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1. Introduction

Throughout the paper we consider algebras over an algebraically closed field F of
zero characteristic.

By a Z-graded algebra we mean an algebra L =
∑

i∈Z Li, LiLj ⊆ Li+j ,
having all homogeneous components Li finite dimensional. In [Ma1], [Ma2] (see
also the earlier work [K1]) O. Mathieu classified all graded simple Lie algebras
with polynomial growth of dimensions dimLi . He proved that every such algebra
is a (twisted) loop algebra or an algebra of Cartan type or the Virasoro algebra
Vir.

The problem of classification of Z -graded Lie superalgebras with all dimLi

uniformly bounded is still open. Of particular interest is the case when the even
part of L contains Vir, that is, when L is a superconformal algebra (see [KvL]).
In this paper we modify O. Mathieu’s result [Ma1] to make it applicable to the
study of the even part of a superconformal algebra (see [MZ1], [KMZ]).

Recall that an algebra L is called prime if for any two nonzero ideals
(0) 6= I, J � L we have IJ 6= (0). A Lie algebra L is nondegenerate if a ∈ L ,
[[L, a], a] = (0) implies a = 0. Following [Z2] we say that L is a Lie algebra
with finite grading if L =

∑
i∈Z L(i) , [L(i), L(j)] ⊆ L(i+j) , the subspaces L(i) can

be infinite dimensional, but {i|L(i) 6= (0)} is finite. The grading is not trivial if∑
i6=0 L(i) 6= (0). All Jordan algebras and their generalizations can be interpreted

as Lie algebras with finite gradings (see [Z2]).
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Let L =
∑

i∈Z Li be a graded Lie algebra, all dimensions dimLi are uni-
formly bounded and L0 is not solvable. Then L0 contains a copy of sl2(F ) =
Fe + Fh + Ff , [e, f ] = h , [h, e] = 2e , [h, f ] = −2f . The adjoint operator
ad(h) : L → L has only finitely many eigenvalues and the decomposition of L into
a direct sum of eigenspaces is a finite grading on L , which is compatible with the
initial Z -grading.

For a finite dimensional simple algebra G let L(G) = G ⊗ F [t−1, t] be its
loop algebra. Every finite grading on G extends to a finite grading on L(G) which
is compatible with the Z -grading. If G is graded by a finite cyclic group Z/lZ ,
G = G0 + · · ·+Gl−1 , then we will refer to

∑
i=j mod l Gi⊗tj as a twisted loop algebra.

The Virasoro algebra naturally acts on L(G) and the semidirect sum L =
L(G)×V ir is a prime nondegenerate Z -graded algebra.

Theorem 1. Let L =
∑

i∈Z Li be a Z -graded prime nondegenerate algebra con-
taining the Virasoro algebra, the dimensions dim Li are uniformely bounded. Sup-
pose that L has a nontrivial finite grading which is compatible with the Z -grading
above. Then L ' L(G) >�V ir for some finite dimensional simple Lie algebra G .

We prove also the following theorem on Jordan pairs (see [L]) which gen-
eralizes [MZ1] and determines the structure of Z -graded prime nondegenerated
Jordan pairs having the dimensions of the homogeneous components uniformly
bounded.

Theorem 2. Let V = (V −, V +) =
∑

i∈Z Vi be a prime nondegenerate Z -graded
Jordan pair having all dimVi uniformly bounded. Then either V is isomorphic to
a (twisted) loop pair L(W ), where W is a finite dimensional simple Jordan pair
or V is embeddable in L(W ) and

∑
i≥k L(W )i ⊆ V ⊆ L(W ) or

∑
i≥k L(W )−i ⊆

V ⊆ L(W ).

2. The strongly PI case

Let f(x1, . . . , xn) be a nonzero element of the free associative algebra. We say
that an associative algebra A satisfies the polynomial identity f(x1, . . . , xn) = 0
if f(a1, . . . , an) = 0 for arbitrary elements a1, . . . , an ∈ A . An algebra satisfying
some polynomial identity is said to be a PI-algebra.

For an arbitrary algebra A the multiplication algebra M(A) of A is the
subalgebra of EndF (A) generated by all right and left multiplications R(a) : x →
xa , L(a) : x → ax , a ∈ A .

An algebra A is strongly PI if its multiplications algebra M(A) is PI.

An element a in a Lie algebra L over a field F is said to have rank 1 if
[[L, a], a] ⊆ Fa .

Lemma 2.1. ([Z1]) There exists a function R(n) such that an arbitrary Lie
algebra generated by n-elements of rank 1 has dimension ≤ R(n).

An ideal of the free Lie (resp. associative) algebra is said to be a T-ideal if
it is invariant under all substitutions. For an arbitrary algebra L the ideal of all
identities satisfied by L is a T -ideal.
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Lemma 2.2. Let L be a Lie algebra over a field F , chF = 0 and a ∈ L an
element of rank 1. Let’s consider s elements ai = aad(xi1) · · · ad(xiri

), 1 ≤ i ≤ s,
xij ∈ L. Let m = 2r1 + 2r2 + · · · + 2rs and let T be the T -ideal of all identities
that are satisfied by all Lie algebras of dimension ≤ R(m). Then the subalgebra
< a1, . . . , as > satisfies all identities of T

Proof. Let’s consider the Lie algebra L̃ = L((t−1, t)) of Laurent series over L .
Clearly, L̃ is an algebra over the field of Laurent series F ((t−1, t)). The element
a is an element of rank 1 in L̃ , [[L̃, a], a] ⊆ F ((t−1, t))a .

For a series b =
∑

i bit
i , bi ∈ L , let’s denote min(b) = bk if bk 6= 0 and

bi = 0 for every i < k .

For arbitrary elements xij , 1 ≤ i ≤ s , 1 ≤ j ≤ ri , we have e2ad(xijt) −
ead(xijt) = ad(xij)t + (· · ·)t2 .

Therefore,

aad(xi1) · · · ad(xiri
) = min(a(e2ad(xi1t) − ead(xi1t))) · · · (e2ad(xiri

t) − ead(xiri
t)). (*)

Since ead(xijt) , e2ad(xijt) are automorphisms of L̃ it follows that the elements
aek1ad(xi1t) · · · ekriad(xirit) , 1 ≤ k1, . . . ≤ kri

≤ 2 , are elements of rank 1 in L̃ .

Let’s denote as B the subalgebra of L̃ generated by m elements:
aek1ad(xi1t) · · · ekriad(xirit) , where k1, . . . kri

∈ {1, 2} , 1 ≤ i ≤ s . We have
dimF ((t−1,t)) B ≤ R(m).

Taking (*) into account, an arbitrary commutator σ in a1, . . . , as is either
0 or min(b) where b ∈ B .

Let f(x1, . . . , xk) ∈ T . Without loss of generality we will assume that f is
multilineal. Let us consider k arbitrary commutators σ1, . . . , σk in a1, . . . , as . If
σi = 0 for some i , then f(σ1, . . . , σk) = 0. In the other case, there exist elements
b1, . . . , bk ∈ B such that σi = min(bi), 1 ≤ i ≤ s . Hence, f(σ1, . . . , σk) = 0 or
f(σ1, . . . , σk) = min f(b1, . . . , bk). But f(b1, . . . , bk) = 0 and so Lemma is proved.

Recall that a centroid of an algebra A is the centralizer of the multiplication
algebra M(A) in EndF (A)

Lemma 2.3. Let A =
∑

i∈Z Ai be a graded algebra whose centroid Γ =
∑

i∈Z Γi

contains a homogeneous invertible element γ ∈ Γi of degree i 6= 0. Then A ' L(G)
is a (twisted) loop algebra.

Proof. Let γi ∈ Γi with γ−1
i = γ−i ∈ Γ−i and let a1

j , . . . , a
d
j ∈ Aj be linearly

independent elements. Then

γia
1
j , . . . , γia

d
j ∈ Ai+j

are also linearly independent. Hence dim Aj = dim Ai+j = dim A−i+j , for arbitrary
j ∈ Z .

Taking i the smallest index such that there exists an invertible γi , we can
define a finite dimensional algebra structure in G = A0 + A1 + · · · + Ai−1 by the
new law:
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al ? bh =

{
albh if l + h < i
γ−1

i (albh) if l + h ≥ i

It is clear that A is isomorphic to
∑

i=j mod l Gi ⊗ tj . Lemma is proved

Lemma 2.4. Let Λ be a subset of Z closed under addition and let m = gcd(Λ).
Then either Λ = mZ or m{i ∈ Z, i ≥ k} ⊆ Λ ⊆ mZ≥0 or −m{i ∈ Z, i ≥ k} ⊆
Λ ⊆ mZ≤0 for some k ≥ 1.

Proof. Suppose at first that Λ contains both a positive element i ≥ 1 and a
negative element −j , j ≥ 1. Then Λ contains the additive subgroup ijZ .

The quotient Λ/ijZ ⊆ Z/ijZ is a sub-semigroup of a finite group, hence
Λ/ijZ is a group. Hence Λ is a subgroup of Z and therefore Λ = mZ .

Now suppose that Λ ⊆ Z≥0 . Then, clearly Λ ⊆ mZ≥0 . Choose k ≥ 1 such
that km ∈ Λ. There exist elements λ1, . . . , λr ∈ Λ and integers k1, . . . , kr in Z
such that k1λ1 + · · ·+ krλr = m .

Choose a sufficiently large integer q such that q+ikj ≥ 0 for all j = 1, . . . , r
and for all i, 0 ≤ i ≤ k − 1. The element λ = q(

∑r
i=1 λi) is in Λ. We claim that

λ + mZ≥0 ⊆ Λ.

Indeed, for 0 ≤ i ≤ k − 1 we have λ + mi ∈ ∑r
i=1 Z≥0λi ⊆ Λ.

Now it is easy to see that for an arbitrary element λ′ ∈ Λ, if λ′, λ′ +
m, . . . , λ′ + (k − 1)m ∈ Λ then λ′ + km ∈ Λ as well and therefore the element
λ′′ = λ+m has the same property as λ′ . Hence λ′+mZ≥0 ⊆ Λ. Lemma is proved.

Lemma 2.5. Let Γ =
∑

Γi be a Z -graded (commutative and associative) do-
main over an algebraically closed field F such that the dimensions dimF Γi are
uniformly bounded. Then, either Γ ' F [t−m, tm] or

∑
i≥k Ftmi ⊆ Γ ⊆ F [tm] or∑

i≥k Ft−mi ⊆ Γ ⊆ F [t−m], where m ≥ 1, k ≥ 1.

Proof. Let us prove first that dimF Γi ≤ 1 for every i . Let d = max{dim Γi|
i ∈ Z} . Choose two arbitrary nonzero elements, ai, bi ∈ Γi .

Since dimF Γid ≤ d , there exists a nontrivial linear dependence relation

γda
d
i + γd−1a

d−1
i bi + · · ·+ γ0b

d
i = 0.

The polynomial f(x) = γdx
d + γd−1x

d−1 + · · ·+ γ0 can be decomposed as f(x) =
γd(x− α1)(x− α2) · · · (x− αd), with γd 6= 0, α1, α2, . . . , αd ∈ F .

We have 0 = f(ai

bi
) = γd(

ai

bi
− α1)(

ai

bi
− α2) · · ·

Hence ai = αkbi for some k . Now Λ = {i ∈ Z |Γi 6= (0)} is a subsemigroup
of Z and the result is a consequence of Lemma 2.4.

Let L =
∑

i∈Z Li be a strongly PI Z -graded prime nondegenerate Lie
algebra. Let d = maxi∈Z dim Li . Let Γ denote the centroid of L , Γh is the set of
homogeneous elements from Γ.
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Lemma 2.6. (1) Γ 6= (0) is an integral domain and the ring of fractions
(Γ\{0})−1L is a simple finite dimensional Lie algebra over the field K = (Γ\{0})Γ.

(2)The algebra L̃ = (Γh \{0})−1L is a graded simple algebra and dimF L̃i ≤
d, for an arbitrary i ∈ Z .

(3) Either L is isomorphic to a (twisted) loop algebra or there is a graded
embedding ϕ : Γ → F [t−m, tm] such that∑

i≥k

Ftim ⊆ ϕ(Γ) ⊆ F [tm] or
∑
i≥k

Ft−im ⊆ ϕ(Γ) ⊆ F [t−m].

Proof. For the assertion (1) cf. see [Ro].

(2) We only need to check that L̃ is graded simple. Let I be a non-zero
graded ideal of L . By (1), (Γ \ {0})−1I = (Γ \ {0})−1L .

Let dimK(Γ \ {0})−1L = r and fr(x1, . . . , xq) is a multilinear central
polynomial that corresponds to r × r matrices. Then (Γ \ {0})−1L is a faith-
ful irreducible module over the multiplication algebra M < (Γ \ {0})−1L > .
Hence, M < (Γ \ {0})−1L >' Mr(K). Consequently, there exist operators
ωi = ad(ai1) · · · ad(aiqi

), 1 ≤ i ≤ q , aij homogeneous elements of I such that
fr(ω1, . . . , ωq) 6= 0. Clearly, fr(ω1, . . . , ωq) ∈ Γh . Now,

L = (Lfr(ω1, . . . , ωq))fr(ω1, . . . , ωq)
−1 ⊆ Ifr(ω1, . . . , ωq)

−1 ⊆ (Γh \ {0})−1I.

This proves (Γh \ {0})−1I = (Γh \ {0})−1L and so L̃ is graded simple.

In order to prove (3) we will show that dimΓk ≤ d for an arbitrary k .
Let’s take d+1 arbitrary elements γ1, . . . , γd+1 ∈ Γk and a non zero homogeneous
element ai ∈ Li . Since aiγ1, aiγ2, . . . , aiγd+1 ∈ Li+k , there exists a non trivial
linear dependence relation

∑d+1
j=1 ξjaiγj = 0, ξj ∈ F . Since non zero elements in Γ

have zero nuclei and ai ∈ Ker
∑d+1

j=1 ξjγj , it follows that
∑d+1

j=1 ξjγj = 0.

We have proved that dimF Γk ≤ d and so the assertion (3) follows from
Lemmas 2.3 and 2.5.

Indeed, by Lemma 2.5, either Γ ' F [t−m, tm] or there exists the wanted
embedding. If Γ ' F [t−m, tm] , then L is a loop algebra by Lemma 2.3.

Lemma 2.7. Let L =
∑

i∈Z Li be a prime, nondegenerate, strongly PI Lie
algebra, dimLi ≤ d, as in the previous lemma. Let’s assume that V ir =

∑
i∈Z V iri

can be embedded into Der(L) as a graded algebra. Then L is isomorphic to a
(nontwisted) loop algebra.

Proof. If L is not isomorphic to a (twisted) loop algebra, then by Lemma 2.6
there exists a graded embedding ϕ : Γ → F [t−m, tm] , m ≥ 1, such that either∑

i≥k Ftim ⊆ ϕ(Γ) ⊆ F [tm] or
∑

i≥k Ft−im ⊆ ϕ(Γ) ⊆ F [t−m] for some k ≥ 1.

Let us assume that
∑

i≥k Ftim ⊆ ϕ(Γ) ⊆ F [tm] . This implies that Γ is
generated by a finite set of elements γi ∈ Γsi

, i = 1, 2, . . . , r .

Let s = max1≤i≤r si . The Virasoro algebra acts on Γ. For each generator γi

the subspace γiV ir−(s+1) = (0), since it is contained in Γ and has negative degree.
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So V ir−(s+1) is contained in the kernel of the action of the Virasoro algebra on
the derivations of Γ. By the simplicity of the Virasoro algebra, we have that
ΓV ir = (0).

Now the Virasoro algebra acts on a finite dimensional Lie algebra L̃K =
(Γ \ {0})−1L and the action is not trivial since V ir ⊆ Der(L). This leads to a
contradiction, since the Virasoro algebra is not strongly PI .

We showed that L is isomorphic to a loop algebra. Let us show that
this loop algebra is not twisted. Indeed, let Γ ' F [t−m, tm] , m ≥ 2. Then
ΓV ir1 = ΓV ir−1 = (0). Since V ir1 6= (0) and the algebra V ir is simple it follows
that ΓV ir = (0). Now we can argue as above.

Lemma 2.8. Let L be a prime nondegenerate Lie algebra and let I be a nonzero
ideal of L. Then I is a prime nondegenerate algebra.

Proof. We will prove first that I is nondegenerate. Indeed, let 0 6= a ∈ I and
[[I, a], a] = (0). Since L is nondegenerate, there exists an element x ∈ L such
that [[x, a], a] 6= 0. Now, Lad([[x, a], a])2 = Lad(a)2ad(x)2ad(a)2 ⊆ Iad(a)2 = (0),
(cf. [Ko]), a contradiction.

Now we will prove that I is prime. Let I ′ , I ′′ be non-zero ideals of I , with
[I ′, I ′′] = (0). Let idL(I ′′) the ideal of L generated by I ′′ . If [idL(I ′′), I ′] = (0),
then the nonzero ideal of L , idL(I ′′), has a non zero centralizer, which contradicts
primeness of L . Hence, J = [I ′, idL(I ′′)] is a non zero ideal of I . We have

ad(L)ad(I ′)2 ⊆ ad(I ′)ad(L)ad(I ′) + ad(I)ad(I ′) ⊆ ad(I ′)M < L > .

Let’s choose an arbitrary nonzero element a ∈ J , a =
∑

i aiad(xi1) · · · ad(xiri
) with

ai ∈ I ′′ , xij ∈ L , ri ≥ 0. So, for r = maxi ri we have

aad(I ′)2r ⊆
∑

aiad(I ′)M < L >= (0).

Hence, aad(J)2r = (0).

This proves that J has a nontrivial center, what contradicts the nondegen-
eracy of I and proves the lemma.

Lemma 2.9. Let L =
∑n

i∈Z Li be a Z -graded prime nondegenerate Lie algebra
containing the Virasoro algebra and having all the dimensions dimLi uniformly
bounded. Suppose that L contains a nonzero graded ideal I which is strongly PI.
Then L is isomorphic to the semidirect sum of a loop algebra L(G) (for some
finite dimensional simple Lie algebra G ) and the Virasoro algebra

Proof. By Lemma 2.8 I is a prime nondegenerate algebra. Moreover, since L is
prime, the action of Vir on I is faithful. Hence by Lemma 2.7 I ' L(G), with
dimG < ∞ . Again, since I is prime and nondegenerate it follows that the algebra
G is simple. For an arbitrary element a ∈ L let adI(a) denote the linear operator
adI(a) : I → I , x → [x, a] . The mapping a → adI(a) is an embedding of L into
the Lie algebra

Der(L(G)) = L(G) >�V ir.
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Since the Virasoro algebra is simple and not strongly PI, it follows that
V ir ∩ I = (0). Now comparing the dimensions of the homogeneous components
we conclude that the embedding L → Der(L(G)), a → adI(a) is an isomorphism.
The Lemma is proved

3. Lie-Jordan Connections

In this section we will study connections between Lie algebras and Jordan systems.

A Jordan pair P = (P−, P+) is a pair of vector spaces with a pair of trilinear
operations

{ , , } : P− × P+ × P− → P−, { , , } : P+ × P− × P+ → P+

that satisfies the following identities:

(P.1) {xσ, y−σ, {xσ, z−σ, xσ}} = {xσ, {y−σ, xσ, z−σ}, xσ} ,

(P.2) {{xσ, y−σ, xσ}, y−σ, uσ} = {xσ, {y−σ, xσ, y−σ}, uσ} ,

(P.3) {{xσ, y−σ, xσ}, z−σ, {xσ, y−σ, xσ}} =

{xσ, {y−σ, {xσ, z−σ, xσ}, y−σ}, xσ} ,
for every xσ, uσ ∈ P σ , y−σ, z−σ ∈ P−σ , σ = ± (see [L]).

If L =
∑n

i=−n L(i) is a finite grading, then the pair (L(−n), L(n)) with the
operations {xσ, y−σ, zσ} = [[xσ, y−σ], zσ] , σ = ± is a Jordan pair

An element a ∈ P σ is called an absolute zero divisor of the pair P if
{a, P−σ, a} = (0). A Jordan pair is said to be nondegenerate if it does not contain
nonzero absolute zero divisors

A Jordan pair is said to be prime if the product of any two nonzero ideals
is not zero, where an ideal of P is a pair of subspaces I = (I−, I+) that satisfies
the obvious condition.

The smallest ideal M(P ) of the pair P whose quotient is nondegenerate is
called the McCrimmon radical of P .

An element a of a Lie algebra is a sandwich if [[L, a], a] = 0. The Kostrikin
radical of a Lie algebra L is the smallest ideal K(L) whose quotient is nondegen-
erate.

The central point in this connection is given by the following two lemmas,
that reduce our original problem in Lie algebras to a Jordan pairs problem.

Lemma 3.1. Let L be a Lie algebra with a finite grading L =
∑n

k=−n L(k) ,
L(0) =

∑n
k=1[L(−k), L(k)] and L(n) 6= (0). If L is prime and nondegenerate, then:

(1) Every nonzero ideal of L has a nonzero intersection with L(n) ,

(2) The Jordan pair V = (L(−n), L(n)) is prime and nondegenerate.
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Proof. (1) Let (0) 6= I�L and suppose that I∩L(n) = (0). Then, [[I, L(n)], L(n)] ⊆
I ∩ L(n) = (0). Consider the subalgebra L′ = I + L(n) .

Clearly, [[L′, L(n)], L(n)] = (0). Hence, L(n) is in the Kostrikin radical of
L′ and using Lemma 2.8 and Proposition 2 of [Z1] we conclude that [I, L(n)] ⊆
K(L′) ∩ I = K(I) = (0). This contradicts primeness of L .

(2) The non-degeneracy of V follows from the fact that every absolute zero
divisor of V is a sandwich of L .

Now, let us assume that I and J are nonzero ideals of V and that I ∩J =
(0). Let Ĩ and J̃ be the ideals of L generated by I and J respectively. By (1),
the nonzero ideal Ĩ ∩ J̃ has nonzero intersection with V . Let P = (Ĩ ∩ L(−n) ∩
J̃ , Ĩ ∩ J̃ ∩ L(n)) � V .

Zelmanov proved in [Z1] that the quotient pairs Ĩ ∩ V/I and J̃ ∩ V/J
coincide with their McCrimmon radicals. We will prove that this implies that
P ⊆M(V ).

Let’s recall that a sequence of elements in a Jordan pair x1, x2, . . . ∈ V σ ,
σ = ± , is called an m-sequence if xi+1 ∈ {xi, V

−σ, xi} . In [Z3] it was proved that
the McCrimmon radical consists of those elements x such that every m-sequence
starting by x finishes in zero.

Let x ∈ P σ and let x = x1, x2, . . . be an m-sequence. Since x ∈ Ĩ ∩ V σ , it
follows that there exists s1 ≥ 1 such that xi ∈ I for all i ≥ s1 .

Similarly, there exists s2 ≥ 1 s.t. xj ∈ J for all j ≥ s2 . Hence, for
every k ≥ max(s1, s2) we have that xk ∈ I ∩ J = (0). Now, (0) 6= P ⊆ M(V )
contradicts the nondegeneracy of V , what proves the lemma.

Lemma 3.2. Let L =
∑n

k=−n L(k) be a Lie algebra with a finite grading. Let
us assume that the Jordan pair V = (L(−n), L(n)) is prime and nondegenerate and
that an arbitrary nonzero ideal of L has nonzero intersection with V . Then L is
prime and nondegenerate.

Proof. Clearly, the algebra L is prime, because if I, J are non zero ideals of
L with [I, J ] = (0), then I ′ = I ∩ V , J ′ = J ∩ V are nonzero ideals of V
and {I ′σ, J ′−σ, V σ} = {J ′−σ, I

′σ, V −σ} ⊆ I ∩ J = (0), σ = ± , what contradicts
primeness of V .

In [Z2] it was proved that K(L)∩L(±n) is contained in the McCrimmon rad-
ical of the pair V , hence K(L)∩L(±n) = (0), what implies, under our assumptions,
that K(L) = (0) and so L is nondegenerate.

4. The Jordan Case

The last two lemmas have reduced our original problem to a problem concerning
Jordan pairs. So, our aim now will be to prove Theorem 2.

We will need the following lemma
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Lemma 4.1. Let G be a simple finite dimensional Lie algebra with a Z/lZ -
grading, G =

∑
i∈Z/lZ Gi .

If dim G0 ≤ d, then dimFG ≤ N(d) = max(d(2d + 1), 248).

Proof. The mapping d : G → G , ai → iai is a derivation. Since every derivation
is inner, there exists an element h ∈ G such that d = ad(h). So h is semisimple
and is contained in some Cartan subalgebra H . Since H is abelian, the elements
of H commute with h and given that [ai, h] = d(ai) = iai , necessarily H ⊆ G0 .
But dimG0 ≤ d , which implies dimH ≤ d .

Now the bound follows from the classification of simple finite dimensional
Lie algebras.

Proof of Theorem 2

We will divide the proof of the theorem in three cases

Case 1. We will assume first that K(V ) is strongly PI (where K(V ) denotes
the Lie algebra associated to V via the Tits-Kantor-Koecher construction).

Recall that the Tits-Kantor-Koecher Lie algebra K(V ) can be characterized
in the following way: K(V ) = K(V )−1 +K(V )0 +K(V )1 is a Z -graded Lie algebra,
K(V )0 = [K(V )−1,K(V )1] , (K(V )−1,K(V )1) = V and K(V )0 does not contain
nonzero ideals of K(V ).

We will see that under our assumption, the algebra K(V ) is prime. Let
us show that every nonzero ideal of K(V ) has non zero intersection with V + .
Since the Jordan pair V is prime, there are no elements 0 6= x− ∈ V − with
[x−, V +, V +] = (0). Similarly, there are no elements 0 6= x+ ∈ V + with
[x+, V −, V −] = (0).

If I ∩ V + 6= (0), then (0) 6= [I ∩ V +, V −, V −] ⊆ I ∩ V − . That is, for an
arbitrary ideal I of V , I ∩ V + 6= (0) if and only if I ∩ V − 6= (0).

Let x = x−+x0 +x+ ∈ I . Let us assume that x− 6= 0. Then [x, V +, V +] =
[x−, V +, V +] 6= 0 and [x, V +, V +] ⊆ I . So [x, V +, V +] ⊆ I∩V + and I∩V + 6= (0).

Similarly, if x+ 6= 0, then I ∩ V − 6= (0).

Hence I ⊆ [V −, V +] , which implies I = (0).

Now we can prove that K(V ) is prime. Indeed, let’s consider I1, I2 two
non zero ideals of K(V ). Then I1 ∩ V 6= (0), I2 ∩ V 6= (0). Since V is prime,
I1 ∩ I2 ∩ V 6= (0) and, in particular, I1 ∩ I2 6= (0).

Since L = K(V ), is a prime and strongly PI Lie algebra it follows that the
centroid Γ of L is nonzero and the algebra (Γ \ {0})−1L is finite dimensional over
(Γ \ {0})−1Γ.

Let us see that Γ can be identified with the centroid of V , that is, V +Γ ⊆
V + and V −Γ ⊆ V − . Indeed, let’s consider the derivation d : L → L , d(ai) = iai ,
that multiplies V ± by ±1 and annihilates [V −, V +] . The centroid Γ decomposes
into eigenspaces with respect to the action of d : Γ = Γ−2 + Γ−1 + Γ0 + Γ1 + Γ2 .
Since every element of ∪i6=0Γi is nilpotent and L is prime, we have that Γ = Γ0 ,
that is, Γ maps V + to V + and V − to V − .
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The centroid Γ is a graded commutative domain, Γ =
∑

i∈Z Γi with
dimΓi ≤ 1. If Γ = Γ0 , then Γ = F and dimF V < ∞ .

If there exist i, j ≥ 1 with Γi 6= (0) 6= Γ−j , then V is a (twisted) loop
Jordan pair.

Let’s consider finally the case when every negative component of Γ is zero
(the case with all positive components of Γ equal to zero is similar).

Let γl be a homogeneous element of the centroid with degree l , γl : V → V .
Then Kerγl � V , Im γl � V and they annihilate each other. Since V is prime, it
follows that γl is injective.

From γl(Vi) ⊆ Vi+l , it follows that dimVi = dim Viγl ≤ dim Vi+l . For every
i , 0 ≤ i ≤ l − 1, the ascending sequence: · · · dim Vi ≤ dim Vi+l ≤ dim Vi+2l ≤ · · ·
stabilizes in some ki , that is, dimVi+kil = dim Vi+(ki+1)l .

Let k(γl) = max{ki|0 ≤ i ≤ l− 1} . For every h ≥ k(γ) the linear mapping
γl : Vh → Vh+l is bijective.

Let Γh be the set of homogeneous elements in Γ (so (Γh \ {0})−1V is a
graded Jordan pair over (Γh \ {0})−1Γ and an arbitrary nonzero homogeneous
element of Γ−1

h Γ is invertible).

Let n = min{l > 0 |Cl = (Γ−1
h Γ)l 6= 0} . If 0 6= cn ∈ Cn , then there

exist i, j , i > j , and 0 6= γi ∈ Γi , 0 6= γj ∈ Γj with cn = γ−1
j γi . Let k

be a multiple of n such that k ≥ max(k(γi), k(γj)) (let’s notice that we can
write Vh+jγ

−1
j ⊆ Vh ⊆ V if h ≥ k , even if there is no γ−1

j in Γ). Hence,
Vh+n = Vh+n+jγ

−1
j = Vh+n+j−iγiγ

−1
j = Vhcn .

Let’s consider the finite-dimensional vector space V = V0 + V1 + · · · Vn−1

with Vh = Vh+k for 0 ≤ h ≤ n− 1.

If 0 ≤ r, s ≤ n− 1, bσ
k+r ∈ V σ

k+r , b−σ
k+s ∈ V −σ

k+s , σ = ±1, then

{bσ
k+r, b

−σ
k+s, b

σ
k+r} ∈ V σ

3k+2r+s.

Let 2k +2r + s = ln+ t , l ≥ 0, 0 ≤ t ≤ n− 1. Then V3k+2r+s = Vk+ln+t = Vk+tc
l
n .

Define

{bσ
k+r, b

−σ
k+s, b

σ
k+r}? = {bσ

k+r, b
−σ
k+s, b

σ
k+r}c−l

n ∈ Vk+t = Vt

Then V becomes a finite-dimensional Z/nZ -graded Jordan pair with this new
product and we get the wanted result.

Case 2. We will assume now that V is finitely generated

According to the classification of prime non-degenerated Jordan pairs by
E. Zelmanov, we know that a finitely generated prime Jordan pair V is either
special or strongly PI. Since the strongly PI case is already known, we only need
to consider the special case.

In order to prove Theorem 2 in this case, we need to know the relation
between the Gelfand Kirillov dimension of a special Jordan pair and the Gelfand
Kirillov dimension of its associative enveloping algebra. We will use a result similar
to the one used by Skosirskii ([SK1]) for algebras.
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Lemma 4.2. Let (P−, P+) be a special Jordan pair finitely generated by
a1, a2, . . . , an . Then every word in the associative enveloping pair can be expressed
as a linear combination of elements of the form ω′ωω′′ , where ω is a Jordan word
and the lengths of ω′ and ω′′ are not greater than 2n.

Proof. There exists an associative algebra A (that can be assumed finitely
generated by a1, . . . , an ) such that (P−, P+) ⊆ (A−, A+) and A = A−+(A−A+ +
A+A−) + A+ .

Let ω = vσ
1 v−σ

2 vσ
3 · · · be a product of Jordan words vi and the total degree

of ω in a1, . . . , an is N .

We will use an inverse induction on the length of vσ , maximal among the
lengths of elements vσ

i . If the length is N , then v = vσ . Let us assume that
some v−σ

i placed to the right (similarly to the left) of the element vσ has length
≥ 3. Using that v−k v+

j v−i = {vk, vj, vi}− − v−i v+
j v−k , we can assume, without loss

of generality, that this element and vσ are adjacent.

But

vσa−σbσa−σ = (vσa−σbσ + bσa−σvσ)a−σ − bσ(a−σvσa−σ)

where elements in brackets are Jordan words of length strictly greater than the
length of vσ .

Rewrite every Jordan word vσ
i except vσ as an expression in the generators

a±j , σ =
∑ · · · vσa−σ

j1 aσ
j2a

−σ
j3 · · · .

A double occurrence of a generator a−σ
j to the right of vσ gives rise to

a−σ
j aσ

ka
−σ
j , the case which has been considered above.

Finally, we get that ω is of the form:

ω = (· · ·)vσa−σ
i1 aσ

i2a
−σ
i3 · · ·

where all the generators a−σ
i1 , a−σ

i3 , . . . are distinct.

Hence the length to the right of vσ (and similarly to the left) is ≤ 2n ,
where n is the number of generators.

Lemma 4.3. If P is a finitely generated special Jordan pair and A is an
associative algebra as in Lemma 4.2 with (P−, P+) ⊆ (A−, A+), then GK −
dim(P ) = GK − dim(A).

Proof. Let U be a finite dimensional vector space that generates P and A .

Then

GK − dim(A) = lim sup
n→∞

ln dim Un

ln n

But Un ⊆ U ′WmU ′′ , where U ′ and U ′′ are subspaces of bounded dimen-
sions (not more than C ) and Wm is spanned by Jordan words in elements of U
of length ≥ m = n − 4r} where r is the dimension of the vector space U . So
dim Un ≤ C2 dim Wm .

Hence,
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GK − dim(A) = lim sup
n→∞

ln dim Un

ln n
≤ lim sup

n→∞

ln(C2. dim Wm)

ln n
=

lim sup
m→∞

ln C2 + ln(dim Wm)

ln(m + 4r)
= lim sup

m→∞

ln dim Wm

ln m
= GK − dim P

Now we can conclude the proof of Theorem 2 in the finitely generated case.

If the considered Jordan pair P is finitely generated and special, its asso-
ciative enveloping algebra A is finitely generated and GK − dim(A) = 1. By the
result by Small, Stafford and Warfield Jr. [SSW] we know that A is PI. Hence P
is strongly PI and the result follows from Case 1.

Case 3. The General Case

Lemma 4.4. Let V =
∑

i∈Z Vi be a Z -graded Jordan pair having all dimensions
dimVi uniformly bounded. Then the locally nilpotent radical Loc(V ) is equal to
the McCrimmon radical M(V ).

Proof. It is known that M(V ) ⊆ Loc(V ) (see [Z4]).

Choose an arbitrary homogeneous element vσ
k ∈ V σ

k and consider the ho-
motope Jordan algebra J = V −σ , x ? y = {x, vσ

k , y} . Assign a new degree to
homogeneous elements of J , deg(V −σ

i ) = i + k . With this degree J becomes
a graded Jordan algebra having all dimensions dimJi uniformly bounded. In
[MZ1] it was proved that Loc(J) = M(J). Since Loc(V )−σ ⊆ Loc(J) and
{vσ

k , M(J), vσ
k} ⊆ M(V ) (see [Z4]), we conclude that {vσ

k , Loc(V ), vσ
k} ⊆ M(V ).

In particular, an arbitrary homogeneous element of Loc(V ) lies in
M(Loc(V )) ⊆ M(V ). This implies that Loc(V ) ⊆ M(V ). The Lemma is proved.

Let V be a Jordan pair satisfying the assumptions of Theorem 2 and let Ṽ
be a finitely generated graded subpair of V . The nondegenerate pair Ṽ /M(Ṽ ))
can be approximated by finitely generated prime nondegenerate Jordan pairs. By
the Case 2 each of these pairs is either L(U) or can be embedded into a loop pair
L(U), where U is a simple finite dimensional pair. By Lemma 4.1, dimU ≤ N(d),
where d = max dim Vi .

Let T be the ideal of the free Jordan pair consisting of those elements which
are identically zero in all Jordan pairs of dimension ≤ N(d).

We proved that for an arbitrary finitely generated subpair Ṽ of V , the
set of values T (Ṽ ) lies in the locally nilpotent radical Loc(Ṽ ). This implies
that T (V ) ⊆ Loc(V ). By Lemma 4.4 Loc(V ) = M(V ) = (0), which implies
T (V ) = (0). Hence the pair V is strongly PI, which is the Case 1. Theorem 2 is
proved.

In the next section we will need the following lemma about loop Jordan
pairs.

Let W be a simple finite dimensional Jordan pair graded by Z/lZ , W =∑l−1
i=0 Wi , and let L(W ) =

∑
i=q mod l Wi ⊗ tq be a (twisted) loop pair.
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Lemma 4.5. For any k ≥ 1 we have

1) The subpair
∑

i≥k L(W )i is finitely generated,

2) Every subpair P ⊆ L(W ) containing
∑

i≥k L(W )i is prime and nonde-
generate.

Proof. 1) We will prove that
∑

i≥k L(W )i is generated by
∑3k+2l

i=k L(W )i .

Let q > 3k + 2l , a ∈ W σ
j , 0 ≤ j ≤ l− 1, j ≡ q mod l and a⊗ tq ∈ L(W )q .

We have that W σ = {W σ, W−σ, W σ} (by simplicity of W ), so a =∑
i{a

′σ
i , b−σ

i , a
′′σ
i } , with a

′σ
i ∈ W σ

π(i) , b−σ
i ∈ W−σ

µ(i) , and a
′′σ
i ∈ W σ

ρ(i) , 0 ≤ π(i),
µ(i), ρ(i) ≤ l − 1.

Choose integers k ≤ q1(i), q2(i) ≤ k + l − 1 such that q1(i) ≡ π(i) mod l ,
q2(i) = ρ(i) mod l and q3(i) = q − q1(i)− q2(i).

From q > 3q + 2l , it follows that q3(i) > k . Now,

a⊗ tq =
∑

i

{a′σi ⊗ tq1(i), b−σ
i ⊗ tq3(i), a

′′σ
i ⊗ tq2(i)},

that is,
L(W )q ⊆

∑
{L(W )q1 ,L(W )q3 ,L(W )q2},

where k ≤ q1, q2, q3 ≤ q .

2) Note that if Ω is a homogeneous operator in the multiplication algebra
of L(W ) and (

∑k+l−1
i=k L(W )i)Ω = (0), then Ω = 0

Let P be a subpair of L(W ) with P ⊇ ∑∞
i=k L(W )i . If aσ ∈ P σ is an

absolute zero divisor of the pair P , then (
∑k+l−1

i=k L(W )i)U(a) = (0). This implies
that L(W )U(a) = (0). Since L(W ) is nondegenerate, it follows that a = 0. We
have proved that P is nondegenerate.

Let I, J be non zero graded ideals of P with I ∩ J = (0).

Take 0 6= aσ ⊗ tp ∈ I , 0 6= bσ ⊗ tq ∈ J and c(x1, . . . , xn, . . .) an arbitrary
multilineal expression in the free Jordan pair. Then

c(aσ ⊗ tp, bσ ⊗ tq,
∑
i≥k

L(W )i,
∑
i≥k

L(W )i, . . .) = (0).

This implies that c(aσ, bσ, W, W, . . .) = (0), what contradicts primeness of W .
This proves the lemma.

5. The Lie Case

Lemma 5.1. Let A be a simple Z/lZ -graded finite dimensional algebra and let
a be a homogeneous element of degree d(a). Consider the loop algebra∑

i=j mod l Ai ⊗ tj and its subalgebra
∑

j≥m Ai ⊗ tj . Choose an integer n ≥ m such
that n = d(a) mod l and let I be the ideal generated by a ⊗ tn in

∑
j≥m Ai ⊗ tj .

Then I ⊇ ∑
j≥p Ai ⊗ tj for some p ≥ m.
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Proof.

Let a1, . . . , as be homogeneous elements of A and b = aP (a1) · · ·P (as),
where P = R or L . We choose integers j1, . . . js ≥ m such that jk = d(ak) mod
l , k = 1, . . . s . Then (a ⊗ tn)P (a1 ⊗ tj1) · · ·P (as ⊗ tjs) = b ⊗ tq ∈ I and for an
arbitrary k ∈ Z≥0 we have that

b⊗ tq+kl = (a⊗ tn)P (a1 ⊗ tj1+kl) · · ·P (as ⊗ tjs) ∈ I.

Let’s take a basis e1, . . . , er of A that consists of elements of the type ei =
aR(ai1) · · ·R(airi

), where the elements aij are homogeneous. According to what we
have mentioned above, there exist integers q1, . . . , qr ≥ m such that ei⊗ tqi+lZ≥0 ∈
I . It suffices to take p = max1≤i≤r qi .

Remark. The assertion of the Lemma 5.1 is true also for Z/lZ -graded simple
finite dimensional Jordan pairs.

We can already prove the main result giving the structure of prime Z-graded
Lie algebras.

Proof of Theorem 1

Let L =
∑

i∈Z Li =
∑n

k=−n L(k) be a Lie algebra that satisfies the assump-
tions of Theorem 1. By Lemma 3.1 and Theorem 2, we know that V = (L(−n), L(n))
can be embedded into a loop pair L(W ), V ↪→ L(W ), where W is a simple finite-
dimensional Jordan pair and either

∑
i≥k L(W )i ⊆ V or

∑
i≥k L(W )−i ⊆ V , for

some k ≥ 1. Let’s assume that
∑

i≥k L(W )i ⊆ V .

For an arbitrary scalar α ∈ F we define a homomorphism

ϕα : W ⊗F F [t−1, t] −→ W

via t → α . Since ϕα(
∑

i≥k L(W )i) = ϕα(
∑

i≥k L(W )−i) = W , it follows that
ϕα(V ) = W .

Let’s denote Iα = Kerϕα∩V and Ĩα the ideal in the Lie algebra generated
by Iα . Using Lemma 14 in [Z1] we have that Ĩα ∩ V = Iα .

Let G be the Tits-Kantor-Koecher construction associated to the Jordan
pair W . A Z/lZ -graduation of W induces a Z/lZ -graduation of G and so G
is Z × Z/lZ -graded. The 0 component of this Z × Z/lZ -graduation contains a
Cartan subalgebra H .

Every Z × Z/lZ -homogeneous component of G decomposes as a sum of
eigenspaces with respect to the action of H . All the eigenspaces have dimension 1
and there exists a nonzero eigenvector x such that [[G, x], x] = Fx . Hence, every
homogeneous component W σ

p 6= (0), with σ = ± , contains a non zero element a′

such that {a′, W−σ, a′} = Fa′ .

Choose an integer q ≥ k , q = p mod l and let a′⊗ tq = a ∈ ∑
i≥k L(W )i ⊆

V .

By Lemma 5.1 the ideal idV (a) of the Jordan pair (generated by the element
a) contains a

∑
i≥m L(W )i for some m ≥ k .
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By Lemma 4.4(1), the subpair
∑

i≥m L(W )i is finitely generated. Choose,
inside of the ideal idL(a) generated by a in the algebra L , a finite set of elements
ai = aad(xi1) · · · ad(xir(i)

), 1 ≤ i ≤ s , xij ∈ L that are 0Z × 0Z/lZ -homogeneous
and include generators of

∑
i≥m L(W )i .

Consider L′ =< a1, . . . , as > the subalgebra generated by the elements
a1, . . . , as , m = 2r1 + · · ·+ 2rs (as in Lemma 2.1) and T the T -ideal generated by
all identities satisfied by all Lie algebras of dimension ≤ R(m).

For an arbitrary scalar, 0 6= α ∈ F , we have ϕα(a) = αqa′

Hence [[ϕα(L), ϕα(a)], ϕα(a)] ⊆ {a′, W−σ, a′} = Fa′ = Fϕα(a).

By Lemma 2.1, the Lie algebra ϕα(L′) satisfies all the identities of T . Since
∩0 6=α∈F Ĩα = (0) (notice that (∩0 6=α∈F Ĩα) ∩ V = ∩0 6=α∈F Iα = (0)), it follows that
T (L′) = (0)

Let J(L′) a Z×Z/lZ -graded maximal ideal of L′ such that J(L′)∩L′(n) =
J(L′) ∩ L′(−n) = (0) (it exists by Zorn Lemma). The Jordan pair (L′(−n), L

′
(n)) is

prime and nondegenerate by Lemma 4.4(1).

An arbitrary non-zero graded ideal of L′/J(L′) has nonzero intersection
with the pair (L′(−n), L

′
(n)). By Lemma 3.2, the algebra L′/J(L′) is prime and

nondegenerate. Furthermore, T (L′/J(L′)) = (0), so L′/J(L′) is strongly PI. Using
Lemma 2.6(2) and Mathieu’s theorem (see [Ma2]), (Γh(L

′/J(L′))\{0})−1(L′/J(L′))
is isomorphic to a loop algebra L(G). By Lemma 4.1, dimF (G) ≤ m = max(d(2d+
1), 248). Let Tm be the ideal of the free Lie that consists of all the identities that
are satisfied identically in all Lie algebras of dimension ≤ m . Then Tm(L′) ⊆ J(L′)
and so Tm(L′) ∩ L(n) = (0).

Since L′ is an arbitrary finitely generated subalgebra of idL(a) containing
a given (finite) subset and such subalgebras cover the ideal idL(a), we conclude
that Tm(idL(a)) ∩ L(n) = (0).

But the ideal Tm(idL(a)) of idL(a) is invariant with respect to all the
derivations of idL(a). Hence Tm(idL(a)) is an ideal of L . By Lemma 3.1(1),
Tm(idL(a))∩L(n) = (0) implies Tm(idL(a)) = (0). So the algebra idL(a) is strongly
PI. Finally it suffices to apply Lemma 2.9 to finish the proof of Theorem 1.
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