K2), what gives that j2(K ′

2(X)/K2) = j(K ′
2(f)/K2) = A.

The proposition is proved. �

Corollary 3.4. Suppose that j0 > j∗. Then the following three conditions
are equivalent:
a) j(f/K) < j0;
b) j2(X/K2) < j0;
c) j′(X/K ′) < qj0 − (q − 1)j∗.

3.5. First applications of the above criterion. Corollary 3.4 can be
applied to study ramification properties of the homomorphism ψ0. This
criterion has been already applied in the case of 1-dimensional local fields
to describe the structure of the ramification filtration modulo commutators
of order ≥ p [1, 2], and will be applied in section 5 to the description of
2-dimensional ramification filtration modulo 3rd commutators. It can be
used to prove also the following two propositions.

Proposition 3.5. Let M ∈ Z≥0 and let f ∈ OM+1(Ksep) be such that

σf − f = wτ−bt−a,

where w ∈W (k)∗, a ∈ Z≥0, b ∈ Z \ {0}, (a, b, p) = 1 and vp(b) = s. Then

j(K(f)/K) =
(
pM−sa, pM−sb

)
.

Proof. First, consider the case s = vp(b) = 0. We are going to reduce the
proof to the case M = 0, where the statement of our proposition has been
already known by Prop. 3.1.

Choose a∗ = m∗/(q − 1), where (m∗, p) = 1, q = pN
∗

for some N∗ ∈ N,
and

q

2(q − 1)
pMa < a∗ < pMa.

One can take, for example, q = p, N∗ = 1 if p 6= 2, q = 4, N∗ = 2 if p = 2,
and m∗ = pMa(q − 1)− 1.

Take b∗ = 1/(q− 1), j∗ = (a∗, b∗) and consider the field K0 = K(N∗, j∗)
and all related objects introduced in n. 3.4. Consider f1 ∈ OM+1(K ′

sep)
such that

σf1 − f1 = (σ−N
∗
w)τ−b1 t−a1 ,
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then X = σMf − σM+N∗
f1 ∈ O′M+1(K

′
2,sep) and satisfies the equation

σX −X = (σMw)τ−bp
M q

1 t−ap
M q

1

(
E(b,Θ∗)p

M − 1
)
,

where Θ∗ = τ
b∗(q−1)
1 t

a∗(q−1)
1 . It can be easily seen that for some h = h(T ) ∈

Zp[[T ]], one has
E(b, T )p

M
= 1 + bpMT + T 2h(T ).

Therefore, X = X1 +X2, where

σX1 −X1 = pMb(σMw)τ−bp
M q+b∗(q−1)

1 t
−apM q+a∗(q−1)
1 ,

σX2 −X2 = A2 := τ
−bpM q+2b∗(q−1)
1 t

−apM q+2a∗(q−1)
1 h(Θ∗).

By the choice of a∗ we have the inequality −apMq + 2a∗(q − 1) > 0, which
implies limn→∞ σnA2 = 0, X2 ∈ O′M+1(K

′) ⊂ O′M+1(K
′
2) and j′(X/K ′) =

j′(X1/K
′). But

j′(X1/K
′) = (apMq − a∗(q − 1), bpMq − b∗(q − 1))

by Prop.3.1. By Corollary 3.4 we conclude that j(f/K) = (pMa, pMb), and
the case s = 0 is considered.

Let vp(b) = s ≥ 1. Set b = b′ps, t′p
s

= t, L = K(t′), w′ = σ−sw, and
take f ∈ O′M+1(Lsep) such that σf ′ − f ′ = w′τ−b

′
t′−a

′
and σsf ′ = f . Let

Lc := k((t′)) and consider the valuation v(0)
L of L such that v(0)

L (t′) = (1, 0)
and v

(0)
L (τ) = (0, 1). In the ramification theory, which corresponds to

the valuation v
(0)
L and the field of constants Lc, we have already known

that jL(f ′/L) = (pMa, pMb′). But if α ∈ Lalg and v(0)(α) = (a′, b′), then
v

(0)
L (α) = (psa′, b′). Because the field of constants of L is the same in the

both ramification theories, one has

j(f ′/L) = (pM−sa, pMb′) = (pM−sa, pM−sb).

It remains only to note that j(f ′/L) = j(f/K). The proposition is proved.
�

Proposition 3.6. Let a ∈ N, b, c ∈ Z \ {0}, (a, b, p) = 1, s = vp(b) ≤ vp(c)
and α, β ∈ W (k)∗. Let f = f(β, α, a, b), g = g(α, a, b) ∈ OM+1(Ksep) be
such that

σg − g = ατ−bt−a, σf − f = βτ−cg.

Then j(f/K) = (pM−sa, pM−s(b+ c)).

Proof. First, consider the case vp(b) = 0 and M = 0. Let L1 = K(g),
L2 = L1(f). Let tp1 = t and gta1 = σ−1(α)τ−b1 . Then

τ−bp1

(
1− σ−1(α)

α
τ
b(p−1)
1 t

a(p−1)
1

)
= τ−b,
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and we can assume that

τ ≡ τp1
(

1 +
σ−1(α)
bα

τ
b(p−1)
1 t

a(p−1)
1

)
mod t2a(p−1)

1 k((τ1))[[t1]].

Therefore, τ−cg = σ−1(α)τ−cp−b1 t−a1 + A, where A ∈ L1 and lim
n→∞

σnA = 0.
Therefore,

j(f/L1) = j(f ′/L1) =
(
a

p
,
cp+ b

p

)
,

where f ′p − f ′ = τ−cp−b1 t−a1 . This implies that

j(f/K) = max
{
j(L1/K), ϕL1/K(j(f/L1))

}
= max

{
(a, b), ϕL1/K

(
a

p
,
b

p
+ c

)}
= (a, b+ c).

Consider now the case s = 0 and M ∈ N. Set a∗ = pMa and choose
b∗ ∈ Z such that (b∗, p) = 1 and bpM < b∗ < bpM + cpM . Consider the field
K0 = K(1, (a∗, b∗)) from n. 3.2 together with all related objects. Introduce
f1, g1 ∈ O′M+1(K

′
sep) such that

σg1 − g1 = σ−1(α)τ−b1 t−a1 , σf1 − f1 = σ−1(β)τ−c1 g1.

Set
Y = σMg − σM+1g1, X = σMf − σM+1f1,

then
σY − Y = σM (α)τ−bp

M+1

1 t−ap
M+1

1

(
E(b,Θ∗)p

M − 1
)
,

σX −X = σM (β)τ−cp
M+1

1 E(c,Θ∗)p
M
σMg − σM (β)τ−cp

M+1

1 σM+1g1.

In the notation from the proof of Prop. 3.5 we have

σY − Y = σM (α)pMbτ−bp
M+1+b∗(p−1)

1 t−ap
M

1 +

σM (α)τ−bp
M+1

1 t−ap
M+1

1 Θ∗2h(Θ∗).

Therefore, Y = pMY1 + t
apM (p−2)
1 A1, where A1 ∈ k((τ1))[[t1]] and Y1 is the

element from O′M+1(K
′
sep) mod p = K ′

sep such that

σY1 − Y1 = σM (α)bτ−bp
M+1+b∗(p−1)

1 t−ap
M

1 .

Therefore,
σMg = σM+1g1 + pMY1 + t

apM (p−1)
1 A1,

and for some A2 ∈ k((τ1))[[t1]], one has

σX −X = σM (β)τ−cp
M+1

1

(
E(c,Θ∗)p

M − 1
)
σM+1g1+

σM (β)pMτ−cp
M+1

1 Y1 + t
apM (p−2)
1 A2.
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One can check up that

τ−cp
M+1

1

(
E(c,Θ∗)p

M − 1
)
∈ tap

M (p−1)
1 k((τ1))[[t1]]

and

lim
s→∞

σs
(
t
apM (p−1)
1 σM+1g1

)
= 0.

So, if X1 ∈ K ′
sep is such that

σX1 −X1 = σM (β)τ−cp
M+1

1 Y1,

then j2(X/K ′
2) = j2(X1/K

′
2). Now we can apply the case M = 0 of our

proposition to obtain that

j2(X1/K
′
2) =

1
p
(apM , cpM+1 + bpM+1 − b∗(p− 1)).

This gives immediately that j2(X1/K2) = (pMa, pM (b+c)). The case s = 0
is considered.

The case of arbitrary s ∈ Z≥0 can be reduced now to the case s = 0 in
the same way as in Prop. 3.5. The proposition is proved. �

4. Filtration of LfM (ω) modC3(LfM (ω))

In this section we fix ω = {Ji(ω)}0≤i≤I(ω) ∈ Ω and M ∈ N. We set

J(ω) = max{Ji(ω) | 0 ≤ i ≤ I(ω)}.

Clearly, the set

S1(ω) = {pna | (a, b) ∈ B0(ω), n ∈ Z}

consists of non-negative rational numbers and has only one limit point 0.
Therefore, for any a ∈ Q>0, we can define the positive rational number

δ1(ω, a) = min{a− s | s ∈ S1(ω), s < a}.

We also agree to use the notation

Lf := LM (ω)f modC3

(
LM (ω)f

)
, Lpf := LM (ω)pf modC3

(
LM (ω)pf

)
,

where LM (ω)f and LM (ω)pf are Lie WM (Fp)-algebras from n. 1.5. We also
set

LM (ω)fk = LM (ω)f ⊗WM (k), LM (ω)pfk = LM (ω)pf ⊗WM (k),

Lfk = Lf ⊗W (k) and Lpfk = Lpf ⊗W (k).
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4.1. Special system of generators. Let

B2 = {(a, b) ∈ J2 | b ∈ Z, (b, p) = 1, a ∈ Z[1/p]} .

This is a set of rational pairs which are either of the form (0, b), where
b ∈ N, (b, p) = 1, or — (a, b), where b ∈ Z, (b, p) = 1, a > 0 and a ∈ Z[1/p].
Set B1 = A1, i.e. B1 is the family of pairs (a, 0) such that a ∈ N and
(a, p) = 1. We also set B = B2 ∪ B1 and B0 = B ∪ {(0, 0)}.

For j = (a, b) ∈ Z2, let

s(j) = s(a) = max{−vp(a), 0}.

Then the correspondence (a, b) 7→ (aps, bps), where s = s(a, b), induces the
bijection f2 : B2 −→ A2 and the identical map f1 : B1 −→ A1. One can set
by definition f0 : (0, 0) 7→ (0, 0) and apply these maps f0, f1, f2 to obtain
the bijections f : B −→ A and f0 : B0 −→ A0. Set B2(ω) = f−1

2 A2(ω),
B1(ω) = f−1

1 A1(ω), B(ω) = f−1A(ω), and B0(ω) = f0−1(A0(ω). If (a, b) ∈
B(ω) and f(a, b) = (i, j) ∈ A(ω), set in the notation of n.1.4

D(a,b),0 =
∑

1≤r≤N0

αrD
(r)
(i,j) ∈ LM (ω)fk .

We set also D(0,0),0 = α0D(0,0) and for any (a, b) ∈ B0(ω) and n ∈ Z,
D(a,b),n = σnD(a,b),0. Clearly, D(a,b),n+N0

= D(a,b),n, so we can assume if
necessary that n ∈ Z modN0.

It is easy to see that the family

{Dj,n | j ∈ B(ω), n ∈ Z modN0} ∪
{
D(0,0)

}
is the set of free generators of the WM (k)-Lie algebra L̃M (ω)f ⊗WM (k) (or
the set of free generators modulo deg p of the Lie algebra LM (ω)f⊗WM (k)).

We shall agree to use the notation Dj,n for all j ∈ B0, by setting Dj,n = 0
if j /∈ B0(ω).

4.2. Elements Fγ(ω), γ ∈ J. Define the elements Fγ(ω) = Fγ ∈ Lpfk :=
Lpfk ⊗W (k) for all γ ∈ J as follows.

Let γ = (γ1, c) ∈ J1.
For γ1 /∈ Z, set

Fγ = −
∑

n1,n2,j1,j2

pn1a1 [Dj1n1 , Dj2n2 ] ,

where the sum is taken under the restrictions n1 ∈ Z≥0, n2 ∈ Z, j1 =
(a1, 0), j2 = (a2, 0) ∈ B1(ω) and pn1a1 + pn2a2 = γ1 (notice that n2 =
vp(γ1) < 0).



316 Victor Abrashkin

If γ1 ∈ Z, then γ1 = apm, where m ∈ Z≥0, a ∈ N and (a, p) = 1. In this
case we set

Fγ = apmD(a,0),m −
∑

n1,n2,j1,j2

η(n1, n2)pn1a1 [Dj1n1 , Dj2n2 ] ,

where the sum is taken under the same restrictions as in the case of non-
integral γ1 and

η(n1, n2) =

 1, if n1 > n2,
1/2, if n1 = n2,
0, if n1 < n2.

Let γ = (γ1, γ2) ∈ J2.
If γ2 /∈ Z, set

Fγ = −
∑

n1,n2,j1,j2

η(n1 − s1, n2 − s2)pn1b1 [Dj1n1 , Dj2n2 ] ,

where the sum is taken under the restrictions n1 ∈ Z≥0, n2 ∈ Z,
j1 = (a1, b1), j2 = (a2, b2) ∈ B(ω), pn1a1 + pn2a2 = γ1, pn1b1 + pn2b2 = γ2

(notice that Fγ 6= 0 implies that n2 = vp(γ2) < 0), and s1 = s(a1),
s2 = s(a2).

If γ2 ∈ Z, then γ2 = bpm, where m ∈ Z≥0, b ∈ Z and (b, p) = 1. In this
case we set

Fγ = bpmD(a,b),m −
∑

n1,n2,j1,j2

η(n1 − s1, n2 − s2)pn1b1 [Dj1n1 , Dj2n2 ] ,

where a = γ1p
−m, s1 = s(j1), s2 = s(j2), the sum is taken under the

same restrictions as in the case of non-integral γ2 (notice that everywhere
Dj,n = 0 if j /∈ B(ω)).

One can easily verify that the above definition gives elements Fγ from
Lpfk but, in fact, one has the following more strong property.

Proposition 4.1. For any γ ∈ J , Fγ ∈ Lfk .

Proof. The only non-obvious case appears when γ = (γ1, γ2) ∈ J2,
γ1 > 0. We must prove the finiteness of the set of collections of the
form (j1, n1, j2, n2), where j1 = (a1, b1), j2 = (a2, b2) ∈ B(ω), n1, n2 ∈ Z,
0 ≤ n1 ≤M , n1− s1 ≥ n2− s2, pn1a1 + pn2a2 = γ1 and pn1b1 + pn2b2 = γ2.

Let a0
1 = a1p

s1 , a0
2 = a2p

s2 , then a0
1 and a0

2 are integers from the interval
[0, I(ω)] and we can assume that they are fixed.

Assume that a0
1, a

0
2 6= 0. Then the equality a1p

n1 + a2p
n2 = γ1 implies

that
δ1(ω, γ1) ≤ a0

1p
n1−s1 , a0

2p
n2−s2 < γ1,

therefore, there are m1(ω, γ1),m2(ω, γ1) ∈ Z such that

m1(ω, γ1) ≤ n1 − s1, n2 − s2 ≤ m2(ω, γ1).
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So, we can assume that the values n1 − s1 and n2 − s2 are fixed. The
equality b1pn1 + b2p

n2 = γ2 implies the double inequality

γ2 − J(ω)pm2(ω,γ1) ≤ b1pn1 ≤ J(ω)pm2(ω,γ1).

Together with the obvious inequality n1 ≥ n1 − s1 it implies the finiteness
of the set of all different collections (b1, n1). All other components of the
collection (j1, n1, j2, n2) can be recovered uniquely from (b1, n1) and the
values a0

1, a
0
2, n1 − s1, n2 − s2, which were fixed earlier. Therefore, our

proposition is proved in the case a0
1, a

0
2 6= 0.

Suppose now that a0
1 = 0. Then s1 = 0, b1 ≥ 1 and the relation

pn2−s2a0
2 = γ1 determines uniquely the value of n2 − s2. The inequalities

J(ω)pM ≥ b1pn1 ≥ 1

imply the finiteness of the set of different collections (b1, n1). As earlier,
this gives the finiteness of the set of all collections (j1, n1, j2, n2) such that
a0

1 = 0.
Suppose, finally, that a0

2 = 0. Then s2 = 0, b2 ≥ 1 and the value of
n1 − s1 is determined uniquely. The finiteness of the set of all collections
(b2, n2) follows from the inequalities

1 ≤ b2pn2 ≤ J(ω)pn1−s1 , n2 ≥ min{n1, vp(γ2)} ≥ min{0, vp(γ2)}.

This gives the finiteness of the set of all collections (j1, n1, j2, n2) such that
a0

2 = 0. The proposition is completely proved. �

4.3. Ideals Lfk(j), j ∈ J . For any j ∈ J , define the ideal Lfk(j) of Lfk as its
minimal σ-invariant ideal containing the elements Fγ for all γ ≥ j, γ ∈ J .

Clearly,
{
Lfk(j)

}
j∈J

is a decreasing filtration of ideals of Lfk .

For a ∈ Q≥0, set

Lfk(a+) =
⋃ {

Lfk(j) | j = (a′, b′) ∈ J2, a
′ > a

}
.

Notice that for a given a and all sufficiently large b, the ideals Lfk(j), where
j = (a, b), coincide.

Proposition 4.2. Let j1 = (a1, b1) ∈ J2, m ∈ Z≥0 and pma1 = a. Then
for any j2 = (a2, b2) ∈ J2, where a2 > 0, and any n1, n2 ∈ Z, it holds

pm [Dj1n1 , Dj2n2 ] ∈ L
f
k(a+).

Proof. We can set n1 = m because the statement of our proposition is
invariant under action of σ. By induction we can assume, that our propo-
sition holds for all j′ = (a′, b′) ∈ J2 and m′ ∈ Z≥0, such that pm

′
a′ = a

and pm
′
b′ > pmb1 (notice that if pmb1 > pMJ(ω), then Dj1m = 0). Because
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Dj2n2 depends only on the residue n2 modN0 we can assume also that n2

is a “sufficiently big” negative integer such that

pn2I(ω) < δ1(ω, a), b2 + p−n2 > J(ω), m− s1 ≥ n2 − s2
(where, as usually, s1 = s(a1) and s2 = s(a2)).

Let γ = (γ1, γ2), where γ1 = a+ pn2a2 and γ2 = pn1b1 + pn2b2. Consider
the expression for Fγ ∈ Lfk(γ). This expression is a linear combination of
commutators of second order of the form

pm1d1

[
D(c1,d1),m1

, D(c2,d2),m2

]
, (11)

where m1 ∈ Z≥0, m2 ∈ Z, (c1, d1), (c2, d2) ∈ B(ω), m1 − s′1 ≥ m2 − s′2 with
s′1 = s(c1), s′2 = s(c2), and c1pm1 + c2p

m2 = γ1, d1p
m1 + d2p

m2 = γ2.
First, notice that m2 = vp(γ2) = n2.
If c1pm1 > a, then the term (11) belongs to [Lfk(a+), Lfk ] ⊂ L

f
k(a+). Oth-

erwise, the inequality c2p
m2 ≤ I(ω)pn2 < δ1(ω, a) implies that

c1p
m1 = a. If d1p

m1 > pmb1, then the term (11) belongs to Lfk(a+) by
the inductive assumption. If d1p

m1 = pmb1, then the term (11) coincides
with the term from our proposition multiplied by b1 ∈ Z∗p. If d1p

m1 < pmb1,
then the equality d1p

m1 + d2p
m2 = pn1b1 + pn2b2 implies that

d2 = b2 + p−n2(pmb1 − pm1d1) ≥ b2 + p−n2 > J(ω).

This gives ps
′
2d2 > J(ω), i.e. D(c2,d2),m2

= 0 and the term (11) is equal to
0.

It remains only to note that Fγ ∈ Lfk(a+). The proposition is proved. �

4.4. Elements D̃j,0(ω), j ∈ B, and their properties. For any j =
(a, b) ∈ J2, define the elements D̃j,0(ω) = D̃j,0

= Dj,0 −
∑

m1,m2,j1,j2

η(m2,m1)η(m1 − s1,m2 − s2) [Dj1,m1 , Dj2,m2 ] ,

where the sum is taken for all m1,m2 ∈ Z and j1 = (a1, b1), j2 = (a2, b2) ∈
B(ω) such that b1pm1 + b2p

m2 = b and a1p
m1 + a2p

m2 = a. One can easily
verify that the above expression gives the element from Lpfk .

For any n ∈ Z, set D̃j,n = σnDj,0. Clearly, the family{
D̃j,n | j ∈ B(ω), n ∈ Z modN0

}
∪ {D(0,0)}

generates the algebra Lpfk . Notice that if j ∈ J2\B(ω), then D̃j,n ∈ C2(L
pf
k ).

Proposition 4.3. For any j = (a, b) ∈ J , D̃j,0 ∈ Lfk .

Proof. We must prove the finiteness of the set of all collections of the form
(j1,m1, j2,m2), where j1 = (a1, b1), j2 = (a2, b2) ∈ B(ω) and m1,m2 ∈ Z
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are such that m2 ≥ m1, m1 − s1 ≥ m2 − s2, a1p
m1 + a2p

m2 = a and
b1p

m1 + b2p
m2 = b.

Let a1 = a0
1p
−s1 , a2 = a0

2p
−s2 , b1 = b01p

−s1 and b2 = b02p
−s2 . Then a0

1

and a0
2 are integers from the interval [0, I(ω)] and we can assume that they

are fixed.
Suppose a0

1, a
0
2 6= 0. Then the relation a1p

m1 + a2p
m2 = a gives that

a > pm1−s1a0
1 ≥ δ1(ω, a).

This implies the existence of m1(ω, a),m2(ω, a) ∈ Z such that

m1(ω, a) ≤ m1 − s1 ≤ m2(ω, a).

Therefore, we can fix the value of m1 − s1. We have also

pm2(ω,a)J(ω) ≥ pm1b1 = pm1−s1b01 = b− pm2−s2b02 ≥ b− pm1−s1J(ω).

Because m1 ≥ m1 − s1 ≥ m1(ω, a), this implies the finiteness of the set
of all different collections (b1,m1). As in the proof of Prop. 4.1 any such
collection determines uniquely the collection (j1,m1, j2,m2). This proves
our proposition in the case a0

1, a
0
2 6= 0.

Let a0
1 = 0, then s1 = 0, 1 ≤ b1 ≤ J(ω) and m2 − s2 is uniquely

determined. If m1 = m2 then m1 ≤ vp(b). If m1 < m2 then m2 = vp(b). In
the both cases m1 ≤ vp(b) and

pm1b1 ≤ J(ω)pvp(b).

Besides, we have m1 ≥ m2 − s2 and b1p
m1 ≥ pm2−s2 . This implies the

finiteness of all collections of the form (b1,m1). This proves our proposition
under the assumption a0

1 = 0.
If a0

2 = 0, then s2 = 0, 1 ≤ b2 ≤ J(ω) and the value of m1 − s1 is
determined uniquely. Here we have the inequalities

m1 − s1 ≤ m1 ≤ vp(b).

Apart from the trivial boundary pm1b1 < b, we have also a lower boundary

pm1b1 = b− b02pm2−s2 ≥ b− J(ω)pm1 ≥ b− J(ω)pvp(b).

This gives the finiteness of the set of all collections (b1,m1) and we can
finish the proof as earlier. The proposition is proved. �

For γ ∈ J2, define the elements F̃γ(ω) = F̃γ ∈ Lpfk as follows.
Let γ = (γ1, γ2).
If either γ2 = 0 or γ2 /∈ Z, set F̃γ = Fγ .
If γ2 ∈ Z, then γ2 = bpm for m ∈ Z≥0 and (b, p) = 1. In this case we set

F̃γ = pmbD̃(a,b),m −
∑

m1,m2,j1,j2

η(m1,m2)pm1b1

[
D̃j1,m1 , D̃j2,m2

]
,
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where a = p−mγ1 and the sum is taken for all m1,m2 ∈ Z and j1 =
(a1, b1), j2 = (a2, b2) ∈ B(ω) such that a1p

m1 + a2p
m2 = γ1 and b1p

m1 +
b2p

m2 = γ2 (one can verify that this expression gives an element from Lpfk ).

Proposition 4.4. For any γ ∈ J , F̃γ ∈ Lfk .

This proposition can be proved in the same way as Prop. 4.1 and Prop. 4.3.

Proposition 4.5. For any j ∈ J2, L
f
k(j) is the minimal σ-invariant ideal

of Lfk such that for any γ ≥ j, F̃γ ∈ Lfk(j).

Proof. It is sufficient to prove that for any γ = (γ1, γ2) ∈ J ,

F̃γ ≡ Fγ mod
[
Lfk(γ1+), Lfk

]
. (12)

We can assume that γ = pm(a, b), where m ∈ Z≥0 and (a, b) ∈ B2(ω).
Then

pmbD(a,b),m − pmbD̃(a,b),m

= pmb
∑

m1,m2,j1,j2

η(m2,m1)η(m1 − s1,m2 − s2)
[
D̃j1,m1 , D̃j2,m2

]
,

where m1,m2 ∈ Z, j1 = (a1, b1), j2 = (a2, b2) ∈ B(ω), pm1a1 +pm2a2 = pma
and pm1b1 + pm2b2 = pmb.

Notice that if m1 < 0, then m1 = m2 and, therefore, either a1p
m1

or a2p
m2 is bigger than apm. Therefore, if we assume in addition that

m1,m2 ≥ 0, then the right-hand side of the above equality will not be
changed modulo

[
Lfk(γ1+), Lfk

]
and can be rewritten in the form∑

m1,m2,j1,j2

pm1b1

[
D̃j1,m1 , D̃j2,m2

]
η(m2,m1)η(m1 − s1,m2 − s2)−

−
∑

m1,m2,j1,j2

pm1b1

[
D̃j1,m1 , D̃j2,m2

]
η(m1,m2)η(m2 − s2,m1 − s1)

(we substitute pm1b1 + pm2b2 instead of pmb and interchange indexes 1 and
2 in the second group of terms). The relation (12) can be obtained then by
the use of the relations η(m2,m1) = 1−η(m1,m2) and η(m2−s2,m1−s1) =
1− η(m1 − s1,m2 − s2). �

Proposition 4.6. Let m ∈ Z≥0 and ̃ = (ã, b̃) ∈ B2(ω). If a > 0 is such
that pmã > 2(a− δ1(ω, a)), then for any n ∈ Z, one has pmD̃̃,n ∈ Lfk(a+).

Proof. The statement of the proposition is invariant under action of σ,
therefore, we can assume that m = n.

Notice that pmb̃D̃̃,m is the only a first order term in the expression of
F̃pm ̃ ∈ Lk(pm̃) ⊂ Lk(a+). Therefore, it is sufficient to verify that any
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commutator of second order from that expression belongs to Lk(a+). Any
such commutator is of the form

pm1b1[D(a1,b1),m1
, D(a2,b2),m2

],

where m2 ≤ m1, m1 ≥ 0, (a1, b1), (a2, b2) ∈ B(ω), a1p
m1 + a2p

m2 = pmã.
Because pmã > 2(a − δ1(ω, a)), we have either a1p

m1 > a − δ1(ω, a), or
a2p

m2 > a− δ1(ω, a).
In the first case a1p

m1 ≥ a. If a1p
m1 > a, then our term belongs to

[Lfk(a+), Lfk ] ⊂ Lfk(a+). If pm1a1 = a, then a2 > 0 and our term belongs
to Lfk(a+) by Prop. 4.2.

In the second case the inequality m2 ≤ m1 implies a2p
m1 > a− δ1(ω, a)

and we finish the proof in the same way. The proposition is proved. �

5. Ramification filtration modulo 3rd commutators

As usually, K is a complete discrete valuation field of dimension 2 given
in the notation of n. 1.1. It has an additional structure given by a dou-
ble valuation v(0) and a subfield of 1-dimensional constants satisfying the
agreements from the beginning of n. 3. Consider the corresponding ramifi-
cation filtration

{
Γ(j)

}
j∈J of Γ = Gal(Ksep/K). Fix ω ∈ Ω, M ∈ Z≥0, set

L = LM+1(ω) modC3(LM+1(ω)), and consider the group epimorphism

ψ = ψM+1(ω) modC3(LM+1(ω)) : Γ −→ G(L),

cf. n. 1.5. This gives the decreasing filtration of ideals
{
L(j)

}
j∈J of L such

that ψ(Γ(j)) = L(j). For any j ∈ J , denote by L(j) the ideal of L generated
by elements of the ideal Lf (j) from n. 4. The following theorem gives an
explicit description of the image of the ramification filtration of Γ in its
maximal p-quotient of nilpotent class 2.

Theorem 5.1. For any j ∈ J , L(j) = L(j).

The rest of section deals with the proof of this theorem.

5.1. The cases j = (v, c) ∈ J1 and j = (0, v) ∈ J2.
Set Lk = L⊗WM+1(k), LK = L⊗OM+1(K) and Lsep = L⊗OM+1(Ksep).
Let

e = eM+1(ω) modC3(LM+1(ω)) =
∑

(a,b)∈B0(ω)
s=s(a)

τ−bp
s
t−ap

s
D(a,b),s ∈ LK ,

f = fM+1(ω) modC3(LM+1(ω)) ∈ Lsep.

Then σf = f ◦ e and for any g ∈ Γ, one has ψ(g) = (gf) ◦ (−f).
Let Ic be the minimal ideal of L such that Ic ⊗WM+1(k) contains all

D(a,b),0 with indexes (a, b) ∈ B0(ω) with b 6= 0.
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Consider the natural projection prc : L −→ L/Ic := Lc.
Denote by the same symbol extensions of scalars of that projection. Then

we obtain the elements

ec = prc(e) ∈ G(Lc ⊗OM+1(Kc)), fc = prc(f) ∈ G(Lc ⊗OM+1(Ksep))

Here OM+1(Kc) and OM+1(Kc,sep) are liftings modulo pM+1, constructed
via the p-basis of K determined by uniformising element t0 ∈ Kc. Notice
that

ec =
∑
a

t−aD̄a,0,

where a runs over the set {a ∈ N | (a, p) = 1, a ≤ I(ω)}∪{0}. There is also
an equation σfc = fc ◦ ec and a group epimorphism

ψc : Γc = Gal(Kc,sep/Kc) −→ G(Lc)

such that for any g ∈ Γc, ψc(g) = (gfc) ◦ (−fc).
Notice in addition, the composition

Γ
ψ−→ Γc

prc−→G(Lc)

coincides with the composition

Γ −→ Γc
ψc−→G(Lc)

(where the first arrow is the natural projection from n. 2.1).
One can easily see that for any v ≥ 0,

ψ(Γ(v,c)) = pr−1
c

(
ψc(Γ(v)

c )
)
,

where Γ(v)
c is the ramification subgroup of the Galois group Γc of the 1-

dimensional field Kc. The case j = (v, c) of our theorem follows now from
the description of ramification filtration for 1-dimensional local field from
[1, 2].

The case j = (0, v), v ≥ 0, can be considered similarly, because the
ramification subgroup Γ(0,v) appears from the ramification subgroup Γ(1)(v),
where Γ(1) = Gal(K(1)

sep/K(1)) is the Galois group of the first residue field
K(1) of K.

5.2. Abelian case. Let j0 = (a0, b0) ∈ J2. The ideal L(j0)k modC2(Lk)
is the minimal ideal of Lk modC2(Lk) containing all elements of the form
psD(a,b),s, where s ∈ Z≥0 and the indexes (a, b) ∈ J are such that ps(a, b) ≥
j0. We can apply Prop. 3.1 to deduce that

L(j0) = L(j0) modC2(L),

what gives the assertion of our theorem modulo 2nd commutators.
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5.3. Application of the criterion. Until the end of the paper we assume
that j0 = (a0, b0) ∈ J2 is such that a0 > 0. Consider the rational number
δ1(ω, a0) defined in the beginning of n. 4. Define similarly δ2(ω, b0) as
the minimal value of all positive differences of the form b0 − pnb1, where
(0, b1) ∈ B0(ω) and n ∈ Z.

Choose j∗ = (a∗, b∗) ∈ J2 and N∗ ∈ N satisfying the assumptions from
the beginning of n. 3.2, and the following conditions: a∗ = a0, b∗ < b0, and

q > max
{
a0 + pMI(ω)
δ1(ω, a0)

;
pMI(ω)
a0

+ 2;
pMJ0(ω)
δ2(ω, b0)

;
2pMI(ω)

a0
+ 1

}
.

Consider the fields from n.3.3: K0 = K(N∗, j∗), K ′ = K(t10) with

tq10 = t0 and K ′
2 = K ′(t20) with tp

s∗

20 = t10, where s∗ = s(a∗), the lift-
ings O′M+1(K

′), O′M+1(K
′
sep) and O′M+1(K

′
2,sep), the field isomorphisms

η : K −→ K ′ and ηsep : Ksep −→ K ′
sep and the elements

η(e) = e1 =
∑

(a,b)∈B0(ω)
s=s(a)

τ−bp
s

1 t−ap
s

1 D(a,b),s−N∗ ∈ LK′ := L⊗O′M+1(K
′),

ηsep(f) = f1 ∈ L′sep := L⊗O′M+1(K
′
sep).

Then we can use the equations

σf = f ◦ e = f + e+
1
2
[f, e], σf1 = f1 ◦ e1 = f1 + e1 +

1
2
[f1, e1]

to obtain for the element

X =
(
σMf

)
◦

(
−σM+N∗

f1

)
∈ L2,sep := L⊗O′M+1(K2,sep)

the following equation

X − σX = A− 1
2

[
A, σM+N∗

e1

]
−

[
σX, σM+N∗

e1

]
+

1
2

[σX,A] , (13)

where
A = σM+N∗

e1 − σMe =

−
∑

(a,b)∈B0(ω)
s=s(a)

(
E(b,Θ∗)p

s+M − 1
)
τ−bp

s+M q
1 t−ap

s+M q
1 D(a,b),s+M

The criterion from n.3.3 implies that the ideal L(j0) is the minimal ideal
in L such that the element XmodL(j0)

2,sep is invariant with respect to the

action of Γ(j0)
2 , where L(j0)

2,sep := L(j0) ⊗ O′M+1(K2,sep). By n. 5.2 one can
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assume that L(j0) contains
[
L(j0), L

]
. We are going to prove our theorem

by decreasing induction on j0. For this reason introduce the ideal

L(j0+) :=
⋃
j>j0

L(j).

Then it will be natural to look for the ideal L(j0) in the family of all ideals
of L containing the ideal L(j0+) + [L(j0), L]. In order to realise this idea
we shall simplify the relation (13) in nn. 5.4-5.5 below modulo the ideal
{L(j0+) + [L(j0), L]}sep generated by elements of L(j0+) + [L(j0), L] in
L2,sep.

5.4. Auxiliary statements. Let O′2 = WM+1((τ1))[[t2]] ⊂ O′M+1(K
′
2).

For b ∈ Zp and 1 ≤ r ≤M , set

E−1(b) = 1, E0(b) = E(b,Θ∗),

Er(b) = σrE0(b)
∏

1≤u≤r
σr−u exp (bpuΘ∗) ,

where E is an analogue of the Artin-Hasse exponential from the beginning
of n. 3.

Clearly, for all 0 ≤ r ≤M and b, b′ ∈ Zp, one has

Er(b+ b′) = Er(b)Er(b′).

For 0 ≤ r ≤ M and b ∈ Zp, set Er(b) = Er(b) − σEr−1(b). Then Er(b) ∈
prt

a∗(q−1)
1 O′2 and

Er(b+ b′) = Er(b) + Er(b′) +
∑
i,j

σiEr−i(b)σjEr−j(b′),

where the sum is taken for all 0 ≤ i, j ≤ r, such that either i = 0 or j = 0.
For 0 ≤ r ≤M and (a, b) ∈ B0(ω) such that s(a) ≤ N∗ + r, set

Ar(a, b) = Er(b)τ−bp
rq

1 t−ap
rq

1 D(a,b),r ∈ LK′
2
.

Lemma 5.2. There is an ε > 0 such that

A ≡ −
∑

M−r+s<N∗
r,(a,b)

σM−r+sAr(a, b) mod tqp
M I(ω)+ε

1 LO′2 ,

where in the right-hand sum s = s(a), r runs from 0 to M and (a, b) runs
over the set B0(ω).

Proof. The terms of the expression for A from the end of n. 4.4, which do
not appear in the right-hand sum, can be written in the form

σM−r+sEr(b)τ−bp
s+M q

1 t−ap
s+M q

1 D(a,b),s+M ,
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where M − r + s ≥ N∗, 0 ≤ r ≤ M and (a, b) ∈ B0(ω). All those terms
belong to tqp

M I(ω)+ε
1 LO′2 for some ε > 0, because

−aps+Mq + pM−r+sa∗(q − 1) = pM−r+s(−apr+N∗
+ a∗(q − 1)) >

q(−aps+M + a∗(q − 1)) > q(−pMI(ω) + a∗(q − 1)) > qpMI(ω)

(we use that a∗(q − 1) > 2pMI(ω), cf. n. 5.3). �

Denote by M0(ω, j∗) the subset of all W (k)-linear combinations of ele-
ments from LK′

2
of the form

τ
−prbq+b∗(q−1)
1 t−a

∗

1 prD(a∗/pr,b),m,

where 0 ≤ r ≤M , (a∗/pr, b) ∈ B0(ω), prb < b0.

Lemma 5.3. If M − r + s < N∗, then

Ar(a, b) ∈ L(j0)K′
2
+tp

M I(ω)+ε
1 L(0+)O′2+t

a∗(q−1)
1 LO′2+M0(ω, j∗)+C2(LK′

2
).

Proof. Consider the decomposition

Er(b) = prbΘ∗ + prΘ∗2µr,b(Θ∗),

where µr,b(X) ∈ W (k)[[X]] and Θ∗ = τ
b∗(q−1)
1 t

a∗(q−1)
1 (it follows easily

from the definition of the Artin-Hasse exponential). This decomposition
induces the decomposition of Ar(a, b) into 2 summands. Consider the first
summand

S1 = bτ
−bprq+b∗(q−1)
1 t

−aprq+a∗(q−1)
1 prD(a,b),r.

If pra > a∗ = a0 or pra = a∗ and prb ≥ b0, then S1 ∈ L(j0)K′
2
+ C2(LK′

2
).

If pra = a∗ and prb < b0, then S1 ∈ M0(ω, j∗). If 0 < pra < a∗, then
S1 ∈ tp

M I(ω)+ε
1 L(0+)O′2 + C2(LK′

2
) because

−aprq + a∗(q − 1) ≥ qδ1(ω, a0)− a0 > pMI(ω),

cf. the beginning of n. 5.3. If a = 0, then S1 ∈ ta
∗(q−1)

1 LO′2 .
Consider the second summand

S2 = τ
−bprq+2b∗(q−1)
1 t

−aprq+2a∗(q−1)
1 prD(a,b),rµr,b(Θ

∗).

If pra > a∗, then S2 ∈ L(a0+)K′
2

+ C2(LK′
2
) ⊂ L(j0)K′

2
+ C2(LK′

2
). If

0 < pra ≤ a∗, then S2 ∈ ta
∗(q−2)

1 L(0+)O′2+C2(LK′
2
) and a∗(q−2) > pMI(ω),

cf. the beginning of n. 5.3. If a = 0, then S2 ∈ t2a
∗(q−1)

1 LO′2 ⊂ t
a∗(q−1)
1 LO′2 .

The lemma is proved. �
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Denote byM1(ω, j∗) the set of all W (k)-linear combinations of elements
of L2,sep of the form

Y (α, prbq − b∗(q − 1), a∗)prD(a∗/pr,b),m,

where α ∈W (k), m ∈ Z modN0, (a∗/pr, b) ∈ B(ω), prb < b0 and for c ∈ Z,
one has

Y (α, c, a∗)− σY (α, c, a∗) = ατ−c1 t−a
∗

1 .

This W (k)-module coincides with the W (k)-submodule of L2,sep generated
by all Z such that Z − σZ ∈M0(ω, j∗). One can easily verify that

M1(ω, j∗) ⊂ LK2(j0) + L(j0+)2,sep + C2(L2,sep),

where K2(j0) = K
Γ

(j0)
2

2,sep , by using that

Y (α, prbq − b∗(q − 1), a∗) ∈ K2(j0) mod pOM+1(K2,sep)

if prb < b0, and that pr+1D(a∗/pr,b),m ∈ L(j0+)k + C2(Lk).
For 0 ≤ r ≤ M and (a, b) ∈ B0(ω), denote by Xr(a, b) the element of

L2,sep such that
Xr(a, b)− σXr(a, b) = Ar(a, b).

Directly from the preceding lemma we obtain the following property.

Lemma 5.4. If M − r + s < N∗, then

Xr(a, b) ∈ L(j0)K2,sep + t
pM I(ω)+ε
1 L(0+)O′2+

t
a∗(q−1)
1 LO′2 +M1(ω, j∗) + C2(L2,sep).

Lemma 5.5. For 0 ≤ n1, n2 < N∗, 0 ≤ r ≤ M and (a1, b1), (a2, b2) ∈
B0(ω), there exists ε > 0 such that

[σn1Ar1(a1, b1), σn2Ar2(a2, b2)] ∈ tε1LO′2 + L(j0+)K′
2
+

[
L(j0), L

]
K′

2
.

Proof. This lemma follows from estimates of Lemma 5.3. We only notice
that

[L(0+)K2,sep ,M0(ω, j∗)] ⊂ L(a0+)K2,sep

by Prop. 4.2, and for 0 ≤ n < N∗,

t
a∗(q−1)
1 σnM0(ω, j∗) ∈ tε

′
1 LO′2 ,

where ε′ = a∗(q − q/p− 1) > 0. �
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Remark. We note that if Z ∈ LK2,sep is such that with the notation of the
above lemma one has

Z − σZ = [σn1Ar1(a1, b1), σn2Ar2(a2, b2)] ,

then Z ∈ tε1LO′2 +
{
L(j0+) +

[
L(j0), L

]}
2,sep

.

Lemma 5.6. If for any 0 ≤ r1, r2 ≤ M , 0 ≤ n < N∗, (a1, b1), (a2, b2) ∈
B0(ω), an element Z ∈ L2,sep satisfies the relation

Z − σZ =
[
σnAr1(a1, b1), σN

∗
Xr2(a2, b2)

]
,

then Z ∈ LK2(j0) +
{
L(j0+) + [L(j0), L]

}
2,sep

(where K2(j0) = K
Γ

(j0)
2

2,sep ).

Proof. It is sufficient to use the estimates from Lemmas 5.3 and 5.4 and
that σ is nilpotent on ta

∗(q−1)
1 σN

∗−1M1(ω, j∗) ⊂ LK2(j0), what follows from
the embedding σN

∗+1M1(ω, j∗) ⊂ σN
∗M1(ω, j∗) + t−a

∗q
1 LO′2 . �

Lemma 5.7. In the notation of nn. 5.3-5.4 for some ε > 0, it holds[
A, σM+N∗

e1

]
≡ −

∑
r,(a,b)

M−r+s<N∗

[
σM−r+sAr(a, b), σM+N∗

e1

]
mod tε1LO′2 .

Proof. This follows from Lemma 5.2 because e1 ∈ t−I(ω)
1 LO′2 . �

Lemma 5.8. In the notation of nn.5.3-5.4 if Z ∈ LK2,sep is such that[
σX, σM+N∗

e1

]
= −

∑
r,(a,b)

M−r+s<n<N∗

[
σnAr(a, b), σM+N∗

e1

]
+ Z − σZ,

then Z ∈ LK2(j0) +
{
L(j0+) +

[
L(j0), L

]}
2,sep

.

Proof. We notice first that for some ε > 0, it holds

σX ≡ −
∑

r,(a,b)
M−r+s<u<N∗

σuAr(a, b)−
∑
r,(a,b)

σN
∗
Xr(a, b)

mod tqp
M I(ω)+ε

1 LO′2 + C2(L2,sep).

This is implied by the relation

X = −
∑

r,(a,b)
M−r+s<N∗

σM−r+sXr(a, b) mod tqp
M I(ω)+ε

1 LO′2 ,

which follows from Lemma 5.2.
So, it is sufficient to prove that if Z ′r(a, b) ∈ L2,sep is such that

Z ′r(a, b)− σZ ′r(a, b) =
[
Xr(a, b), σMe1

]
,
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then Z ′r(a, b) ∈ LK2(j0) +
{
L(j0+) + [L(j0), L]

}
2,sep

. By Lemma 5.4 this
can be reduced to the following property: if U ∈ L2,sep is such that

U − σU ∈
[
M1(ω, j∗), σMe1

]
,

then U ∈ LK2(j0) +
{
L(j0+) + [L(j0), L]

}
2,sep

. By Prop. 4.2 we have

[M1(ω, j∗), L(0+)K′
2
] ⊂ L(j0+)2,sep.

We have also

p
[
M1(ω, j∗), LK′

2

]
⊂ [L(a0+)2,sep, L2,sep] ⊂ L(j0+)2,sep.

So, the proof of lemma is reduced to the following statement.

— let V,W ∈ WM+1(K2,sep) be such that V − σV = βτ−b1p
M

1 W and
W − σW = ατ

−bprq+b∗(q−1)
1 t−a1 , where (0, b1), (a∗/pr, b) ∈ B(ω) and bpr <

b0; then V ∈ pWM+1(K2,sep) +WM+1(K2(j0))

In other words, cf. n. 3.4, j2(V mod p/K2) < j0 or, equivalently,

j′(V mod p/K ′) < qj0 − (q − 1)j∗ = (a0, qb0 − (q − 1)b∗).

The case M = 0 of Prop. 3.6 gives

j′(V mod p/K ′) = (a0, b1p
M + bprq − b∗(q − 1)).

It remains only to notice that

b1p
M + bprq < pMJ0(ω) + q(b0 − δ2(ω, b0)) < qb0,

because qδ2(ω, b0) > pMJ0(ω), cf. n.5.3. The lemma is proved. �

5.5. Simplification of relation (13). Consider S = S1 + S2 ∈ L2,sep,
with

S1 = −
∑
n,(a,b)

An(a, b),

S2 =
∑

n1,n2,j1,j2

η(n1 − s1, n2 − s2)
[
An1(a1, b1), τ

−b2pn2q
1 t−a2pn2q

1 Dj2,n2

]
,

where the first sum is taken for 0 ≤ n ≤ M and (a, b) ∈ B0(ω) such that
M − n + s < N∗ with s = s(a); and the second sum is taken for all
0 ≤ n1 ≤M , n2 > −N∗ +M − s2, j1 = (a1, b1), j2 = (a2, b2) ∈ B0(ω) with
s1 = s(a1) and s2 = s(a2) (cf. the definition of η(n1, n2) in n. 4.2).

Proposition 5.9. Suppose X ∈ L2,sep satisfies relation (13). Then there
is X ′ ∈ L2,sep such that

X ′ ≡ XmodLK2(j0) +
{
L(j0+) +

[
L(j0), L

]}
2,sep

and
X ′ − σX ′ = S. (14)
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Proof. From Lemmas 5.2, 5.7 and 5.8, we conclude that the right-hand
side of the relation (13) is equivalent modulo

(σ − id)LK2(j0) +
{
L(j0+) + [L(j0), L]

}
2,sep

to the expression

−
∑
r,(a,b)

σM−r+sAr(a, b)+

∑
r1,(a1,b1),u

η(u, 0)
[
σM−r1+s1+uAr1(a1, b1), σM+N∗

e1

]
,

where the summation indexes satisfy the conditions 0 ≤ r, r1 ≤ M ,
(a, b), (a1, b1) ∈ B0(ω), u ∈ Z≥0, M − r + s < N∗ and 0 ≤ u < N∗ −
(M − r1 + s1) (with s = s(a) and s1 = s(a2)).

By changing the above expression modulo (σ−id)LK′
2
and setting r1 = n1

and n2 = (s2 − u) − (s1 − r1) we transform it to S. The proposition is
proved. �

By the use of the identity 1 = η(n1, n2)+η(n2, n1) we obtain the decom-
position S2 = S21 + S22, where S21 =∑
n1,n2,j1,j2

η(n1 − s1, n2 − s2)η(n1, n2)
[
An1(a1, b1), τ

−b2pn2q
1 t−a2pn2q

1 Dj2,n2

]
,

and S22 is given by the same expression with η(n1, n2) replaced by η(n2, n1).
By the use of the decomposition, cf. the proof of Lemma 5.3, En1(b1) =
b1p

n1Θ∗+ pn1Θ∗2µb1,n1(Θ
∗), set S21 = S′21 +S′′21, where S′21 is given by the

expression∑
n1,n2,j1,j2

η(n1 − s1, n2 − s2)η(n1, n2)pn1b1×

τ
−(pn1b1+pn2b2)q
1 t

−(pn1a1+pn2a2)q
1 Θ∗[Dj1n1 , Dj2n2 ].

Prove that
S′′21 ∈ tε1LO′2 +

{
L(j0+) + [L(j0), L]

}
K′

2
.

It is sufficient to verify that the element of the form

t
−(a1pn1+a2pn2 )q
1 Θ∗2pn1 [Dj1n1 , Dj2,n2 ]

belongs to tε1LO′2 +
{
L(j0+) + [L(j0), L]

}
K′

2
if n1 ≥ n2.

If pn1a1 > a0, then our element belongs to [L(j0), L]K′
2
. Let pn1a1 = a0.

If a2 > 0, then our element belongs to L(j0+)K′
2

by Prop. 4.2; if a2 = 0,

then it belongs to ta
0(q−2)

1 LO′2 .
The case pn1a2 ≥ a0 can be considered similarly.
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If pn1a1, p
n1a2 < a0, then it remains to note that

(pn1a1 + pn2a2)q ≤ (pn1a1 + pn1a2)q < 2a0q − 2δ1(ω, a0)q < 2a0(q − 1),

because qδ1(ω, a0) > a0, cf. n. 5.3.
Thus we have obtained

S21 ≡ S′21 mod tε1LO′2 +
{
L(j0+) + [L(j0), L]

}
K′

2
.

For n2 ≥ n1, b = b1 and b′ = pn2−n1b2, consider the identity from n. 5.4

En1(b1) = En1(b1 + pn2−n1b2)− En1(p
n2−n1b2)−∑

i,j

σiEn1−i(b1)σ
jEn1−j(p

n2−n1b2).

With respect to three summands of the right-hand side of the above identity
decompose S22 in the form S221 + S222 + S223. Then

S223 = −
∑

n1,n2,j1,j2

η(n1 − s1, n2 − s2)η(n2, n1)×[
σiAn1−i(a1, b1), σjAn1−j(p

n2−n1b2)
]

belongs to tε1LO′2 +
{
L(j0+) + [L(j0), L]

}
K′

2
by Lemma 5.5, because one

can repeat the arguments of the proof of Lemma 5.3 to obtain its estimate
for the element given by the expression

En1−j(p
n2−n1b2)t

−a2pn2−jq
1 τ−b2p

n2−jq
1 D(a2,b2),n2−j .

By the use of the identity

En1(p
n2−n1b2) = pn2b2Θ∗ + pn2Θ∗2µn1,pn2−n1b2(Θ

∗)

and the arguments we have used above to estimate S′′21, we obtain

S222 ≡ −
∑

n1,n2,j1,j2

η(n1 − s1, n2 − s2)η(n2, n1)×

pn2b2τ
−(pn1b1+pn2b2)q
1 t

−(pn1a1+pn2a2)q
1 Θ∗[Dj1n1 , Dj2,n2 ]

≡
∑

n1,n2,j1,j2

η(n2 − s2, n1 − s1)η(n1, n2)×

pn1b1τ
−(pn1b1+pn2b2)q
1 t

−(pn1a1+pn2a2)q
1 Θ∗[Dj1n1 , Dj2,n2 ].

Now we notice that

S1 + S221 = −
∑

n,(a,b)∈B0

An(a, b)D̃(a,b),n.
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By the use of the decomposition En(b) = pnbΘ∗ + pnΘ∗2µn,b(Θ∗) and
Prop. 4.6 we obtain

S1 + S221 ≡ −
∑
n,(a,b)

pnbτ−bp
nq

1 t−ap
nq

1 Θ∗D̃(a,b),n.

We summarize the above relations by the use of the identity

η(n1 − s1, n2 − s2) + η(n2 − s2, n1 − s1) = 1

and expressions for elements F̃γ(ω), γ ∈ J2,

S ≡ −
∑

γ=(γ1,γ2)∈J2

τ−γ1q1 t−γ2q1 Θ∗F̃γ(ω).

In order to simplify this equivalence modulo

(σ − id)LK2(j0) +
{
L(j0+) + [L(j0), L]

}
2,sep

consider the set

G2(ω) =
{
γ = a0

1p
m1 + a0

2p
m2 | a0

1, a
0
2 ∈ Z ∩ [0, I(ω)],m1,m2 ∈ Z

}
.

It is easy to see the existence of δ(ω, a0) ∈ Q>0 such that if γ ∈ G2(ω) and
γ < a0, then γ ≤ a0 − δ(ω, a0).

Now suppose in addition to conditions for q from n. 5.3 that q satisfies
also the equality

qδ(ω, a0) > a0. (15)

Notice that F̃γ(ω) = 0 if γ /∈ G2(ω).
For γ = (γ1, γ2) ∈ G2(ω), let X̃γ ∈ L2,sep be such that

X̃γ − σX̃γ = −τ−γ1q1 t−γ2q1 Θ∗F̃γ .
If γ1 < a0 then

−γ1q + a∗(q − 1) ≥ qδ(ω, a0)− a0 > 0

by inequality (15) and, therefore, X̃γ ∈ LK′
2
. If γ1 ≥ a0, then (cf. the

relation (12) in the proof of Prop. 4.5) F̃γ(ω) ≡ Fγ mod
[
L(a0+)k, Lk

]
and

pF̃γ(ω) ∈ L(a0+)k (cf. the proof of Prop. 4.6). This implies that
— if γ1 = a0, γ2 < b0, then

Xγ ∈ LK2(j0) +
[
L(j0+), L

]
2,sep

;

— if γ > j0, then

Xγ ∈
{
L(j0+) + [L(j0), L]

}
2,sep

;

— X̃j0 ≡ Xj0 mod
{
L(j0+) + [L(j0), L]

}
2,sep

, where

Xj0 − σXj0 = −τ−b0q+b∗(q−1)t
−a0q+a∗(q−1)
1 Fj0 .

With the above notation we obtain the following proposition.
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Proposition 5.10.

X ≡ Xj0 modLK2(j0) +
{
L(j0+) + [L(j0), L]

}
2,sep

.

5.6. The end of the proof of theorem. It is sufficient to prove that if
L0 is a finite Lie algebra and ρ0 is a projection of L to L0, then for any
j ∈ J , one has ρ0(L(j)) = ρ0(L(j)).

It is easy to see that the both filtrations {ρ0(L(j))}j∈J and {ρ0(L(j))}j∈J
are left-continuous, have jumps only in “finite points” j0 ∈ J and have
trivial terms for a sufficiently large j. Therefore, we can use in the proof
a transfinite decreasing induction on j, i.e. we can assume the existence of
j0 ∈ J such that for all j > j0 it holds

ρ0(L(j)) = ρ0(L(j))

and must prove under this assumption that ρ0(L(j0)) = ρ0(L(j0)).
By arguments of n.5.1 we can assume that j0 = (a0, b0) with a0 > 0. By

Prop. 5.10 and inductive assumption, ρ0(L(j0)) is the minimal ideal in the
family of all ideals I of L0 such that

I ⊃ ρ0(L(j0+) + [L(j0), L])

and
j2

(
ρ0(Xj0) mod I2,sep/K2

)
< j0.

It remains only to note that ρ0(Fj0) /∈ Ik if and only if
j′

(
ρ0(Xj0) mod I2,sep/K ′) = qj0 − (q − 1)j∗, and this is equivalent to the

equality j2
(
ρ0(Xj0) mod I2,sep/K2

)
= j0.
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