On Prime Z-graded Lie algebras of growth one

Consuelo Martínez*

Communicated by E. Zelmanov

Abstract

We will give the structure of Z-graded prime nondegenerate algebras $L=\sum_{i \in Z} L_{i}$ containing the Virasoro algebra and having the dimensions of the homogeneous components, $\operatorname{dim} L_{i}$, uniformely bounded. Mathematical Subject Index: Primary 17B60, secondary 17B70, 17C50. Key Words and Phrases: Z-graded Lie algebra, strongly PI, prime, nondegenerate, Virasoro algebra, loop algebra, growth, Jordan pair.

1. Introduction

Throughout the paper we consider algebras over an algebraically closed field F of zero characteristic.

By a Z-graded algebra we mean an algebra $L=\sum_{i \in Z} L_{i}, L_{i} L_{j} \subseteq L_{i+j}$, having all homogeneous components L_{i} finite dimensional. In [Ma1], [Ma2] (see also the earlier work [K1]) O. Mathieu classified all graded simple Lie algebras with polynomial growth of dimensions $\operatorname{dim} L_{i}$. He proved that every such algebra is a (twisted) loop algebra or an algebra of Cartan type or the Virasoro algebra Vir.

The problem of classification of Z-graded Lie superalgebras with all $\operatorname{dim} L_{i}$ uniformly bounded is still open. Of particular interest is the case when the even part of L contains Vir, that is, when L is a superconformal algebra (see [KvL]). In this paper we modify O. Mathieu's result [Ma1] to make it applicable to the study of the even part of a superconformal algebra (see [MZ1], [KMZ]).

Recall that an algebra L is called prime if for any two nonzero ideals $(0) \neq I, J \triangleleft L$ we have $I J \neq(0)$. A Lie algebra L is nondegenerate if $a \in L$, $[[L, a], a]=(0)$ implies $a=0$. Following $[\mathrm{Z} 2]$ we say that L is a Lie algebra with finite grading if $L=\sum_{i \in Z} L_{(i)},\left[L_{(i)}, L_{(j)}\right] \subseteq L_{(i+j)}$, the subspaces $L_{(i)}$ can be infinite dimensional, but $\left\{i \mid L_{(i)} \neq(0)\right\}$ is finite. The grading is not trivial if $\sum_{i \neq 0} L_{(i)} \neq(0)$. All Jordan algebras and their generalizations can be interpreted as Lie algebras with finite gradings (see [Z2]).

[^0]Let $L=\sum_{i \in Z} L_{i}$ be a graded Lie algebra, all dimensions $\operatorname{dim} L_{i}$ are uniformly bounded and L_{0} is not solvable. Then L_{0} contains a copy of $s l_{2}(F)=$ $F e+F h+F f,[e, f]=h,[h, e]=2 e,[h, f]=-2 f$. The adjoint operator $a d(h): L \rightarrow L$ has only finitely many eigenvalues and the decomposition of L into a direct sum of eigenspaces is a finite grading on L, which is compatible with the initial Z-grading.

For a finite dimensional simple algebra \mathcal{G} let $\mathcal{L}(\mathcal{G})=\mathcal{G} \otimes F\left[t^{-1}, t\right]$ be its loop algebra. Every finite grading on \mathcal{G} extends to a finite grading on $\mathcal{L}(\mathcal{G})$ which is compatible with the Z-grading. If \mathcal{G} is graded by a finite cyclic group $Z / l Z$, $\mathcal{G}=\mathcal{G}_{0}+\cdots+\mathcal{G}_{l-1}$, then we will refer to $\sum_{i=j \bmod l} \mathcal{G}_{i} \otimes t^{j}$ as a twisted loop algebra.

The Virasoro algebra naturally acts on $\mathcal{L}(\mathcal{G})$ and the semidirect sum $L=$ $\mathcal{L}(\mathcal{G}) \times_{\left.\right|_{V}}$ ir is a prime nondegenerate Z-graded algebra.
Theorem 1. Let $L=\sum_{i \in Z} L_{i}$ be a Z-graded prime nondegenerate algebra containing the Virasoro algebra, the dimensions $\operatorname{dim} L_{i}$ are uniformely bounded. Suppose that L has a nontrivial finite grading which is compatible with the Z-grading above. Then $L \simeq \mathcal{L}(\mathcal{G}) \rtimes$ Vir for some finite dimensional simple Lie algebra \mathcal{G}.

We prove also the following theorem on Jordan pairs (see [L]) which generalizes [MZ1] and determines the structure of Z-graded prime nondegenerated Jordan pairs having the dimensions of the homogeneous components uniformly bounded.
Theorem 2. Let $V=\left(V^{-}, V^{+}\right)=\sum_{i \in Z} V_{i}$ be a prime nondegenerate Z-graded Jordan pair having all dim V_{i} uniformly bounded. Then either V is isomorphic to a (twisted) loop pair $\mathcal{L}(W)$, where W is a finite dimensional simple Jordan pair or V is embeddable in $\mathcal{L}(W)$ and $\sum_{i \geq k} \mathcal{L}(W)_{i} \subseteq V \subseteq \mathcal{L}(W)$ or $\sum_{i \geq k} \mathcal{L}(W)_{-i} \subseteq$ $V \subseteq \mathcal{L}(W)$.

2. The strongly PI case

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a nonzero element of the free associative algebra. We say that an associative algebra A satisfies the polynomial identity $f\left(x_{1}, \ldots, x_{n}\right)=0$ if $f\left(a_{1}, \ldots, a_{n}\right)=0$ for arbitrary elements $a_{1}, \ldots, a_{n} \in A$. An algebra satisfying some polynomial identity is said to be a PI-algebra.

For an arbitrary algebra A the multiplication algebra $M(A)$ of A is the subalgebra of $\operatorname{End}_{F}(A)$ generated by all right and left multiplications $R(a): x \rightarrow$ $x a, L(a): x \rightarrow a x, a \in A$.

An algebra A is strongly PI if its multiplications algebra $M(A)$ is PI.
An element a in a Lie algebra L over a field F is said to have rank 1 if $[[L, a], a] \subseteq F a$.

Lemma 2.1. ([Z1]) There exists a function $R(n)$ such that an arbitrary Lie algebra generated by n-elements of rank 1 has dimension $\leq R(n)$.

An ideal of the free Lie (resp. associative) algebra is said to be a T-ideal if it is invariant under all substitutions. For an arbitrary algebra L the ideal of all identities satisfied by L is a T-ideal.

Lemma 2.2. Let L be a Lie algebra over a field F, chF $=0$ and $a \in L$ an element of rank 1. Let's consider s elements $a_{i}=\operatorname{aad}\left(x_{i 1}\right) \cdots a d\left(x_{i r_{i}}\right), 1 \leq i \leq s$, $x_{i j} \in L$. Let $m=2^{r_{1}}+2^{r_{2}}+\cdots+2^{r_{s}}$ and let T be the T-ideal of all identities that are satisfied by all Lie algebras of dimension $\leq R(m)$. Then the subalgebra $<a_{1}, \ldots, a_{s}>$ satisfies all identities of T
Proof. Let's consider the Lie algebra $\tilde{L}=L\left(\left(t^{-1}, t\right)\right)$ of Laurent series over L. Clearly, \tilde{L} is an algebra over the field of Laurent series $F\left(\left(t^{-1}, t\right)\right)$. The element a is an element of $\operatorname{rank} 1$ in $\tilde{L},[[\tilde{L}, a], a] \subseteq F\left(\left(t^{-1}, t\right)\right) a$.

For a series $b=\sum_{i} b_{i} t^{i}, b_{i} \in L$, let's denote $\min (b)=b_{k}$ if $b_{k} \neq 0$ and $b_{i}=0$ for every $i<k$.

For arbitrary elements $x_{i j}, 1 \leq i \leq s, 1 \leq j \leq r_{i}$, we have $e^{2 a d\left(x_{i j} t\right)}-$ $e^{a d\left(x_{i j} t\right)}=a d\left(x_{i j}\right) t+(\cdots) t^{2}$.

Therefore,
$\operatorname{aad}\left(x_{i 1}\right) \cdots a d\left(x_{i r_{i}}\right)=\min \left(a\left(e^{2 a d\left(x_{i 1} t\right)}-e^{a d\left(x_{i 1} t\right)}\right)\right) \cdots\left(e^{2 a d\left(x_{i r_{i}} t\right)}-e^{a d\left(x_{i r_{i}} t\right)}\right)$.
Since $e^{a d\left(x_{i j} t\right)}, e^{2 a d\left(x_{i j} t\right)}$ are automorphisms of \tilde{L} it follows that the elements $a e^{k_{1} a d\left(x_{i 1} t\right)} \cdots e^{k_{r_{i}} a d\left(x_{i_{r_{i}} t}\right)}, 1 \leq k_{1}, \ldots \leq k_{r_{i}} \leq 2$, are elements of rank 1 in \tilde{L}.

Let's denote as B the subalgebra of \tilde{L} generated by m elements: $a e^{k_{1} a d\left(x_{11} t\right)} \ldots e^{k_{r_{i}} a d\left(x_{i r_{i} t} t\right)}$, where $k_{1}, \ldots k_{r_{i}} \in\{1,2\}, 1 \leq i \leq s$. We have $\operatorname{dim}_{F\left(\left(t^{-1}, t\right)\right)} B \leq R(m)$.

Taking $\left({ }^{*}\right)$ into account, an arbitrary commutator σ in a_{1}, \ldots, a_{s} is either 0 or $\min (b)$ where $b \in B$.

Let $f\left(x_{1}, \ldots, x_{k}\right) \in T$. Without loss of generality we will assume that f is multilineal. Let us consider k arbitrary commutators $\sigma_{1}, \ldots, \sigma_{k}$ in a_{1}, \ldots, a_{s}. If $\sigma_{i}=0$ for some i, then $f\left(\sigma_{1}, \ldots, \sigma_{k}\right)=0$. In the other case, there exist elements $b_{1}, \ldots, b_{k} \in B$ such that $\sigma_{i}=\min \left(b_{i}\right), 1 \leq i \leq s$. Hence, $f\left(\sigma_{1}, \ldots, \sigma_{k}\right)=0$ or $f\left(\sigma_{1}, \ldots, \sigma_{k}\right)=\min f\left(b_{1}, \ldots, b_{k}\right)$. But $f\left(b_{1}, \ldots, b_{k}\right)=0$ and so Lemma is proved.

Recall that a centroid of an algebra A is the centralizer of the multiplication algebra $M(A)$ in $\operatorname{End}_{F}(A)$

Lemma 2.3. Let $A=\sum_{i \in Z} A_{i}$ be a graded algebra whose centroid $\Gamma=\sum_{i \in Z} \Gamma_{i}$ contains a homogeneous invertible element $\gamma \in \Gamma_{i}$ of degree $i \neq 0$. Then $A \simeq \mathcal{L}(\mathcal{G})$ is a (twisted) loop algebra.
Proof. Let $\gamma_{i} \in \Gamma_{i}$ with $\gamma_{i}^{-1}=\gamma_{-i} \in \Gamma_{-i}$ and let $a_{j}^{1}, \ldots, a_{j}^{d} \in A_{j}$ be linearly independent elements. Then

$$
\gamma_{i} a_{j}^{1}, \ldots, \gamma_{i} a_{j}^{d} \in A_{i+j}
$$

are also linearly independent. Hence $\operatorname{dim} A_{j}=\operatorname{dim} A_{i+j}=\operatorname{dim} A_{-i+j}$, for arbitrary $j \in Z$.

Taking i the smallest index such that there exists an invertible γ_{i}, we can define a finite dimensional algebra structure in $\mathcal{G}=A_{0}+A_{1}+\cdots+A_{i-1}$ by the new law:

$$
a_{l} \star b_{h}= \begin{cases}a_{l} b_{h} & \text { if } l+h<i \\ \gamma_{i}^{-1}\left(a_{l} b_{h}\right) & \text { if } l+h \geq i\end{cases}
$$

It is clear that A is isomorphic to $\sum_{i=j \bmod l} \mathcal{G}_{i} \otimes t^{j}$. Lemma is proved

Lemma 2.4. Let Λ be a subset of Z closed under addition and let $m=\operatorname{gcd}(\Lambda)$. Then either $\Lambda=m Z$ or $m\{i \in Z, i \geq k\} \subseteq \Lambda \subseteq m Z_{\geq 0}$ or $-m\{i \in Z, i \geq k\} \subseteq$ $\Lambda \subseteq m Z_{\leq 0}$ for some $k \geq 1$.
Proof. Suppose at first that Λ contains both a positive element $i \geq 1$ and a negative element $-j, j \geq 1$. Then Λ contains the additive subgroup $i j Z$.

The quotient $\Lambda / i j Z \subseteq Z / i j Z$ is a sub-semigroup of a finite group, hence $\Lambda / i j Z$ is a group. Hence Λ is a subgroup of Z and therefore $\Lambda=m Z$.

Now suppose that $\Lambda \subseteq Z_{\geq 0}$. Then, clearly $\Lambda \subseteq m Z_{\geq 0}$. Choose $k \geq 1$ such that $k m \in \Lambda$. There exist elements $\lambda_{1}, \ldots, \lambda_{r} \in \Lambda$ and integers k_{1}, \ldots, k_{r} in Z such that $k_{1} \lambda_{1}+\cdots+k_{r} \lambda_{r}=m$.

Choose a sufficiently large integer q such that $q+i k_{j} \geq 0$ for all $j=1, \ldots, r$ and for all $i, 0 \leq i \leq k-1$. The element $\lambda=q\left(\sum_{i=1}^{r} \lambda_{i}\right)$ is in Λ. We claim that $\lambda+m Z_{\geq 0} \subseteq \Lambda$.

Indeed, for $0 \leq i \leq k-1$ we have $\lambda+m i \in \sum_{i=1}^{r} Z_{\geq 0} \lambda_{i} \subseteq \Lambda$.
Now it is easy to see that for an arbitrary element $\lambda^{\prime} \in \Lambda$, if $\lambda^{\prime}, \lambda^{\prime}+$ $m, \ldots, \lambda^{\prime}+(k-1) m \in \Lambda$ then $\lambda^{\prime}+k m \in \Lambda$ as well and therefore the element $\lambda^{\prime \prime}=\lambda+m$ has the same property as λ^{\prime}. Hence $\lambda^{\prime}+m Z_{\geq 0} \subseteq \Lambda$. Lemma is proved.

Lemma 2.5. Let $\Gamma=\sum \Gamma_{i}$ be a Z-graded (commutative and associative) domain over an algebraically closed field F such that the dimensions $\operatorname{dim}_{F} \Gamma_{i}$ are uniformly bounded. Then, either $\Gamma \simeq F\left[t^{-m}, t^{m}\right]$ or $\sum_{i \geq k} F t^{m i} \subseteq \Gamma \subseteq F\left[t^{m}\right]$ or $\sum_{i \geq k} F t^{-m i} \subseteq \Gamma \subseteq F\left[t^{-m}\right]$, where $m \geq 1, k \geq 1$.
Proof. Let us prove first that $\operatorname{dim}_{F} \Gamma_{i} \leq 1$ for every i. Let $d=\max \left\{\operatorname{dim} \Gamma_{i} \mid\right.$ $i \in Z\}$. Choose two arbitrary nonzero elements, $a_{i}, b_{i} \in \Gamma_{i}$.

Since $\operatorname{dim}_{F} \Gamma_{i d} \leq d$, there exists a nontrivial linear dependence relation

$$
\gamma_{d} a_{i}^{d}+\gamma_{d-1} a_{i}^{d-1} b_{i}+\cdots+\gamma_{0} b_{i}^{d}=0
$$

The polynomial $f(x)=\gamma_{d} x^{d}+\gamma_{d-1} x^{d-1}+\cdots+\gamma_{0}$ can be decomposed as $f(x)=$ $\gamma_{d}\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{d}\right)$, with $\gamma_{d} \neq 0, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{d} \in F$.

We have $0=f\left(\frac{a_{i}}{b_{i}}\right)=\gamma_{d}\left(\frac{a_{i}}{b_{i}}-\alpha_{1}\right)\left(\frac{a_{i}}{b_{i}}-\alpha_{2}\right) \cdots$
Hence $a_{i}=\alpha_{k} b_{i}$ for some k. Now $\Lambda=\left\{i \in Z \mid \Gamma_{i} \neq(0)\right\}$ is a subsemigroup of Z and the result is a consequence of Lemma 2.4.

Let $L=\sum_{i \in Z} L_{i}$ be a strongly PI Z-graded prime nondegenerate Lie algebra. Let $d=\max _{i \in Z} \operatorname{dim} L_{i}$. Let Γ denote the centroid of L, Γ_{h} is the set of homogeneous elements from Γ.

Lemma 2.6. (1) $\Gamma \neq(0)$ is an integral domain and the ring of fractions $(\Gamma \backslash\{0\})^{-1} L$ is a simple finite dimensional Lie algebra over the field $K=(\Gamma \backslash\{0\}) \Gamma$.
(2) The algebra $\tilde{L}=\left(\Gamma_{h} \backslash\{0\}\right)^{-1} L$ is a graded simple algebra and $\operatorname{dim}_{F} \tilde{L}_{i} \leq$ d, for an arbitrary $i \in Z$.
(3) Either L is isomorphic to a (twisted) loop algebra or there is a graded embedding $\varphi: \Gamma \rightarrow F\left[t^{-m}, t^{m}\right]$ such that

$$
\sum_{i \geq k} F t^{i m} \subseteq \varphi(\Gamma) \subseteq F\left[t^{m}\right] \text { or } \sum_{i \geq k} F t^{-i m} \subseteq \varphi(\Gamma) \subseteq F\left[t^{-m}\right] .
$$

Proof. For the assertion (1) cf. see [Ro].
(2) We only need to check that \tilde{L} is graded simple. Let I be a non-zero graded ideal of L. $\mathrm{By}(1),(\Gamma \backslash\{0\})^{-1} I=(\Gamma \backslash\{0\})^{-1} L$.

Let $\operatorname{dim}_{K}(\Gamma \backslash\{0\})^{-1} L=r$ and $f_{r}\left(x_{1}, \ldots, x_{q}\right)$ is a multilinear central polynomial that corresponds to $r \times r$ matrices. Then $(\Gamma \backslash\{0\})^{-1} L$ is a faithful irreducible module over the multiplication algebra $M<(\Gamma \backslash\{0\})^{-1} L>$. Hence, $M<(\Gamma \backslash\{0\})^{-1} L>\simeq \mathcal{M}_{r}(K)$. Consequently, there exist operators $\omega_{i}=\operatorname{ad}\left(a_{i 1}\right) \cdots \operatorname{ad}\left(a_{i q_{i}}\right), 1 \leq i \leq q, a_{i j}$ homogeneous elements of I such that $f_{r}\left(\omega_{1}, \ldots, \omega_{q}\right) \neq 0$. Clearly, $f_{r}\left(\omega_{1}, \ldots, \omega_{q}\right) \in \Gamma_{h}$. Now,

$$
L=\left(L f_{r}\left(\omega_{1}, \ldots, \omega_{q}\right)\right) f_{r}\left(\omega_{1}, \ldots, \omega_{q}\right)^{-1} \subseteq I f_{r}\left(\omega_{1}, \ldots, \omega_{q}\right)^{-1} \subseteq\left(\Gamma_{h} \backslash\{0\}\right)^{-1} I .
$$

This proves $\left(\Gamma_{h} \backslash\{0\}\right)^{-1} I=\left(\Gamma_{h} \backslash\{0\}\right)^{-1} L$ and so \tilde{L} is graded simple.
In order to prove (3) we will show that $\operatorname{dim} \Gamma_{k} \leq d$ for an arbitrary k. Let's take $d+1$ arbitrary elements $\gamma_{1}, \ldots, \gamma_{d+1} \in \Gamma_{k}$ and a non zero homogeneous element $a_{i} \in L_{i}$. Since $a_{i} \gamma_{1}, a_{i} \gamma_{2}, \ldots, a_{i} \gamma_{d+1} \in L_{i+k}$, there exists a non trivial linear dependence relation $\sum_{j=1}^{d+1} \xi_{j} a_{i} \gamma_{j}=0, \xi_{j} \in F$. Since non zero elements in Γ have zero nuclei and $a_{i} \in \operatorname{Ker} \sum_{j=1}^{d+1} \xi_{j} \gamma_{j}$, it follows that $\sum_{j=1}^{d+1} \xi_{j} \gamma_{j}=0$.

We have proved that $\operatorname{dim}_{F} \Gamma_{k} \leq d$ and so the assertion (3) follows from Lemmas 2.3 and 2.5.

Indeed, by Lemma 2.5, either $\Gamma \simeq F\left[t^{-m}, t^{m}\right]$ or there exists the wanted embedding. If $\Gamma \simeq F\left[t^{-m}, t^{m}\right]$, then L is a loop algebra by Lemma 2.3.

Lemma 2.7. Let $L=\sum_{i \in Z} L_{i}$ be a prime, nondegenerate, strongly PI Lie algebra, dim $L_{i} \leq d$, as in the previous lemma. Let's assume that Vir $=\sum_{i \in Z} V_{i r}$ can be embedded into Der (L) as a graded algebra. Then L is isomorphic to a (nontwisted) loop algebra.
Proof. If L is not isomorphic to a (twisted) loop algebra, then by Lemma 2.6 there exists a graded embedding $\varphi: \Gamma \rightarrow F\left[t^{-m}, t^{m}\right], m \geq 1$, such that either $\sum_{i \geq k} F t^{i m} \subseteq \varphi(\Gamma) \subseteq F\left[t^{m}\right]$ or $\sum_{i \geq k} F t^{-i m} \subseteq \varphi(\Gamma) \subseteq F\left[t^{-m}\right]$ for some $k \geq 1$.

Let us assume that $\sum_{i \geq k} F t^{i m} \subseteq \varphi(\Gamma) \subseteq F\left[t^{m}\right]$. This implies that Γ is generated by a finite set of elements $\gamma_{i} \in \Gamma_{s_{i}}, i=1,2, \ldots, r$.

Let $s=\max _{1 \leq i \leq r} s_{i}$. The Virasoro algebra acts on Γ. For each generator γ_{i} the subspace γ_{i} Vir $r_{-(s+1)}=(0)$, since it is contained in Γ and has negative degree.

So Vir $_{-(s+1)}$ is contained in the kernel of the action of the Virasoro algebra on the derivations of Γ. By the simplicity of the Virasoro algebra, we have that Γ Vir $=(0)$.

Now the Virasoro algebra acts on a finite dimensional Lie algebra $\tilde{L}_{K}=$ $(\Gamma \backslash\{0\})^{-1} L$ and the action is not trivial since $\operatorname{Vir} \subseteq \operatorname{Der}(L)$. This leads to a contradiction, since the Virasoro algebra is not strongly PI.

We showed that L is isomorphic to a loop algebra. Let us show that this loop algebra is not twisted. Indeed, let $\Gamma \simeq F\left[t^{-m}, t^{m}\right], m \geq 2$. Then $\Gamma \operatorname{Vir}_{1}=\Gamma \operatorname{Vir}_{-1}=(0)$. Since $\operatorname{Vir}_{1} \neq(0)$ and the algebra Vir is simple it follows that Γ Vir $=(0)$. Now we can argue as above.

Lemma 2.8. Let L be a prime nondegenerate Lie algebra and let I be a nonzero ideal of L. Then I is a prime nondegenerate algebra.
Proof. We will prove first that I is nondegenerate. Indeed, let $0 \neq a \in I$ and $[[I, a], a]=(0)$. Since L is nondegenerate, there exists an element $x \in L$ such that $[[x, a], a] \neq 0$. Now, $\operatorname{Lad}([[x, a], a])^{2}=\operatorname{Lad}(a)^{2} a d(x)^{2} a d(a)^{2} \subseteq \operatorname{Iad}(a)^{2}=(0)$, (cf. [Ko]), a contradiction.

Now we will prove that I is prime. Let $I^{\prime}, I^{\prime \prime}$ be non-zero ideals of I, with $\left[I^{\prime}, I^{\prime \prime}\right]=(0)$. Let $i d_{L}\left(I^{\prime \prime}\right)$ the ideal of L generated by $I^{\prime \prime}$. If $\left[i d_{L}\left(I^{\prime \prime}\right), I^{\prime}\right]=(0)$, then the nonzero ideal of $L, i d_{L}\left(I^{\prime \prime}\right)$, has a non zero centralizer, which contradicts primeness of L. Hence, $J=\left[I^{\prime}, i d_{L}\left(I^{\prime \prime}\right)\right]$ is a non zero ideal of I. We have

$$
\operatorname{ad}(L) \operatorname{ad}\left(I^{\prime}\right)^{2} \subseteq \operatorname{ad}\left(I^{\prime}\right) \operatorname{ad}(L) \operatorname{ad}\left(I^{\prime}\right)+\operatorname{ad}(I) \operatorname{ad}\left(I^{\prime}\right) \subseteq \operatorname{ad}\left(I^{\prime}\right) M<L>
$$

Let's choose an arbitrary nonzero element $a \in J, a=\sum_{i} a_{i} a d\left(x_{i 1}\right) \cdots a d\left(x_{i r_{i}}\right)$ with $a_{i} \in I^{\prime \prime}, x_{i j} \in L, r_{i} \geq 0$. So, for $r=\max _{i} r_{i}$ we have

$$
\operatorname{aad}\left(I^{\prime}\right)^{2 r} \subseteq \sum a_{i} a d\left(I^{\prime}\right) M<L>=(0)
$$

Hence, $\operatorname{aad}(J)^{2 r}=(0)$.
This proves that J has a nontrivial center, what contradicts the nondegeneracy of I and proves the lemma.

Lemma 2.9. Let $L=\sum_{i \in Z}^{n} L_{i}$ be a Z-graded prime nondegenerate Lie algebra containing the Virasoro algebra and having all the dimensions $\operatorname{dim} L_{i}$ uniformly bounded. Suppose that L contains a nonzero graded ideal I which is strongly PI. Then L is isomorphic to the semidirect sum of a loop algebra $\mathcal{L}(\mathcal{G})$ (for some finite dimensional simple Lie algebra \mathcal{G}) and the Virasoro algebra
Proof. By Lemma $2.8 I$ is a prime nondegenerate algebra. Moreover, since L is prime, the action of Vir on I is faithful. Hence by Lemma $2.7 I \simeq \mathcal{L}(\mathcal{G})$, with $\operatorname{dim} \mathcal{G}<\infty$. Again, since I is prime and nondegenerate it follows that the algebra \mathcal{G} is simple. For an arbitrary element $a \in L$ let $a d_{I}(a)$ denote the linear operator $a d_{I}(a): I \rightarrow I, x \rightarrow[x, a]$. The mapping $a \rightarrow a d_{I}(a)$ is an embedding of L into the Lie algebra

$$
\operatorname{Der}(\mathcal{L}(\mathcal{G}))=\mathcal{L}(\mathcal{G}) \rtimes \text { Vir. }
$$

Since the Virasoro algebra is simple and not strongly PI, it follows that Vir $\cap I=(0)$. Now comparing the dimensions of the homogeneous components we conclude that the embedding $L \rightarrow \operatorname{Der}(\mathcal{L}(\mathcal{G})), a \rightarrow a d_{I}(a)$ is an isomorphism. The Lemma is proved

3. Lie-Jordan Connections

In this section we will study connections between Lie algebras and Jordan systems.
A Jordan pair $P=\left(P^{-}, P^{+}\right)$is a pair of vector spaces with a pair of trilinear operations

$$
\{,,\}: P^{-} \times P^{+} \times P^{-} \rightarrow P^{-}, \quad\{,,\}: P^{+} \times P^{-} \times P^{+} \rightarrow P^{+}
$$

that satisfies the following identities:
(P.1) $\left\{x^{\sigma}, y^{-\sigma},\left\{x^{\sigma}, z^{-\sigma}, x^{\sigma}\right\}\right\}=\left\{x^{\sigma},\left\{y^{-\sigma}, x^{\sigma}, z^{-\sigma}\right\}, x^{\sigma}\right\}$,
(P.2) $\left\{\left\{x^{\sigma}, y^{-\sigma}, x^{\sigma}\right\}, y^{-\sigma}, u^{\sigma}\right\}=\left\{x^{\sigma},\left\{y^{-\sigma}, x^{\sigma}, y^{-\sigma}\right\}, u^{\sigma}\right\}$,
(P.3) $\left\{\left\{x^{\sigma}, y^{-\sigma}, x^{\sigma}\right\}, z^{-\sigma},\left\{x^{\sigma}, y^{-\sigma}, x^{\sigma}\right\}\right\}=$
$\left\{x^{\sigma},\left\{y^{-\sigma},\left\{x^{\sigma}, z^{-\sigma}, x^{\sigma}\right\}, y^{-\sigma}\right\}, x^{\sigma}\right\}$,
for every $x^{\sigma}, u^{\sigma} \in P^{\sigma}, y^{-\sigma}, z^{-\sigma} \in P^{-\sigma}, \sigma= \pm$ (see [L]).
If $L=\sum_{i=-n}^{n} L_{(i)}$ is a finite grading, then the pair $\left(L_{(-n)}, L_{(n)}\right)$ with the operations $\left\{x^{\sigma}, y^{-\sigma}, z^{\sigma}\right\}=\left[\left[x^{\sigma}, y^{-\sigma}\right], z^{\sigma}\right], \sigma= \pm$ is a Jordan pair

An element $a \in P^{\sigma}$ is called an absolute zero divisor of the pair P if $\left\{a, P^{-\sigma}, a\right\}=(0)$. A Jordan pair is said to be nondegenerate if it does not contain nonzero absolute zero divisors

A Jordan pair is said to be prime if the product of any two nonzero ideals is not zero, where an ideal of P is a pair of subspaces $I=\left(I^{-}, I^{+}\right)$that satisfies the obvious condition.

The smallest ideal $M(P)$ of the pair P whose quotient is nondegenerate is called the McCrimmon radical of P.

An element a of a Lie algebra is a sandwich if $[[L, a], a]=0$. The Kostrikin radical of a Lie algebra L is the smallest ideal $K(L)$ whose quotient is nondegenerate.

The central point in this connection is given by the following two lemmas, that reduce our original problem in Lie algebras to a Jordan pairs problem.

Lemma 3.1. Let L be a Lie algebra with a finite grading $L=\sum_{k=-n}^{n} L_{(k)}$, $L_{(0)}=\sum_{k=1}^{n}\left[L_{(-k)}, L_{(k)}\right]$ and $L_{(n)} \neq(0)$. If L is prime and nondegenerate, then:
(1) Every nonzero ideal of L has a nonzero intersection with $L_{(n)}$,
(2) The Jordan pair $V=\left(L_{(-n)}, L_{(n)}\right)$ is prime and nondegenerate.

Proof. (1) Let $(0) \neq I \unlhd L$ and suppose that $I \cap L_{(n)}=(0)$. Then, $\left[\left[I, L_{(n)}\right], L_{(n)}\right] \subseteq$ $I \cap L_{(n)}=(0)$. Consider the subalgebra $L^{\prime}=I+L_{(n)}$.

Clearly, $\left[\left[L^{\prime}, L_{(n)}\right], L_{(n)}\right]=(0)$. Hence, $L_{(n)}$ is in the Kostrikin radical of L^{\prime} and using Lemma 2.8 and Proposition 2 of $[\mathrm{Z} 1]$ we conclude that $\left[I, L_{(n)}\right] \subseteq$ $K\left(L^{\prime}\right) \cap I=K(I)=(0)$. This contradicts primeness of L.
(2) The non-degeneracy of V follows from the fact that every absolute zero divisor of V is a sandwich of L.

Now, let us assume that I and J are nonzero ideals of V and that $I \cap J=$ (0). Let \tilde{I} and \tilde{J} be the ideals of L generated by I and J respectively. By (1), the nonzero ideal $\tilde{I} \cap \tilde{J}$ has nonzero intersection with V. Let $P=\left(\tilde{I} \cap L_{(-n)} \cap\right.$ $\left.\tilde{J}, \tilde{I} \cap \tilde{J} \cap L_{(n)}\right) \unlhd V$.

Zelmanov proved in [Z1] that the quotient pairs $\tilde{I} \cap V / I$ and $\tilde{J} \cap V / J$ coincide with their McCrimmon radicals. We will prove that this implies that $P \subseteq \mathcal{M}(V)$.

Let's recall that a sequence of elements in a Jordan pair $x_{1}, x_{2}, \ldots \in V^{\sigma}$, $\sigma= \pm$, is called an m-sequence if $x_{i+1} \in\left\{x_{i}, V^{-\sigma}, x_{i}\right\}$. In [Z3] it was proved that the McCrimmon radical consists of those elements x such that every m-sequence starting by x finishes in zero.

Let $x \in P^{\sigma}$ and let $x=x_{1}, x_{2}, \ldots$ be an m-sequence. Since $x \in \tilde{I} \cap V^{\sigma}$, it follows that there exists $s_{1} \geq 1$ such that $x_{i} \in I$ for all $i \geq s_{1}$.

Similarly, there exists $s_{2} \geq 1$ s.t. $x_{j} \in J$ for all $j \geq s_{2}$. Hence, for every $k \geq \max \left(s_{1}, s_{2}\right)$ we have that $x_{k} \in I \cap J=(0)$. Now, $(0) \neq P \subseteq \mathcal{M}(V)$ contradicts the nondegeneracy of V, what proves the lemma.

Lemma 3.2. Let $L=\sum_{k=-n}^{n} L_{(k)}$ be a Lie algebra with a finite grading. Let us assume that the Jordan pair $V=\left(L_{(-n)}, L_{(n)}\right)$ is prime and nondegenerate and that an arbitrary nonzero ideal of L has nonzero intersection with V. Then L is prime and nondegenerate.
Proof. Clearly, the algebra L is prime, because if I, J are non zero ideals of L with $[I, J]=(0)$, then $I^{\prime}=I \cap V, J^{\prime}=J \cap V$ are nonzero ideals of V and $\left\{I^{\prime \sigma}, J^{\prime-\sigma}, V^{\sigma}\right\}=\left\{J^{\prime-\sigma}, I^{\prime \sigma}, V^{-\sigma}\right\} \subseteq I \cap J=(0), \sigma= \pm$, what contradicts primeness of V.

In [Z2] it was proved that $K(L) \cap L_{(\pm n)}$ is contained in the McCrimmon radical of the pair V, hence $K(L) \cap L_{(\pm n)}=(0)$, what implies, under our assumptions, that $K(L)=(0)$ and so L is nondegenerate.

4. The Jordan Case

The last two lemmas have reduced our original problem to a problem concerning Jordan pairs. So, our aim now will be to prove Theorem 2.

We will need the following lemma

Lemma 4.1. Let \mathcal{G} be a simple finite dimensional Lie algebra with a $Z / l Z$ grading, $\mathcal{G}=\sum_{i \in Z / l Z} \mathcal{G}_{i}$.

If $\operatorname{dim} \mathcal{G}_{0} \leq d$, then $\operatorname{dim}_{F} \mathcal{G} \leq N(d)=\max (d(2 d+1), 248)$.
Proof. The mapping $d: \mathcal{G} \rightarrow \mathcal{G}, a_{i} \rightarrow i a_{i}$ is a derivation. Since every derivation is inner, there exists an element $h \in \mathcal{G}$ such that $d=a d(h)$. So h is semisimple and is contained in some Cartan subalgebra H. Since H is abelian, the elements of H commute with h and given that $\left[a_{i}, h\right]=d\left(a_{i}\right)=i a_{i}$, necessarily $H \subseteq \mathcal{G}_{0}$. But $\operatorname{dim} \mathcal{G}_{0} \leq d$, which implies $\operatorname{dim} H \leq d$.

Now the bound follows from the classification of simple finite dimensional Lie algebras.

Proof of Theorem 2

We will divide the proof of the theorem in three cases
Case 1. We will assume first that $\mathcal{K}(V)$ is strongly $P I$ (where $\mathcal{K}(V)$ denotes the Lie algebra associated to V via the Tits-Kantor-Koecher construction).

Recall that the Tits-Kantor-Koecher Lie algebra $\mathcal{K}(V)$ can be characterized in the following way: $\mathcal{K}(V)=\mathcal{K}(V)_{-1}+\mathcal{K}(V)_{0}+\mathcal{K}(V)_{1}$ is a Z-graded Lie algebra, $\mathcal{K}(V)_{0}=\left[\mathcal{K}(V)_{-1}, \mathcal{K}(V)_{1}\right],\left(\mathcal{K}(V)_{-1}, \mathcal{K}(V)_{1}\right)=V$ and $\mathcal{K}(V)_{0}$ does not contain nonzero ideals of $\mathcal{K}(V)$.

We will see that under our assumption, the algebra $\mathcal{K}(V)$ is prime. Let us show that every nonzero ideal of $\mathcal{K}(V)$ has non zero intersection with V^{+}. Since the Jordan pair V is prime, there are no elements $0 \neq x^{-} \in V^{-}$with $\left[x^{-}, V^{+}, V^{+}\right]=(0)$. Similarly, there are no elements $0 \neq x^{+} \in V^{+}$with $\left[x^{+}, V^{-}, V^{-}\right]=(0)$.

If $I \cap V^{+} \neq(0)$, then $(0) \neq\left[I \cap V^{+}, V^{-}, V^{-}\right] \subseteq I \cap V^{-}$. That is, for an arbitrary ideal I of $V, I \cap V^{+} \neq(0)$ if and only if $I \cap V^{-} \neq(0)$.

Let $x=x_{-}+x_{0}+x_{+} \in I$. Let us assume that $x_{-} \neq 0$. Then $\left[x, V^{+}, V^{+}\right]=$ $\left[x_{-}, V^{+}, V^{+}\right] \neq 0$ and $\left[x, V^{+}, V^{+}\right] \subseteq I$. So $\left[x, V^{+}, V^{+}\right] \subseteq I \cap V^{+}$and $I \cap V^{+} \neq(0)$.

Similarly, if $x_{+} \neq 0$, then $I \cap V^{-} \neq(0)$.
Hence $I \subseteq\left[V^{-}, V^{+}\right]$, which implies $I=(0)$.
Now we can prove that $\mathcal{K}(V)$ is prime. Indeed, let's consider I_{1}, I_{2} two non zero ideals of $\mathcal{K}(V)$. Then $I_{1} \cap V \neq(0), I_{2} \cap V \neq(0)$. Since V is prime, $I_{1} \cap I_{2} \cap V \neq(0)$ and, in particular, $I_{1} \cap I_{2} \neq(0)$.

Since $L=\mathcal{K}(V)$, is a prime and strongly PI Lie algebra it follows that the centroid Γ of L is nonzero and the algebra $(\Gamma \backslash\{0\})^{-1} L$ is finite dimensional over $(\Gamma \backslash\{0\})^{-1} \Gamma$.

Let us see that Γ can be identified with the centroid of V, that is, $V^{+} \Gamma \subseteq$ V^{+}and $V^{-} \Gamma \subseteq V^{-}$. Indeed, let's consider the derivation $d: L \rightarrow L, d\left(a_{i}\right)=i a_{i}$, that multiplies $V^{ \pm}$by ± 1 and annihilates $\left[V^{-}, V^{+}\right.$. The centroid Γ decomposes into eigenspaces with respect to the action of $d: \Gamma=\Gamma_{-2}+\Gamma_{-1}+\Gamma_{0}+\Gamma_{1}+\Gamma_{2}$. Since every element of $\cup_{i \neq 0} \Gamma_{i}$ is nilpotent and L is prime, we have that $\Gamma=\Gamma_{0}$, that is, Γ maps V^{+}to V^{+}and V^{-}to V^{-}.

The centroid Γ is a graded commutative domain, $\Gamma=\sum_{i \in Z} \Gamma_{i}$ with $\operatorname{dim} \Gamma_{i} \leq 1$. If $\Gamma=\Gamma_{0}$, then $\Gamma=F$ and $\operatorname{dim}_{F} V<\infty$.

If there exist $i, j \geq 1$ with $\Gamma_{i} \neq(0) \neq \Gamma_{-j}$, then V is a (twisted) loop Jordan pair.

Let's consider finally the case when every negative component of Γ is zero (the case with all positive components of Γ equal to zero is similar).

Let γ_{l} be a homogeneous element of the centroid with degree $l, \gamma_{l}: V \rightarrow V$. Then $\operatorname{Ker} \gamma_{l} \unlhd V$, $\operatorname{Im} \gamma_{l} \unlhd V$ and they annihilate each other. Since V is prime, it follows that γ_{l} is injective.

From $\gamma_{l}\left(V_{i}\right) \subseteq V_{i+l}$, it follows that $\operatorname{dim} V_{i}=\operatorname{dim} V_{i} \gamma_{l} \leq \operatorname{dim} V_{i+l}$. For every $i, 0 \leq i \leq l-1$, the ascending sequence: $\cdots \operatorname{dim} V_{i} \leq \operatorname{dim} V_{i+l} \leq \operatorname{dim} V_{i+2 l} \leq \cdots$ stabilizes in some k_{i}, that is, $\operatorname{dim} V_{i+k_{i} l}=\operatorname{dim} V_{i+\left(k_{i}+1\right) l}$.

Let $k\left(\gamma_{l}\right)=\max \left\{k_{i} \mid 0 \leq i \leq l-1\right\}$. For every $h \geq k(\gamma)$ the linear mapping $\gamma_{l}: V_{h} \rightarrow V_{h+l}$ is bijective.

Let Γ_{h} be the set of homogeneous elements in Γ (so $\left(\Gamma_{h} \backslash\{0\}\right)^{-1} V$ is a graded Jordan pair over $\left(\Gamma_{h} \backslash\{0\}\right)^{-1} \Gamma$ and an arbitrary nonzero homogeneous element of $\Gamma_{h}^{-1} \Gamma$ is invertible).

Let $n=\min \left\{l>0 \mid C_{l}=\left(\Gamma_{h}^{-1} \Gamma\right)_{l} \neq 0\right\}$. If $0 \neq c_{n} \in C_{n}$, then there exist $i, j, i>j$, and $0 \neq \gamma_{i} \in \Gamma_{i}, 0 \neq \gamma_{j} \in \Gamma_{j}$ with $c_{n}=\gamma_{j}^{-1} \gamma_{i}$. Let k be a multiple of n such that $k \geq \max \left(k\left(\gamma_{i}\right), k\left(\gamma_{j}\right)\right)$ (let's notice that we can write $V_{h+j} \gamma_{j}^{-1} \subseteq V_{h} \subseteq V$ if $h \geq k$, even if there is no γ_{j}^{-1} in Γ). Hence, $V_{h+n}=V_{h+n+j} \gamma_{j}^{-1}=V_{h+n+j-i} \gamma_{i} \gamma_{j}^{-1}=V_{h} c_{n}$.

Let's consider the finite-dimensional vector space $\mathcal{V}=\mathcal{V}_{0}+\mathcal{V}_{1}+\cdots \mathcal{V}_{n-1}$ with $\mathcal{V}_{h}=V_{h+k}$ for $0 \leq h \leq n-1$.

If $0 \leq r, s \leq n-1, b_{k+r}^{\sigma} \in V_{k+r}^{\sigma}, b_{k+s}^{-\sigma} \in V_{k+s}^{-\sigma}, \sigma= \pm 1$, then

$$
\left\{b_{k+r}^{\sigma}, b_{k+s}^{-\sigma}, b_{k+r}^{\sigma}\right\} \in V_{3 k+2 r+s}^{\sigma} .
$$

Let $2 k+2 r+s=l n+t, l \geq 0,0 \leq t \leq n-1$. Then $V_{3 k+2 r+s}=V_{k+l n+t}=V_{k+t} c_{n}^{l}$.
Define

$$
\left\{b_{k+r}^{\sigma}, b_{k+s}^{-\sigma}, b_{k+r}^{\sigma}\right\}^{\star}=\left\{b_{k+r}^{\sigma}, b_{k+s}^{-\sigma}, b_{k+r}^{\sigma}\right\} c_{n}^{-l} \in V_{k+t}=\mathcal{V}_{t}
$$

Then \mathcal{V} becomes a finite-dimensional $Z / n Z$-graded Jordan pair with this new product and we get the wanted result.

Case 2. We will assume now that V is finitely generated
According to the classification of prime non-degenerated Jordan pairs by E. Zelmanov, we know that a finitely generated prime Jordan pair V is either special or strongly PI. Since the strongly PI case is already known, we only need to consider the special case.

In order to prove Theorem 2 in this case, we need to know the relation between the Gelfand Kirillov dimension of a special Jordan pair and the Gelfand Kirillov dimension of its associative enveloping algebra. We will use a result similar to the one used by Skosirskii ([SK1]) for algebras.

Lemma 4.2. Let $\left(P^{-}, P^{+}\right)$be a special Jordan pair finitely generated by $a_{1}, a_{2}, \ldots, a_{n}$. Then every word in the associative enveloping pair can be expressed as a linear combination of elements of the form $\omega^{\prime} \omega \omega^{\prime \prime}$, where ω is a Jordan word and the lengths of ω^{\prime} and $\omega^{\prime \prime}$ are not greater than $2 n$.
Proof. There exists an associative algebra A (that can be assumed finitely generated by $\left.a_{1}, \ldots, a_{n}\right)$ such that $\left(P^{-}, P^{+}\right) \subseteq\left(A^{-}, A^{+}\right)$and $A=A^{-}+\left(A^{-} A^{+}+\right.$ $\left.A^{+} A^{-}\right)+A^{+}$.

Let $\omega=v_{1}^{\sigma} v_{2}^{-\sigma} v_{3}^{\sigma} \cdots$ be a product of Jordan words v_{i} and the total degree of ω in a_{1}, \ldots, a_{n} is N.

We will use an inverse induction on the length of v_{σ}, maximal among the lengths of elements v_{i}^{σ}. If the length is N, then $v=v^{\sigma}$. Let us assume that some $v_{i}^{-\sigma}$ placed to the right (similarly to the left) of the element v^{σ} has length ≥ 3. Using that $v_{k}^{-} v_{j}^{+} v_{i}^{-}=\left\{v_{k}, v_{j}, v_{i}\right\}^{-}-v_{i}^{-} v_{j}^{+} v_{k}^{-}$, we can assume, without loss of generality, that this element and v^{σ} are adjacent.

But

$$
v^{\sigma} a^{-\sigma} b^{\sigma} a^{-\sigma}=\left(v^{\sigma} a^{-\sigma} b^{\sigma}+b^{\sigma} a^{-\sigma} v^{\sigma}\right) a^{-\sigma}-b^{\sigma}\left(a^{-\sigma} v^{\sigma} a^{-\sigma}\right)
$$

where elements in brackets are Jordan words of length strictly greater than the length of v^{σ}.

Rewrite every Jordan word v_{i}^{σ} except v^{σ} as an expression in the generators $a_{j}^{ \pm}, \sigma=\sum \cdots v^{\sigma} a_{j 1}^{-\sigma} a_{j 2}^{\sigma} a_{j 3}^{-\sigma} \cdots$.

A double occurrence of a generator $a_{j}^{-\sigma}$ to the right of v^{σ} gives rise to $a_{j}^{-\sigma} a_{k}^{\sigma} a_{j}^{-\sigma}$, the case which has been considered above.

Finally, we get that ω is of the form:

$$
\omega=(\cdots) v^{\sigma} a_{i 1}^{-\sigma} a_{i 2}^{\sigma} a_{i 3}^{-\sigma} \cdots
$$

where all the generators $a_{i 1}^{-\sigma}, a_{i 3}^{-\sigma}, \ldots$ are distinct.
Hence the length to the right of v^{σ} (and similarly to the left) is $\leq 2 n$, where n is the number of generators.

Lemma 4.3. If P is a finitely generated special Jordan pair and A is an associative algebra as in Lemma 4.2 with $\left(P^{-}, P^{+}\right) \subseteq\left(A^{-}, A^{+}\right)$, then $G K-$ $\operatorname{dim}(P)=G K-\operatorname{dim}(A)$.
Proof. Let U be a finite dimensional vector space that generates P and A.
Then

$$
G K-\operatorname{dim}(A)=\limsup _{n \rightarrow \infty} \frac{\ln \operatorname{dim} U^{n}}{\ln n}
$$

But $U^{n} \subseteq U^{\prime} W^{m} U^{\prime \prime}$, where U^{\prime} and $U^{\prime \prime}$ are subspaces of bounded dimensions (not more than C) and W^{m} is spanned by Jordan words in elements of U of length $\geq m=n-4 r\}$ where r is the dimension of the vector space U. So $\operatorname{dim} U^{n} \leq C^{2} \operatorname{dim} W^{m}$.

Hence,

$$
\begin{aligned}
& G K-\operatorname{dim}(A)=\limsup _{n \rightarrow \infty} \frac{\ln \operatorname{dim} U^{n}}{\ln n} \leq \limsup _{n \rightarrow \infty} \frac{\ln \left(C^{2} \cdot \operatorname{dim} W^{m}\right)}{\ln n}= \\
& \limsup _{m \rightarrow \infty} \frac{\ln C^{2}+\ln \left(\operatorname{dim} W^{m}\right)}{\ln (m+4 r)}=\limsup _{m \rightarrow \infty} \frac{\ln \operatorname{dim} W^{m}}{\ln m}=G K-\operatorname{dim} P
\end{aligned}
$$

Now we can conclude the proof of Theorem 2 in the finitely generated case.
If the considered Jordan pair P is finitely generated and special, its associative enveloping algebra A is finitely generated and $G K-\operatorname{dim}(A)=1$. By the result by Small, Stafford and Warfield Jr. [SSW] we know that A is PI. Hence P is strongly PI and the result follows from Case 1.

Case 3. The General Case

Lemma 4.4. Let $V=\sum_{i \in Z} V_{i}$ be a Z-graded Jordan pair having all dimensions $\operatorname{dim} V_{i}$ uniformly bounded. Then the locally nilpotent radical $\operatorname{Loc}(V)$ is equal to the McCrimmon radical $M(V)$.
Proof. It is known that $M(V) \subseteq \operatorname{Loc}(V)$ (see [Z4]).
Choose an arbitrary homogeneous element $v_{k}^{\sigma} \in V_{k}^{\sigma}$ and consider the homotope Jordan algebra $J=V^{-\sigma}, x \star y=\left\{x, v_{k}^{\sigma}, y\right\}$. Assign a new degree to homogeneous elements of $J, \operatorname{deg}\left(V_{i}^{-\sigma}\right)=i+k$. With this degree J becomes a graded Jordan algebra having all dimensions $\operatorname{dim} J_{i}$ uniformly bounded. In [MZ1] it was proved that $\operatorname{Loc}(J)=M(J)$. Since $\operatorname{Loc}(V)^{-\sigma} \subseteq \operatorname{Loc}(J)$ and $\left\{v_{k}^{\sigma}, M(J), v_{k}^{\sigma}\right\} \subseteq M(V)$ (see [Z4]), we conclude that $\left\{v_{k}^{\sigma}, \operatorname{Loc}(V), v_{k}^{\sigma}\right\} \subseteq M(V)$.

In particular, an arbitrary homogeneous element of $\operatorname{Loc}(V)$ lies in $M(\operatorname{Loc}(V)) \subseteq M(V)$. This implies that $\operatorname{Loc}(V) \subseteq M(V)$. The Lemma is proved.

Let V be a Jordan pair satisfying the assumptions of Theorem 2 and let \tilde{V} be a finitely generated graded subpair of V. The nondegenerate pair $\tilde{V} / M(\tilde{V})$) can be approximated by finitely generated prime nondegenerate Jordan pairs. By the Case 2 each of these pairs is either $\mathcal{L}(U)$ or can be embedded into a loop pair $\mathcal{L}(U)$, where U is a simple finite dimensional pair. By Lemma 4.1, $\operatorname{dim} U \leq N(d)$, where $d=\max \operatorname{dim} V_{i}$.

Let T be the ideal of the free Jordan pair consisting of those elements which are identically zero in all Jordan pairs of dimension $\leq N(d)$.

We proved that for an arbitrary finitely generated subpair \tilde{V} of V, the set of values $T(\tilde{V})$ lies in the locally nilpotent $\operatorname{radical} \operatorname{Loc}(\tilde{V})$. This implies that $T(V) \subseteq \operatorname{Loc}(V)$. By Lemma 4.4 $\operatorname{Loc}(V)=M(V)=(0)$, which implies $T(V)=(0)$. Hence the pair V is strongly PI, which is the Case 1 . Theorem 2 is proved.

In the next section we will need the following lemma about loop Jordan pairs.

Let W be a simple finite dimensional Jordan pair graded by $Z / l Z, W=$ $\sum_{i=0}^{l-1} W_{i}$, and let $\mathcal{L}(W)=\sum_{i=q \bmod l} W_{i} \otimes t^{q}$ be a (twisted) loop pair.

Lemma 4.5. For any $k \geq 1$ we have

1) The subpair $\sum_{i \geq k} \mathcal{L}(W)_{i}$ is finitely generated,
2) Every subpair $P \subseteq \mathcal{L}(W)$ containing $\sum_{i \geq k} \mathcal{L}(W)_{i}$ is prime and nondegenerate.
Proof. 1) We will prove that $\sum_{i \geq k} \mathcal{L}(W)_{i}$ is generated by $\sum_{i=k}^{3 k+2 l} \mathcal{L}(W)_{i}$.
Let $q>3 k+2 l, a \in W_{j}^{\sigma}, 0 \leq j \leq l-1, j \equiv q \bmod l$ and $a \otimes t^{q} \in \mathcal{L}(W)_{q}$.
We have that $W^{\sigma}=\left\{W^{\sigma}, W^{-\sigma}, W^{\sigma}\right\}$ (by simplicity of W), so $a=$ $\sum_{i}\left\{a_{i}^{\prime \sigma}, b_{i}^{-\sigma}, a_{i}^{\prime \prime \sigma}\right\}$, with $a_{i}^{\prime \sigma} \in W_{\pi(i)}^{\sigma}, b_{i}^{-\sigma} \in W_{\mu(i)}^{-\sigma}$, and $a_{i}^{\prime \prime \sigma} \in W_{\rho(i)}^{\sigma}, 0 \leq \pi(i)$, $\mu(i), \rho(i) \leq l-1$.

Choose integers $k \leq q_{1}(i), q_{2}(i) \leq k+l-1$ such that $q_{1}(i) \equiv \pi(i) \bmod l$, $q_{2}(i)=\rho(i) \bmod l$ and $q_{3}(i)=q-q_{1}(i)-q_{2}(i)$.

From $q>3 q+2 l$, it follows that $q_{3}(i)>k$. Now,

$$
a \otimes t^{q}=\sum_{i}\left\{a_{i}^{\prime \sigma} \otimes t^{q_{1}(i)}, b_{i}^{-\sigma} \otimes t^{q_{3}(i)}, a_{i}^{\prime \prime \sigma} \otimes t^{q_{2}(i)}\right\}
$$

that is,

$$
\mathcal{L}(W)_{q} \subseteq \sum\left\{\mathcal{L}(W)_{q_{1}}, \mathcal{L}(W)_{q_{3}}, \mathcal{L}(W)_{q_{2}}\right\}
$$

where $k \leq q_{1}, q_{2}, q_{3} \leq q$.
2) Note that if Ω is a homogeneous operator in the multiplication algebra of $\mathcal{L}(W)$ and $\left(\sum_{i=k}^{k+l-1} \mathcal{L}(W)_{i}\right) \Omega=(0)$, then $\Omega=0$

Let P be a subpair of $\mathcal{L}(W)$ with $P \supseteq \sum_{i=k}^{\infty} \mathcal{L}(W)_{i}$. If $a^{\sigma} \in P^{\sigma}$ is an absolute zero divisor of the pair P, then $\left(\sum_{i=k}^{k+l-1} \mathcal{L}(W)_{i}\right) U(a)=(0)$. This implies that $\mathcal{L}(W) U(a)=(0)$. Since $\mathcal{L}(W)$ is nondegenerate, it follows that $a=0$. We have proved that P is nondegenerate.

Let I, J be non zero graded ideals of P with $I \cap J=(0)$.
Take $0 \neq a^{\sigma} \otimes t^{p} \in I, 0 \neq b^{\sigma} \otimes t^{q} \in J$ and $c\left(x_{1}, \ldots, x_{n}, \ldots\right)$ an arbitrary multilineal expression in the free Jordan pair. Then

$$
c\left(a^{\sigma} \otimes t^{p}, b^{\sigma} \otimes t^{q}, \sum_{i \geq k} \mathcal{L}(W)_{i}, \sum_{i \geq k} \mathcal{L}(W)_{i}, \ldots\right)=(0) .
$$

This implies that $c\left(a^{\sigma}, b^{\sigma}, W, W, \ldots\right)=(0)$, what contradicts primeness of W. This proves the lemma.

5. The Lie Case

Lemma 5.1. Let A be a simple $Z / l Z$-graded finite dimensional algebra and let a be a homogeneous element of degree d(a). Consider the loop algebra $\sum_{i=j \bmod l} A_{i} \otimes t^{j}$ and its subalgebra $\sum_{j \geq m} A_{i} \otimes t^{j}$. Choose an integer $n \geq m$ such that $n=d(a) \bmod l$ and let I be the ideal generated by $a \otimes t^{n}$ in $\sum_{j \geq m} A_{i} \otimes t^{j}$. Then $I \supseteq \sum_{j \geq p} A_{i} \otimes t^{j}$ for some $p \geq m$.

Proof.

Let a_{1}, \ldots, a_{s} be homogeneous elements of A and $b=a P\left(a_{1}\right) \cdots P\left(a_{s}\right)$, where $P=R$ or L. We choose integers $j_{1}, \ldots j_{s} \geq m$ such that $j_{k}=d\left(a_{k}\right) \bmod$ $l, k=1, \ldots s$. Then $\left(a \otimes t^{n}\right) P\left(a_{1} \otimes t^{j_{1}}\right) \cdots P\left(a_{s} \otimes t^{j_{s}}\right)=b \otimes t^{q} \in I$ and for an arbitrary $k \in Z_{\geq 0}$ we have that

$$
b \otimes t^{q+k l}=\left(a \otimes t^{n}\right) P\left(a_{1} \otimes t^{j_{1}+k l}\right) \cdots P\left(a_{s} \otimes t^{j_{s}}\right) \in I .
$$

Let's take a basis e_{1}, \ldots, e_{r} of A that consists of elements of the type $e_{i}=$ $a R\left(a_{i_{1}}\right) \cdots R\left(a_{i r_{i}}\right)$, where the elements $a_{i j}$ are homogeneous. According to what we have mentioned above, there exist integers $q_{1}, \ldots, q_{r} \geq m$ such that $e_{i} \otimes t^{q_{i}+l Z \geq 0} \in$ I. It suffices to take $p=\max _{1 \leq i \leq r} q_{i}$.

Remark. The assertion of the Lemma 5.1 is true also for $Z / l Z$-graded simple finite dimensional Jordan pairs.

We can already prove the main result giving the structure of prime Z-graded Lie algebras.

Proof of Theorem 1

Let $L=\sum_{i \in Z} L_{i}=\sum_{k=-n}^{n} L_{(k)}$ be a Lie algebra that satisfies the assumptions of Theorem 1. By Lemma 3.1 and Theorem 2, we know that $V=\left(L_{(-n)}, L_{(n)}\right)$ can be embedded into a loop pair $\mathcal{L}(W), V \hookrightarrow \mathcal{L}(W)$, where W is a simple finitedimensional Jordan pair and either $\sum_{i \geq k} \mathcal{L}(W)_{i} \subseteq V$ or $\sum_{i \geq k} \mathcal{L}(W)_{-i} \subseteq V$, for some $k \geq 1$. Let's assume that $\sum_{i \geq k} \mathcal{L}(W)_{i} \subseteq V$.

For an arbitrary scalar $\alpha \in F$ we define a homomorphism

$$
\varphi_{\alpha}: W \otimes_{F} F\left[t^{-1}, t\right] \longrightarrow W
$$

via $t \rightarrow \alpha$. Since $\varphi_{\alpha}\left(\sum_{i \geq k} \mathcal{L}(W)_{i}\right)=\varphi_{\alpha}\left(\sum_{i \geq k} \mathcal{L}(W)_{-i}\right)=W$, it follows that $\varphi_{\alpha}(V)=W$.

Let's denote $I_{\alpha}=\operatorname{Ker} \varphi_{\alpha} \cap V$ and \tilde{I}_{α} the ideal in the Lie algebra generated by I_{α}. Using Lemma 14 in [Z1] we have that $\tilde{I}_{\alpha} \cap V=I_{\alpha}$.

Let \mathcal{G} be the Tits-Kantor-Koecher construction associated to the Jordan pair W. A $Z / l Z$-graduation of W induces a $Z / l Z$-graduation of \mathcal{G} and so \mathcal{G} is $Z \times Z / l Z$-graded. The 0 component of this $Z \times Z / l Z$-graduation contains a Cartan subalgebra H.

Every $Z \times Z / l Z$-homogeneous component of \mathcal{G} decomposes as a sum of eigenspaces with respect to the action of H. All the eigenspaces have dimension 1 and there exists a nonzero eigenvector x such that $[[\mathcal{G}, x], x]=F x$. Hence, every homogeneous component $W_{p}^{\sigma} \neq(0)$, with $\sigma= \pm$, contains a non zero element a^{\prime} such that $\left\{a^{\prime}, W^{-\sigma}, a^{\prime}\right\}=F a^{\prime}$.

Choose an integer $q \geq k, q=p \bmod l$ and let $a^{\prime} \otimes t^{q}=a \in \sum_{i \geq k} \mathcal{L}(W)_{i} \subseteq$ V.

By Lemma 5.1 the ideal $i d_{V}(a)$ of the Jordan pair (generated by the element a) contains a $\sum_{i \geq m} \mathcal{L}(W)_{i}$ for some $m \geq k$.

By Lemma 4.4(1), the subpair $\sum_{i \geq m} \mathcal{L}(W)_{i}$ is finitely generated. Choose, inside of the ideal $i d_{L}(a)$ generated by a in the algebra L, a finite set of elements $a_{i}=\operatorname{aad}\left(x_{i_{1}}\right) \cdots a d\left(x_{i_{r(i)}}\right), 1 \leq i \leq s, x_{i j} \in L$ that are $0 Z \times 0 Z / l Z$-homogeneous and include generators of $\sum_{i \geq m} \mathcal{L}(W)_{i}$.

Consider $L^{\prime}=<a_{1}, \ldots, a_{s}>$ the subalgebra generated by the elements $a_{1}, \ldots, a_{s}, m=2^{r_{1}}+\cdots+2^{r_{s}}$ (as in Lemma 2.1) and T the T-ideal generated by all identities satisfied by all Lie algebras of dimension $\leq R(m)$.

For an arbitrary scalar, $0 \neq \alpha \in F$, we have $\varphi_{\alpha}(a)=\alpha^{q} a^{\prime}$
Hence $\left[\left[\varphi_{\alpha}(L), \varphi_{\alpha}(a)\right], \varphi_{\alpha}(a)\right] \subseteq\left\{a^{\prime}, W^{-\sigma}, a^{\prime}\right\}=F a^{\prime}=F \varphi_{\alpha}(a)$.
By Lemma 2.1, the Lie algebra $\varphi_{\alpha}\left(L^{\prime}\right)$ satisfies all the identities of T. Since $\cap_{0 \neq \alpha \in F} \tilde{I}_{\alpha}=(0)$ (notice that $\left(\cap_{0 \neq \alpha \in F} \tilde{I}_{\alpha}\right) \cap V=\cap_{0 \neq \alpha \in F} I_{\alpha}=(0)$), it follows that $T\left(L^{\prime}\right)=(0)$

Let $J\left(L^{\prime}\right)$ a $Z \times Z / l Z$-graded maximal ideal of L^{\prime} such that $J\left(L^{\prime}\right) \cap L_{(n)}^{\prime}=$ $J\left(L^{\prime}\right) \cap L_{(-n)}^{\prime}=(0)$ (it exists by Zorn Lemma). The Jordan pair $\left(L_{(-n)}^{\prime}, L_{(n)}^{\prime}\right)$ is prime and nondegenerate by Lemma 4.4(1).

An arbitrary non-zero graded ideal of $L^{\prime} / J\left(L^{\prime}\right)$ has nonzero intersection with the pair $\left(L_{(-n)}^{\prime}, L_{(n)}^{\prime}\right)$. By Lemma 3.2, the algebra $L^{\prime} / J\left(L^{\prime}\right)$ is prime and nondegenerate. Furthermore, $T\left(L^{\prime} / J\left(L^{\prime}\right)\right)=(0)$, so $L^{\prime} / J\left(L^{\prime}\right)$ is strongly PI. Using Lemma 2.6(2) and Mathieu's theorem (see [Ma2]), ($\left.\Gamma_{h}\left(L^{\prime} / J\left(L^{\prime}\right)\right) \backslash\{0\}\right)^{-1}\left(L^{\prime} / J\left(L^{\prime}\right)\right)$ is isomorphic to a loop algebra $\mathcal{L}(\mathcal{G})$. By Lemma 4.1, $\operatorname{dim}_{F}(\mathcal{G}) \leq m=\max (d(2 d+$ 1), 248). Let T_{m} be the ideal of the free Lie that consists of all the identities that are satisfied identically in all Lie algebras of dimension $\leq m$. Then $T_{m}\left(L^{\prime}\right) \subseteq J\left(L^{\prime}\right)$ and so $T_{m}\left(L^{\prime}\right) \cap L_{(n)}=(0)$.

Since L^{\prime} is an arbitrary finitely generated subalgebra of $i d_{L}(a)$ containing a given (finite) subset and such subalgebras cover the ideal $i d_{L}(a)$, we conclude that $T_{m}\left(i d_{L}(a)\right) \cap L_{(n)}=(0)$.

But the ideal $T_{m}\left(i d_{L}(a)\right)$ of $i d_{L}(a)$ is invariant with respect to all the derivations of $i d_{L}(a)$. Hence $T_{m}\left(i d_{L}(a)\right)$ is an ideal of L. By Lemma 3.1(1), $T_{m}\left(i d_{L}(a)\right) \cap L_{(n)}=(0)$ implies $T_{m}\left(i d_{L}(a)\right)=(0)$. So the algebra $i d_{L}(a)$ is strongly PI. Finally it suffices to apply Lemma 2.9 to finish the proof of Theorem 1.

6. References

[H] Humphreys, J. E., "Introduction to Lie algebras and Representation Theory," Springer-Verlag, 1970.
[J] Jacobson, N., "Lie algebras," Dover Publ. Inc., 1962.
[K1] Kac, V. G., Simple graded Lie algebras of finite growth, Math. USSR Izv. 2 (1968), 1271-1311.
[KMZ] Kac,V. G., C. Martínez and E. Zelmanov, Graded simple Jordan superalgebras of growth one, Memoirs Amer. Math. Soc. 150 (2001).
[KvL] Kac, V. G., and J. van de Leur, On classification of superconformal algebras, Strings 88, World Sci. 2 (1989), 77-106.
[Ko] Kostrikin, A. I., On the Burnside problem, Izv. Akad. Nauk SSSR 23 (1959), 3-34.
[L] Loos,O., "Jordan pairs," Lecture Notes in Mathematics 460, SpringerVerlag, Berlin-New York, 1975.
[M] Martínez, C., Gelfand-Kirillov dimension in Jordan algebras, Trans. Amer. Math. Soc. 348 (1996), 119-126.
[MZ1] Martínez, C., and E. Zelmanov, Jordan algebras of Gelfand-Kirillov dimension one, J. of Algebra 180 (1996), 211-238.
[MZ2] -, Simple and prime graded Jordan Algebras, J. of Algebra 194 (1997), 594-613.
[Ma1] Mathieu, O., Classification des algèbres de Lie graduées simples de croissance ≤ 1, Inventiones Math. 86 (1986), 371-426.
[Ma2] -, Classification of simple graded Lie algebras of finite growth, Inventiones Math. 108 (1992), 455-519.
[Ro] Rowen, L., "Polynomial Identities in Ring Theory," Academic Press, New York, 1962.
[SK1] Skosirskii, V. G., Radicals in Jordan algebras, Sibirsk Math. Zh. 29 (1988), 154-166.
[SK2] -, On nilpotency in Jordan and right alternative algebras, Algebra i Logika 18 (1979), 73-85.
[SSW] Small, L. W., J. T. Stafford, and R. B. Warfield, Jr., Affine algebras of Gelfand Kirillov dimension 1 are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), 407-414.
[Z1] Zelmanov, E., Lie algebras with algebraic associated representation, Math. Sb. 121(163) (1983), 545-561.
[Z2] -, Lie algebras with a finite grading, Math. USSS Sbornik 124(166) (1984), 353-392.
[Z3] -, Characterization of McCrimmon radical, Sibirsk Math. Zh. 25 (1984), 190-192.
[Z4] -, Absolute zero divisors in Jordan pairs and Lie algebras, Mat. Sb. 112 (154) (1980), 611-629.

Consuelo Martínez
Departamento de Matemáticas
Universidad de Oviedo
C/ Calvo Sotelo, s/n
33007 Oviedo SPAIN
chelo@pinon.ccu.uniovi.es

Received November 10, 2004
and in final form March 8, 2005

[^0]: * Partially supported by MTM 2004 08115-C04-01 and FICYT PR-01-GE-15

