On Prime Z-graded Lie algebras of growth one

Consuelo Martínez*

Communicated by E. Zelmanov

Abstract. We will give the structure of Z-graded prime nondegenerate algebras $L = \sum_{i \in Z} L_i$ containing the Virasoro algebra and having the dimensions of the homogeneous components, dim L_i , uniformely bounded. Mathematical Subject Index: Primary 17B60, secondary 17B70, 17C50. Key Words and Phrases: Z-graded Lie algebra, strongly PI, prime, nondegenerate, Virasoro algebra, loop algebra, growth, Jordan pair.

1. Introduction

Throughout the paper we consider algebras over an algebraically closed field F of zero characteristic.

By a Z-graded algebra we mean an algebra $L = \sum_{i \in Z} L_i, L_i L_j \subseteq L_{i+j}$, having all homogeneous components L_i finite dimensional. In [Ma1], [Ma2] (see also the earlier work [K1]) O. Mathieu classified all graded simple Lie algebras with polynomial growth of dimensions dim L_i . He proved that every such algebra is a (twisted) loop algebra or an algebra of Cartan type or the Virasoro algebra Vir.

The problem of classification of Z-graded Lie superalgebras with all dim L_i uniformly bounded is still open. Of particular interest is the case when the even part of L contains Vir, that is, when L is a superconformal algebra (see [KvL]). In this paper we modify O. Mathieu's result [Ma1] to make it applicable to the study of the even part of a superconformal algebra (see [MZ1], [KMZ]).

Recall that an algebra L is called prime if for any two nonzero ideals $(0) \neq I, J \triangleleft L$ we have $IJ \neq (0)$. A Lie algebra L is nondegenerate if $a \in L$, [[L, a], a] = (0) implies a = 0. Following [Z2] we say that L is a Lie algebra with finite grading if $L = \sum_{i \in Z} L_{(i)}, [L_{(i)}, L_{(j)}] \subseteq L_{(i+j)}$, the subspaces $L_{(i)}$ can be infinite dimensional, but $\{i|L_{(i)} \neq (0)\}$ is finite. The grading is not trivial if $\sum_{i \neq 0} L_{(i)} \neq (0)$. All Jordan algebras and their generalizations can be interpreted as Lie algebras with finite gradings (see [Z2]).

 * Partially supported by MTM 2004 08115-C04-01 and FICYT PR-01-GE-15

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

MARTÍNEZ

Let $L = \sum_{i \in \mathbb{Z}} L_i$ be a graded Lie algebra, all dimensions dim L_i are uniformly bounded and L_0 is not solvable. Then L_0 contains a copy of $sl_2(F) = Fe + Fh + Ff$, [e, f] = h, [h, e] = 2e, [h, f] = -2f. The adjoint operator $ad(h) : L \to L$ has only finitely many eigenvalues and the decomposition of L into a direct sum of eigenspaces is a finite grading on L, which is compatible with the initial Z-grading.

For a finite dimensional simple algebra \mathcal{G} let $\mathcal{L}(\mathcal{G}) = \mathcal{G} \otimes F[t^{-1}, t]$ be its loop algebra. Every finite grading on \mathcal{G} extends to a finite grading on $\mathcal{L}(\mathcal{G})$ which is compatible with the Z-grading. If \mathcal{G} is graded by a finite cyclic group Z/lZ, $\mathcal{G} = \mathcal{G}_0 + \cdots + \mathcal{G}_{l-1}$, then we will refer to $\sum_{i=j \mod l} \mathcal{G}_i \otimes t^j$ as a twisted loop algebra.

The Virasoro algebra naturally acts on $\mathcal{L}(\mathcal{G})$ and the semidirect sum $L = \mathcal{L}(\mathcal{G}) \rtimes_V ir$ is a prime nondegenerate Z-graded algebra.

Theorem 1. Let $L = \sum_{i \in \mathbb{Z}} L_i$ be a Z-graded prime nondegenerate algebra containing the Virasoro algebra, the dimensions dim L_i are uniformely bounded. Suppose that L has a nontrivial finite grading which is compatible with the Z-grading above. Then $L \simeq \mathcal{L}(\mathcal{G}) > \forall Vir$ for some finite dimensional simple Lie algebra \mathcal{G} .

We prove also the following theorem on Jordan pairs (see [L]) which generalizes [MZ1] and determines the structure of Z-graded prime nondegenerated Jordan pairs having the dimensions of the homogeneous components uniformly bounded.

Theorem 2. Let $V = (V^-, V^+) = \sum_{i \in \mathbb{Z}} V_i$ be a prime nondegenerate Z-graded Jordan pair having all dim V_i uniformly bounded. Then either V is isomorphic to a (twisted) loop pair $\mathcal{L}(W)$, where W is a finite dimensional simple Jordan pair or V is embeddable in $\mathcal{L}(W)$ and $\sum_{i \geq k} \mathcal{L}(W)_i \subseteq V \subseteq \mathcal{L}(W)$ or $\sum_{i \geq k} \mathcal{L}(W)_{-i} \subseteq$ $V \subseteq \mathcal{L}(W)$.

2. The strongly PI case

Let $f(x_1, \ldots, x_n)$ be a nonzero element of the free associative algebra. We say that an associative algebra A satisfies the polynomial identity $f(x_1, \ldots, x_n) = 0$ if $f(a_1, \ldots, a_n) = 0$ for arbitrary elements $a_1, \ldots, a_n \in A$. An algebra satisfying some polynomial identity is said to be a PI-algebra.

For an arbitrary algebra A the multiplication algebra M(A) of A is the subalgebra of $\operatorname{End}_F(A)$ generated by all right and left multiplications $R(a): x \to xa$, $L(a): x \to ax$, $a \in A$.

An algebra A is strongly PI if its multiplications algebra M(A) is PI.

An element a in a Lie algebra L over a field F is said to have rank 1 if $[[L, a], a] \subseteq Fa$.

Lemma 2.1. ([Z1]) There exists a function R(n) such that an arbitrary Lie algebra generated by n-elements of rank 1 has dimension $\leq R(n)$.

An ideal of the free Lie (resp. associative) algebra is said to be a T-ideal if it is invariant under all substitutions. For an arbitrary algebra L the ideal of all identities satisfied by L is a T-ideal.

Lemma 2.2. Let *L* be a Lie algebra over a field *F*, chF = 0 and $a \in L$ an element of rank 1. Let's consider *s* elements $a_i = aad(x_{i1}) \cdots ad(x_{ir_i}), 1 \leq i \leq s, x_{ij} \in L$. Let $m = 2^{r_1} + 2^{r_2} + \cdots + 2^{r_s}$ and let *T* be the *T*-ideal of all identities that are satisfied by all Lie algebras of dimension $\leq R(m)$. Then the subalgebra $\langle a_1, \ldots, a_s \rangle$ satisfies all identities of *T*

Proof. Let's consider the Lie algebra $\tilde{L} = L((t^{-1}, t))$ of Laurent series over L. Clearly, \tilde{L} is an algebra over the field of Laurent series $F((t^{-1}, t))$. The element a is an element of rank 1 in \tilde{L} , $[[\tilde{L}, a], a] \subseteq F((t^{-1}, t))a$.

For a series $b = \sum_i b_i t^i$, $b_i \in L$, let's denote $\min(b) = b_k$ if $b_k \neq 0$ and $b_i = 0$ for every i < k.

For arbitrary elements x_{ij} , $1 \leq i \leq s$, $1 \leq j \leq r_i$, we have $e^{2ad(x_{ij}t)} - e^{ad(x_{ij}t)} = ad(x_{ij})t + (\cdots)t^2$.

Therefore,

 $aad(x_{i1})\cdots ad(x_{ir_i}) = \min(a(e^{2ad(x_{i1}t)} - e^{ad(x_{i1}t)}))\cdots (e^{2ad(x_{ir_i}t)} - e^{ad(x_{ir_i}t)}).$ (*)

Since $e^{ad(x_{ij}t)}$, $e^{2ad(x_{ij}t)}$ are automorphisms of \tilde{L} it follows that the elements $ae^{k_1ad(x_{i1}t)}\cdots e^{k_{r_i}ad(x_{ir_i}t)}$, $1 \leq k_1, \ldots \leq k_{r_i} \leq 2$, are elements of rank 1 in \tilde{L} .

Let's denote as B the subalgebra of L generated by m elements: $ae^{k_1ad(x_{i1}t)}\cdots e^{k_{r_i}ad(x_{ir_i}t)}$, where $k_1,\ldots,k_{r_i} \in \{1,2\}, 1 \leq i \leq s$. We have $\dim_{F((t^{-1},t))} B \leq R(m)$.

Taking (*) into account, an arbitrary commutator σ in a_1, \ldots, a_s is either 0 or min(b) where $b \in B$.

Let $f(x_1, \ldots, x_k) \in T$. Without loss of generality we will assume that f is multilineal. Let us consider k arbitrary commutators $\sigma_1, \ldots, \sigma_k$ in a_1, \ldots, a_s . If $\sigma_i = 0$ for some i, then $f(\sigma_1, \ldots, \sigma_k) = 0$. In the other case, there exist elements $b_1, \ldots, b_k \in B$ such that $\sigma_i = \min(b_i), 1 \leq i \leq s$. Hence, $f(\sigma_1, \ldots, \sigma_k) = 0$ or $f(\sigma_1, \ldots, \sigma_k) = \min f(b_1, \ldots, b_k)$. But $f(b_1, \ldots, b_k) = 0$ and so Lemma is proved.

Recall that a centroid of an algebra A is the centralizer of the multiplication algebra M(A) in $\operatorname{End}_F(A)$

Lemma 2.3. Let $A = \sum_{i \in \mathbb{Z}} A_i$ be a graded algebra whose centroid $\Gamma = \sum_{i \in \mathbb{Z}} \Gamma_i$ contains a homogeneous invertible element $\gamma \in \Gamma_i$ of degree $i \neq 0$. Then $A \simeq \mathcal{L}(\mathcal{G})$ is a (twisted) loop algebra.

Proof. Let $\gamma_i \in \Gamma_i$ with $\gamma_i^{-1} = \gamma_{-i} \in \Gamma_{-i}$ and let $a_j^1, \ldots, a_j^d \in A_j$ be linearly independent elements. Then

$$\gamma_i a_j^1, \ldots, \gamma_i a_j^d \in A_{i+j}$$

are also linearly independent. Hence $\dim A_j = \dim A_{i+j} = \dim A_{-i+j}$, for arbitrary $j \in \mathbb{Z}$.

Taking *i* the smallest index such that there exists an invertible γ_i , we can define a finite dimensional algebra structure in $\mathcal{G} = A_0 + A_1 + \cdots + A_{i-1}$ by the new law:

$$a_l \star b_h = \begin{cases} a_l b_h & \text{if } l+h < i \\ \gamma_i^{-1}(a_l b_h) & \text{if } l+h \ge i \end{cases}$$

It is clear that A is isomorphic to $\sum_{i=j \mod l} \mathcal{G}_i \otimes t^j$. Lemma is proved

Lemma 2.4. Let Λ be a subset of Z closed under addition and let $m = gcd(\Lambda)$. Then either $\Lambda = mZ$ or $m\{i \in Z, i \ge k\} \subseteq \Lambda \subseteq mZ_{\ge 0}$ or $-m\{i \in Z, i \ge k\} \subseteq \Lambda \subseteq mZ_{\le 0}$ for some $k \ge 1$.

Proof. Suppose at first that Λ contains both a positive element $i \geq 1$ and a negative element -j, $j \geq 1$. Then Λ contains the additive subgroup ijZ.

The quotient $\Lambda/ijZ \subseteq Z/ijZ$ is a sub-semigroup of a finite group, hence Λ/ijZ is a group. Hence Λ is a subgroup of Z and therefore $\Lambda = mZ$.

Now suppose that $\Lambda \subseteq Z_{\geq 0}$. Then, clearly $\Lambda \subseteq mZ_{\geq 0}$. Choose $k \geq 1$ such that $km \in \Lambda$. There exist elements $\lambda_1, \ldots, \lambda_r \in \Lambda$ and integers k_1, \ldots, k_r in Z such that $k_1\lambda_1 + \cdots + k_r\lambda_r = m$.

Choose a sufficiently large integer q such that $q+ik_j \ge 0$ for all $j = 1, \ldots, r$ and for all $i, 0 \le i \le k-1$. The element $\lambda = q(\sum_{i=1}^r \lambda_i)$ is in Λ . We claim that $\lambda + mZ_{\ge 0} \subseteq \Lambda$.

Indeed, for $0 \le i \le k-1$ we have $\lambda + mi \in \sum_{i=1}^{r} Z_{\ge 0} \lambda_i \subseteq \Lambda$.

Now it is easy to see that for an arbitrary element $\lambda' \in \Lambda$, if $\lambda', \lambda' + m, \ldots, \lambda' + (k-1)m \in \Lambda$ then $\lambda' + km \in \Lambda$ as well and therefore the element $\lambda'' = \lambda + m$ has the same property as λ' . Hence $\lambda' + mZ_{\geq 0} \subseteq \Lambda$. Lemma is proved.

Lemma 2.5. Let $\Gamma = \sum \Gamma_i$ be a Z-graded (commutative and associative) domain over an algebraically closed field F such that the dimensions $\dim_F \Gamma_i$ are uniformly bounded. Then, either $\Gamma \simeq F[t^{-m}, t^m]$ or $\sum_{i\geq k} Ft^{mi} \subseteq \Gamma \subseteq F[t^m]$ or $\sum_{i\geq k} Ft^{-mi} \subseteq \Gamma \subseteq F[t^{-m}]$, where $m \geq 1$, $k \geq 1$.

Proof. Let us prove first that $\dim_F \Gamma_i \leq 1$ for every *i*. Let $d = \max\{\dim \Gamma_i | i \in Z\}$. Choose two arbitrary nonzero elements, $a_i, b_i \in \Gamma_i$.

Since $\dim_F \Gamma_{id} \leq d$, there exists a nontrivial linear dependence relation

 $\gamma_d a_i^d + \gamma_{d-1} a_i^{d-1} b_i + \dots + \gamma_0 b_i^d = 0.$

The polynomial $f(x) = \gamma_d x^d + \gamma_{d-1} x^{d-1} + \dots + \gamma_0$ can be decomposed as $f(x) = \gamma_d(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_d)$, with $\gamma_d \neq 0, \alpha_1, \alpha_2, \dots, \alpha_d \in F$.

We have $0 = f(\frac{a_i}{b_i}) = \gamma_d(\frac{a_i}{b_i} - \alpha_1)(\frac{a_i}{b_i} - \alpha_2)\cdots$

Hence $a_i = \alpha_k b_i$ for some k. Now $\Lambda = \{i \in Z \mid \Gamma_i \neq (0)\}$ is a subsemigroup of Z and the result is a consequence of Lemma 2.4.

Let $L = \sum_{i \in \mathbb{Z}} L_i$ be a *strongly PI* Z-graded prime nondegenerate Lie algebra. Let $d = \max_{i \in \mathbb{Z}} \dim L_i$. Let Γ denote the centroid of L, Γ_h is the set of homogeneous elements from Γ .

Lemma 2.6. (1) $\Gamma \neq (0)$ is an integral domain and the ring of fractions $(\Gamma \setminus \{0\})^{-1}L$ is a simple finite dimensional Lie algebra over the field $K = (\Gamma \setminus \{0\})\Gamma$. (2) The algebra $\tilde{L} = (\Gamma_h \setminus \{0\})^{-1}L$ is a graded simple algebra and $\dim_F \tilde{L}_i \leq C$

d, for an arbitrary $i \in Z$.

(3) Either L is isomorphic to a (twisted) loop algebra or there is a graded embedding $\varphi: \Gamma \to F[t^{-m}, t^m]$ such that

$$\sum_{i \ge k} Ft^{im} \subseteq \varphi(\Gamma) \subseteq F[t^m] \text{ or } \sum_{i \ge k} Ft^{-im} \subseteq \varphi(\Gamma) \subseteq F[t^{-m}].$$

Proof. For the assertion (1) cf. see [Ro].

(2) We only need to check that \tilde{L} is graded simple. Let I be a non-zero graded ideal of L. By (1), $(\Gamma \setminus \{0\})^{-1}I = (\Gamma \setminus \{0\})^{-1}L$.

Let $\dim_K(\Gamma \setminus \{0\})^{-1}L = r$ and $f_r(x_1, \ldots, x_q)$ is a multilinear central polynomial that corresponds to $r \times r$ matrices. Then $(\Gamma \setminus \{0\})^{-1}L$ is a faithful irreducible module over the multiplication algebra $M < (\Gamma \setminus \{0\})^{-1}L >$. Hence, $M < (\Gamma \setminus \{0\})^{-1}L > \mathcal{M}_r(K)$. Consequently, there exist operators $\omega_i = ad(a_{i1}) \cdots ad(a_{iq_i}), \ 1 \leq i \leq q, \ a_{ij}$ homogeneous elements of I such that $f_r(\omega_1, \ldots, \omega_q) \neq 0$. Clearly, $f_r(\omega_1, \ldots, \omega_q) \in \Gamma_h$. Now,

$$L = (Lf_r(\omega_1, \dots, \omega_q))f_r(\omega_1, \dots, \omega_q)^{-1} \subseteq If_r(\omega_1, \dots, \omega_q)^{-1} \subseteq (\Gamma_h \setminus \{0\})^{-1}I.$$

This proves $(\Gamma_h \setminus \{0\})^{-1}I = (\Gamma_h \setminus \{0\})^{-1}L$ and so \tilde{L} is graded simple.

In order to prove (3) we will show that $\dim \Gamma_k \leq d$ for an arbitrary k. Let's take d+1 arbitrary elements $\gamma_1, \ldots, \gamma_{d+1} \in \Gamma_k$ and a non zero homogeneous element $a_i \in L_i$. Since $a_i \gamma_1, a_i \gamma_2, \ldots, a_i \gamma_{d+1} \in L_{i+k}$, there exists a non trivial linear dependence relation $\sum_{j=1}^{d+1} \xi_j a_i \gamma_j = 0$, $\xi_j \in F$. Since non zero elements in Γ have zero nuclei and $a_i \in Ker \sum_{j=1}^{d+1} \xi_j \gamma_j$, it follows that $\sum_{j=1}^{d+1} \xi_j \gamma_j = 0$.

We have proved that $\dim_F \Gamma_k \leq d$ and so the assertion (3) follows from Lemmas 2.3 and 2.5.

Indeed, by Lemma 2.5, either $\Gamma \simeq F[t^{-m}, t^m]$ or there exists the wanted embedding. If $\Gamma \simeq F[t^{-m}, t^m]$, then L is a loop algebra by Lemma 2.3.

Lemma 2.7. Let $L = \sum_{i \in Z} L_i$ be a prime, nondegenerate, strongly PI Lie algebra, $\dim L_i \leq d$, as in the previous lemma. Let's assume that $Vir = \sum_{i \in Z} Vir_i$ can be embedded into Der(L) as a graded algebra. Then L is isomorphic to a (nontwisted) loop algebra.

Proof. If L is not isomorphic to a (twisted) loop algebra, then by Lemma 2.6 there exists a graded embedding $\varphi : \Gamma \to F[t^{-m}, t^m], m \ge 1$, such that either $\sum_{i\ge k} Ft^{im} \subseteq \varphi(\Gamma) \subseteq F[t^m]$ or $\sum_{i\ge k} Ft^{-im} \subseteq \varphi(\Gamma) \subseteq F[t^{-m}]$ for some $k \ge 1$.

Let us assume that $\sum_{i\geq k} Ft^{im} \subseteq \varphi(\Gamma) \subseteq F[t^m]$. This implies that Γ is generated by a finite set of elements $\gamma_i \in \Gamma_{s_i}, i = 1, 2, ..., r$.

Let $s = \max_{1 \le i \le r} s_i$. The Virasoro algebra acts on Γ . For each generator γ_i the subspace $\gamma_i Vir_{-(s+1)} = (0)$, since it is contained in Γ and has negative degree.

So $Vir_{-(s+1)}$ is contained in the kernel of the action of the Virasoro algebra on the derivations of Γ . By the simplicity of the Virasoro algebra, we have that $\Gamma Vir = (0)$.

Now the Virasoro algebra acts on a finite dimensional Lie algebra $\tilde{L}_K = (\Gamma \setminus \{0\})^{-1}L$ and the action is not trivial since $Vir \subseteq Der(L)$. This leads to a contradiction, since the Virasoro algebra is not strongly PI.

We showed that L is isomorphic to a loop algebra. Let us show that this loop algebra is not twisted. Indeed, let $\Gamma \simeq F[t^{-m}, t^m]$, $m \ge 2$. Then $\Gamma Vir_1 = \Gamma Vir_{-1} = (0)$. Since $Vir_1 \ne (0)$ and the algebra Vir is simple it follows that $\Gamma Vir = (0)$. Now we can argue as above.

Lemma 2.8. Let L be a prime nondegenerate Lie algebra and let I be a nonzero ideal of L. Then I is a prime nondegenerate algebra.

Proof. We will prove first that I is nondegenerate. Indeed, let $0 \neq a \in I$ and [[I, a], a] = (0). Since L is nondegenerate, there exists an element $x \in L$ such that $[[x, a], a] \neq 0$. Now, $Lad([[x, a], a])^2 = Lad(a)^2 ad(x)^2 ad(a)^2 \subseteq Iad(a)^2 = (0)$, (cf. [Ko]), a contradiction.

Now we will prove that I is prime. Let I', I'' be non-zero ideals of I, with [I', I''] = (0). Let $id_L(I'')$ the ideal of L generated by I''. If $[id_L(I''), I'] = (0)$, then the nonzero ideal of L, $id_L(I'')$, has a non zero centralizer, which contradicts primeness of L. Hence, $J = [I', id_L(I'')]$ is a non zero ideal of I. We have

 $ad(L)ad(I')^2 \subseteq ad(I')ad(L)ad(I') + ad(I)ad(I') \subseteq ad(I')M < L > .$

Let's choose an arbitrary nonzero element $a \in J$, $a = \sum_i a_i a d(x_{i1}) \cdots a d(x_{ir_i})$ with $a_i \in I''$, $x_{ij} \in L$, $r_i \ge 0$. So, for $r = \max_i r_i$ we have

$$aad(I')^{2r} \subseteq \sum a_i ad(I')M < L >= (0).$$

Hence, $aad(J)^{2r} = (0)$.

This proves that J has a nontrivial center, what contradicts the nondegeneracy of I and proves the lemma.

Lemma 2.9. Let $L = \sum_{i \in \mathbb{Z}}^{n} L_i$ be a Z-graded prime nondegenerate Lie algebra containing the Virasoro algebra and having all the dimensions dim L_i uniformly bounded. Suppose that L contains a nonzero graded ideal I which is strongly PI. Then L is isomorphic to the semidirect sum of a loop algebra $\mathcal{L}(\mathcal{G})$ (for some finite dimensional simple Lie algebra \mathcal{G}) and the Virasoro algebra

Proof. By Lemma 2.8 I is a prime nondegenerate algebra. Moreover, since L is prime, the action of Vir on I is faithful. Hence by Lemma 2.7 $I \simeq \mathcal{L}(\mathcal{G})$, with $\dim \mathcal{G} < \infty$. Again, since I is prime and nondegenerate it follows that the algebra \mathcal{G} is simple. For an arbitrary element $a \in L$ let $ad_I(a)$ denote the linear operator $ad_I(a) : I \to I, x \to [x, a]$. The mapping $a \to ad_I(a)$ is an embedding of L into the Lie algebra

$$Der(\mathcal{L}(\mathcal{G})) = \mathcal{L}(\mathcal{G}) > \forall Vir.$$

Since the Virasoro algebra is simple and not strongly PI, it follows that $Vir \cap I = (0)$. Now comparing the dimensions of the homogeneous components we conclude that the embedding $L \to Der(\mathcal{L}(\mathcal{G})), a \to ad_I(a)$ is an isomorphism. The Lemma is proved

3. Lie-Jordan Connections

In this section we will study connections between Lie algebras and Jordan systems.

A Jordan pair $P = (P^-, P^+)$ is a pair of vector spaces with a pair of trilinear operations

$$\{ , , \} : P^{-} \times P^{+} \times P^{-} \to P^{-}, \qquad \{ , , \} : P^{+} \times P^{-} \times P^{+} \to P^{+}$$

that satisfies the following identities:

$$\begin{array}{l} (\mathrm{P.1}) \; \left\{ x^{\sigma}, y^{-\sigma}, \left\{ x^{\sigma}, z^{-\sigma}, x^{\sigma} \right\} \right\} = \left\{ x^{\sigma}, \left\{ y^{-\sigma}, x^{\sigma}, z^{-\sigma} \right\}, x^{\sigma} \right\}, \\ (\mathrm{P.2}) \; \left\{ \left\{ x^{\sigma}, y^{-\sigma}, x^{\sigma} \right\}, y^{-\sigma}, u^{\sigma} \right\} = \left\{ x^{\sigma}, \left\{ y^{-\sigma}, x^{\sigma}, y^{-\sigma} \right\}, u^{\sigma} \right\}, \\ (\mathrm{P.3}) \; \left\{ \left\{ x^{\sigma}, y^{-\sigma}, x^{\sigma} \right\}, z^{-\sigma}, \left\{ x^{\sigma}, y^{-\sigma}, x^{\sigma} \right\} \right\} = \\ & \left\{ x^{\sigma}, \left\{ y^{-\sigma}, \left\{ x^{\sigma}, z^{-\sigma}, x^{\sigma} \right\}, y^{-\sigma} \right\}, x^{\sigma} \right\}, \\ \text{for every } x^{\sigma}, u^{\sigma} \in P^{\sigma}, \; y^{-\sigma}, z^{-\sigma} \in P^{-\sigma}, \; \sigma = \pm \; (\text{see [L]}). \end{array}$$

If $L = \sum_{i=-n}^{n} L_{(i)}$ is a finite grading, then the pair $(L_{(-n)}, L_{(n)})$ with the operations $\{x^{\sigma}, y^{-\sigma}, z^{\sigma}\} = [[x^{\sigma}, y^{-\sigma}], z^{\sigma}], \sigma = \pm$ is a Jordan pair

An element $a \in P^{\sigma}$ is called an *absolute zero divisor* of the pair P if $\{a, P^{-\sigma}, a\} = (0)$. A Jordan pair is said to be *nondegenerate* if it does not contain nonzero absolute zero divisors

A Jordan pair is said to be *prime* if the product of any two nonzero ideals is not zero, where an ideal of P is a pair of subspaces $I = (I^-, I^+)$ that satisfies the obvious condition.

The smallest ideal M(P) of the pair P whose quotient is nondegenerate is called the McCrimmon radical of P.

An element a of a Lie algebra is a sandwich if [[L, a], a] = 0. The Kostrikin radical of a Lie algebra L is the smallest ideal K(L) whose quotient is nondegenerate.

The central point in this connection is given by the following two lemmas, that reduce our original problem in Lie algebras to a Jordan pairs problem.

Lemma 3.1. Let L be a Lie algebra with a finite grading $L = \sum_{k=-n}^{n} L_{(k)}$, $L_{(0)} = \sum_{k=1}^{n} [L_{(-k)}, L_{(k)}]$ and $L_{(n)} \neq (0)$. If L is prime and nondegenerate, then:

(1) Every nonzero ideal of L has a nonzero intersection with $L_{(n)}$,

(2) The Jordan pair $V = (L_{(-n)}, L_{(n)})$ is prime and nondegenerate.

Proof. (1) Let $(0) \neq I \leq L$ and suppose that $I \cap L_{(n)} = (0)$. Then, $[[I, L_{(n)}], L_{(n)}] \subseteq I \cap L_{(n)} = (0)$. Consider the subalgebra $L' = I + L_{(n)}$.

Clearly, $[[L', L_{(n)}], L_{(n)}] = (0)$. Hence, $L_{(n)}$ is in the Kostrikin radical of L' and using Lemma 2.8 and Proposition 2 of [Z1] we conclude that $[I, L_{(n)}] \subseteq K(L') \cap I = K(I) = (0)$. This contradicts primeness of L.

(2) The non-degeneracy of V follows from the fact that every absolute zero divisor of V is a sandwich of L.

Now, let us assume that I and J are nonzero ideals of V and that $I \cap J = (0)$. Let \tilde{I} and \tilde{J} be the ideals of L generated by I and J respectively. By (1), the nonzero ideal $\tilde{I} \cap \tilde{J}$ has nonzero intersection with V. Let $P = (\tilde{I} \cap L_{(-n)} \cap \tilde{J}, \tilde{I} \cap \tilde{J} \cap L_{(n)}) \leq V$.

Zelmanov proved in [Z1] that the quotient pairs $\tilde{I} \cap V/I$ and $\tilde{J} \cap V/J$ coincide with their McCrimmon radicals. We will prove that this implies that $P \subseteq \mathcal{M}(V)$.

Let's recall that a sequence of elements in a Jordan pair $x_1, x_2, \ldots \in V^{\sigma}$, $\sigma = \pm$, is called an m-sequence if $x_{i+1} \in \{x_i, V^{-\sigma}, x_i\}$. In [Z3] it was proved that the McCrimmon radical consists of those elements x such that every m-sequence starting by x finishes in zero.

Let $x \in P^{\sigma}$ and let $x = x_1, x_2, \ldots$ be an m-sequence. Since $x \in \tilde{I} \cap V^{\sigma}$, it follows that there exists $s_1 \ge 1$ such that $x_i \in I$ for all $i \ge s_1$.

Similarly, there exists $s_2 \geq 1$ s.t. $x_j \in J$ for all $j \geq s_2$. Hence, for every $k \geq \max(s_1, s_2)$ we have that $x_k \in I \cap J = (0)$. Now, $(0) \neq P \subseteq \mathcal{M}(V)$ contradicts the nondegeneracy of V, what proves the lemma.

Lemma 3.2. Let $L = \sum_{k=-n}^{n} L_{(k)}$ be a Lie algebra with a finite grading. Let us assume that the Jordan pair $V = (L_{(-n)}, L_{(n)})$ is prime and nondegenerate and that an arbitrary nonzero ideal of L has nonzero intersection with V. Then L is prime and nondegenerate.

Proof. Clearly, the algebra L is prime, because if I, J are non zero ideals of L with [I, J] = (0), then $I' = I \cap V$, $J' = J \cap V$ are nonzero ideals of V and $\{I'^{\sigma}, J'^{-\sigma}, V^{\sigma}\} = \{J'^{-\sigma}, I'^{\sigma}, V^{-\sigma}\} \subseteq I \cap J = (0), \sigma = \pm$, what contradicts primeness of V.

In [Z2] it was proved that $K(L) \cap L_{(\pm n)}$ is contained in the McCrimmon radical of the pair V, hence $K(L) \cap L_{(\pm n)} = (0)$, what implies, under our assumptions, that K(L) = (0) and so L is nondegenerate.

4. The Jordan Case

The last two lemmas have reduced our original problem to a problem concerning Jordan pairs. So, our aim now will be to prove Theorem 2.

We will need the following lemma

Lemma 4.1. Let \mathcal{G} be a simple finite dimensional Lie algebra with a Z/lZ-grading, $\mathcal{G} = \sum_{i \in Z/lZ} \mathcal{G}_i$.

If dim $\mathcal{G}_0 \leq d$, then $\dim_F \mathcal{G} \leq N(d) = \max(d(2d+1), 248)$.

Proof. The mapping $d: \mathcal{G} \to \mathcal{G}$, $a_i \to ia_i$ is a derivation. Since every derivation is inner, there exists an element $h \in \mathcal{G}$ such that d = ad(h). So h is semisimple and is contained in some Cartan subalgebra H. Since H is abelian, the elements of H commute with h and given that $[a_i, h] = d(a_i) = ia_i$, necessarily $H \subseteq \mathcal{G}_0$. But dim $\mathcal{G}_0 \leq d$, which implies dim $H \leq d$.

Now the bound follows from the classification of simple finite dimensional Lie algebras.

Proof of Theorem 2

We will divide the proof of the theorem in three cases

Case 1. We will assume first that $\mathcal{K}(V)$ is *strongly PI* (where $\mathcal{K}(V)$ denotes the Lie algebra associated to V via the Tits-Kantor-Koecher construction).

Recall that the Tits-Kantor-Koecher Lie algebra $\mathcal{K}(V)$ can be characterized in the following way: $\mathcal{K}(V) = \mathcal{K}(V)_{-1} + \mathcal{K}(V)_0 + \mathcal{K}(V)_1$ is a Z-graded Lie algebra, $\mathcal{K}(V)_0 = [\mathcal{K}(V)_{-1}, \mathcal{K}(V)_1], \ (\mathcal{K}(V)_{-1}, \mathcal{K}(V)_1) = V$ and $\mathcal{K}(V)_0$ does not contain nonzero ideals of $\mathcal{K}(V)$.

We will see that under our assumption, the algebra $\mathcal{K}(V)$ is prime. Let us show that every nonzero ideal of $\mathcal{K}(V)$ has non zero intersection with V^+ . Since the Jordan pair V is prime, there are no elements $0 \neq x^- \in V^-$ with $[x^-, V^+, V^+] = (0)$. Similarly, there are no elements $0 \neq x^+ \in V^+$ with $[x^+, V^-, V^-] = (0)$.

If $I \cap V^+ \neq (0)$, then $(0) \neq [I \cap V^+, V^-, V^-] \subseteq I \cap V^-$. That is, for an arbitrary ideal I of $V, I \cap V^+ \neq (0)$ if and only if $I \cap V^- \neq (0)$.

Let $x = x_- + x_0 + x_+ \in I$. Let us assume that $x_- \neq 0$. Then $[x, V^+, V^+] = [x_-, V^+, V^+] \neq 0$ and $[x, V^+, V^+] \subseteq I$. So $[x, V^+, V^+] \subseteq I \cap V^+$ and $I \cap V^+ \neq (0)$. Similarly, if $x_+ \neq 0$, then $I \cap V^- \neq (0)$.

Hence $I \subseteq [V^-, V^+]$, which implies I = (0).

Now we can prove that $\mathcal{K}(V)$ is prime. Indeed, let's consider I_1, I_2 two non zero ideals of $\mathcal{K}(V)$. Then $I_1 \cap V \neq (0)$, $I_2 \cap V \neq (0)$. Since V is prime, $I_1 \cap I_2 \cap V \neq (0)$ and, in particular, $I_1 \cap I_2 \neq (0)$.

Since $L = \mathcal{K}(V)$, is a prime and strongly PI Lie algebra it follows that the centroid Γ of L is nonzero and the algebra $(\Gamma \setminus \{0\})^{-1}L$ is finite dimensional over $(\Gamma \setminus \{0\})^{-1}\Gamma$.

Let us see that Γ can be identified with the centroid of V, that is, $V^{+}\Gamma \subseteq V^{+}$ and $V^{-}\Gamma \subseteq V^{-}$. Indeed, let's consider the derivation $d: L \to L$, $d(a_{i}) = ia_{i}$, that multiplies V^{\pm} by ± 1 and annihilates $[V^{-}, V^{+}]$. The centroid Γ decomposes into eigenspaces with respect to the action of $d: \Gamma = \Gamma_{-2} + \Gamma_{-1} + \Gamma_{0} + \Gamma_{1} + \Gamma_{2}$. Since every element of $\cup_{i\neq 0}\Gamma_{i}$ is nilpotent and L is prime, we have that $\Gamma = \Gamma_{0}$, that is, Γ maps V^{+} to V^{+} and V^{-} to V^{-} .

The centroid Γ is a graded commutative domain, $\Gamma = \sum_{i \in \mathbb{Z}} \Gamma_i$ with $\dim \Gamma_i \leq 1$. If $\Gamma = \Gamma_0$, then $\Gamma = F$ and $\dim_F V < \infty$.

If there exist $i, j \ge 1$ with $\Gamma_i \ne (0) \ne \Gamma_{-j}$, then V is a (twisted) loop Jordan pair.

Let's consider finally the case when every negative component of Γ is zero (the case with all positive components of Γ equal to zero is similar).

Let γ_l be a homogeneous element of the centroid with degree $l, \gamma_l : V \to V$. Then $\operatorname{Ker} \gamma_l \leq V$, $\operatorname{Im} \gamma_l \leq V$ and they annihilate each other. Since V is prime, it follows that γ_l is injective.

From $\gamma_l(V_i) \subseteq V_{i+l}$, it follows that $\dim V_i = \dim V_i \gamma_l \leq \dim V_{i+l}$. For every $i, 0 \leq i \leq l-1$, the ascending sequence: $\cdots \dim V_i \leq \dim V_{i+l} \leq \dim V_{i+2l} \leq \cdots$ stabilizes in some k_i , that is, $\dim V_{i+k_i} = \dim V_{i+(k_i+1)l}$.

Let $k(\gamma_l) = \max\{k_i | 0 \le i \le l-1\}$. For every $h \ge k(\gamma)$ the linear mapping $\gamma_l : V_h \to V_{h+l}$ is bijective.

Let Γ_h be the set of homogeneous elements in Γ (so $(\Gamma_h \setminus \{0\})^{-1}V$ is a graded Jordan pair over $(\Gamma_h \setminus \{0\})^{-1}\Gamma$ and an arbitrary nonzero homogeneous element of $\Gamma_h^{-1}\Gamma$ is invertible).

Let $n = \min\{l > 0 | C_l = (\Gamma_h^{-1}\Gamma)_l \neq 0\}$. If $0 \neq c_n \in C_n$, then there exist i, j, i > j, and $0 \neq \gamma_i \in \Gamma_i, 0 \neq \gamma_j \in \Gamma_j$ with $c_n = \gamma_j^{-1}\gamma_i$. Let k be a multiple of n such that $k \geq \max(k(\gamma_i), k(\gamma_j))$ (let's notice that we can write $V_{h+j}\gamma_j^{-1} \subseteq V_h \subseteq V$ if $h \geq k$, even if there is no γ_j^{-1} in Γ). Hence, $V_{h+n} = V_{h+n+j}\gamma_j^{-1} = V_{h+n+j-i}\gamma_i\gamma_j^{-1} = V_hc_n$.

Let's consider the finite-dimensional vector space $\mathcal{V} = \mathcal{V}_0 + \mathcal{V}_1 + \cdots + \mathcal{V}_{n-1}$ with $\mathcal{V}_h = V_{h+k}$ for $0 \le h \le n-1$.

If $0 \le r, s \le n-1$, $b_{k+r}^{\sigma} \in V_{k+r}^{\sigma}$, $b_{k+s}^{-\sigma} \in V_{k+s}^{-\sigma}$, $\sigma = \pm 1$, then

$$\{b_{k+r}^{o}, b_{k+s}^{-o}, b_{k+r}^{o}\} \in V_{3k+2r+s}^{o}.$$

Let 2k + 2r + s = ln + t, $l \ge 0$, $0 \le t \le n - 1$. Then $V_{3k+2r+s} = V_{k+ln+t} = V_{k+t}c_n^l$.

Define

$$\{b_{k+r}^{\sigma}, b_{k+s}^{-\sigma}, b_{k+r}^{\sigma}\}^{\star} = \{b_{k+r}^{\sigma}, b_{k+s}^{-\sigma}, b_{k+r}^{\sigma}\}c_{n}^{-l} \in V_{k+t} = \mathcal{V}_{t}$$

Then \mathcal{V} becomes a finite-dimensional Z/nZ-graded Jordan pair with this new product and we get the wanted result.

Case 2. We will assume now that V is *finitely generated*

According to the classification of prime non-degenerated Jordan pairs by E. Zelmanov, we know that a finitely generated prime Jordan pair V is either special or strongly PI. Since the strongly PI case is already known, we only need to consider the special case.

In order to prove Theorem 2 in this case, we need to know the relation between the Gelfand Kirillov dimension of a special Jordan pair and the Gelfand Kirillov dimension of its associative enveloping algebra. We will use a result similar to the one used by Skosirskii ([SK1]) for algebras.

Lemma 4.2. Let (P^-, P^+) be a special Jordan pair finitely generated by a_1, a_2, \ldots, a_n . Then every word in the associative enveloping pair can be expressed as a linear combination of elements of the form $\omega' \omega \omega''$, where ω is a Jordan word and the lengths of ω' and ω'' are not greater than 2n.

Proof. There exists an associative algebra A (that can be assumed finitely generated by a_1, \ldots, a_n) such that $(P^-, P^+) \subseteq (A^-, A^+)$ and $A = A^- + (A^-A^+ + A^+A^-) + A^+$.

Let $\omega = v_1^{\sigma} v_2^{-\sigma} v_3^{\sigma} \cdots$ be a product of Jordan words v_i and the total degree of ω in a_1, \ldots, a_n is N.

We will use an inverse induction on the length of v_{σ} , maximal among the lengths of elements v_i^{σ} . If the length is N, then $v = v^{\sigma}$. Let us assume that some $v_i^{-\sigma}$ placed to the right (similarly to the left) of the element v^{σ} has length ≥ 3 . Using that $v_k^- v_j^+ v_i^- = \{v_k, v_j, v_i\}^- - v_i^- v_j^+ v_k^-$, we can assume, without loss of generality, that this element and v^{σ} are adjacent.

But

$$v^{\sigma}a^{-\sigma}b^{\sigma}a^{-\sigma} = (v^{\sigma}a^{-\sigma}b^{\sigma} + b^{\sigma}a^{-\sigma}v^{\sigma})a^{-\sigma} - b^{\sigma}(a^{-\sigma}v^{\sigma}a^{-\sigma})$$

where elements in brackets are Jordan words of length strictly greater than the length of v^{σ} .

Rewrite every Jordan word v_i^{σ} except v^{σ} as an expression in the generators a_i^{\pm} , $\sigma = \sum \cdots v^{\sigma} a_{i1}^{-\sigma} a_{i2}^{\sigma} a_{i3}^{-\sigma} \cdots$.

A double occurrence of a generator $a_j^{-\sigma}$ to the right of v^{σ} gives rise to $a_j^{-\sigma}a_k^{\sigma}a_j^{-\sigma}$, the case which has been considered above.

Finally, we get that ω is of the form:

$$\omega = (\cdots)v^{\sigma}a_{i1}^{-\sigma}a_{i2}^{\sigma}a_{i3}^{-\sigma}\cdots$$

where all the generators $a_{i1}^{-\sigma}$, $a_{i3}^{-\sigma}$, ... are distinct.

Hence the length to the right of v^{σ} (and similarly to the left) is $\leq 2n$, where n is the number of generators.

Lemma 4.3. If P is a finitely generated special Jordan pair and A is an associative algebra as in Lemma 4.2 with $(P^-, P^+) \subseteq (A^-, A^+)$, then $GK - \dim(P) = GK - \dim(A)$.

Proof. Let U be a finite dimensional vector space that generates P and A. Then

$$GK - \dim(A) = \limsup_{n \to \infty} \frac{\ln \dim U^n}{\ln n}$$

But $U^n \subseteq U'W^mU''$, where U' and U'' are subspaces of bounded dimensions (not more than C) and W^m is spanned by Jordan words in elements of U of length $\geq m = n - 4r$ } where r is the dimension of the vector space U. So $\dim U^n \leq C^2 \dim W^m$.

Hence,

$$GK - \dim(A) = \limsup_{n \to \infty} \frac{\ln \dim U^n}{\ln n} \le \limsup_{n \to \infty} \frac{\ln(C^2 \cdot \dim W^m)}{\ln n} =$$
$$\limsup_{m \to \infty} \frac{\ln C^2 + \ln(\dim W^m)}{\ln(m + 4r)} = \limsup_{m \to \infty} \frac{\ln \dim W^m}{\ln m} = GK - \dim P$$

Now we can conclude the proof of Theorem 2 in the finitely generated case.

If the considered Jordan pair P is finitely generated and special, its associative enveloping algebra A is finitely generated and GK - dim(A) = 1. By the result by Small, Stafford and Warfield Jr. [SSW] we know that A is PI. Hence P is strongly PI and the result follows from Case 1.

Case 3. The General Case

Lemma 4.4. Let $V = \sum_{i \in \mathbb{Z}} V_i$ be a Z-graded Jordan pair having all dimensions $\dim V_i$ uniformly bounded. Then the locally nilpotent radical Loc(V) is equal to the McCrimmon radical M(V).

Proof. It is known that $M(V) \subseteq Loc(V)$ (see [Z4]).

Choose an arbitrary homogeneous element $v_k^{\sigma} \in V_k^{\sigma}$ and consider the homotope Jordan algebra $J = V^{-\sigma}$, $x \star y = \{x, v_k^{\sigma}, y\}$. Assign a new degree to homogeneous elements of J, $\deg(V_i^{-\sigma}) = i + k$. With this degree J becomes a graded Jordan algebra having all dimensions $\dim J_i$ uniformly bounded. In [MZ1] it was proved that $\operatorname{Loc}(J) = M(J)$. Since $\operatorname{Loc}(V)^{-\sigma} \subseteq \operatorname{Loc}(J)$ and $\{v_k^{\sigma}, M(J), v_k^{\sigma}\} \subseteq M(V)$ (see [Z4]), we conclude that $\{v_k^{\sigma}, \operatorname{Loc}(V), v_k^{\sigma}\} \subseteq M(V)$.

In particular, an arbitrary homogeneous element of Loc(V) lies in $M(Loc(V)) \subseteq M(V)$. This implies that $Loc(V) \subseteq M(V)$. The Lemma is proved.

Let V be a Jordan pair satisfying the assumptions of Theorem 2 and let \tilde{V} be a finitely generated graded subpair of V. The nondegenerate pair $\tilde{V}/M(\tilde{V})$) can be approximated by finitely generated prime nondegenerate Jordan pairs. By the Case 2 each of these pairs is either $\mathcal{L}(U)$ or can be embedded into a loop pair $\mathcal{L}(U)$, where U is a simple finite dimensional pair. By Lemma 4.1, dim $U \leq N(d)$, where $d = \max \dim V_i$.

Let T be the ideal of the free Jordan pair consisting of those elements which are identically zero in all Jordan pairs of dimension $\leq N(d)$.

We proved that for an arbitrary finitely generated subpair \tilde{V} of V, the set of values $T(\tilde{V})$ lies in the locally nilpotent radical $\text{Loc}(\tilde{V})$. This implies that $T(V) \subseteq Loc(V)$. By Lemma 4.4 Loc(V) = M(V) = (0), which implies T(V) = (0). Hence the pair V is strongly PI, which is the Case 1. Theorem 2 is proved.

In the next section we will need the following lemma about loop Jordan pairs.

Let W be a simple finite dimensional Jordan pair graded by Z/lZ, $W = \sum_{i=0}^{l-1} W_i$, and let $\mathcal{L}(W) = \sum_{i=q \mod l} W_i \otimes t^q$ be a (twisted) loop pair.

Lemma 4.5. For any $k \ge 1$ we have

1) The subpair $\sum_{i>k} \mathcal{L}(W)_i$ is finitely generated,

2) Every subpair $P \subseteq \mathcal{L}(W)$ containing $\sum_{i \geq k} \mathcal{L}(W)_i$ is prime and nondegenerate.

Proof. 1) We will prove that $\sum_{i\geq k} \mathcal{L}(W)_i$ is generated by $\sum_{i=k}^{3k+2l} \mathcal{L}(W)_i$.

Let q > 3k + 2l, $a \in W_j^{\sigma}$, $0 \le j \le l - 1$, $j \equiv q \mod l$ and $a \otimes t^q \in \mathcal{L}(W)_q$.

We have that $W^{\sigma} = \{W^{\sigma}, W^{-\sigma}, W^{\sigma}\}$ (by simplicity of W), so $a = \sum_i \{a'_i, b_i^{-\sigma}, a''_i\}$, with $a'_i \in W^{\sigma}_{\pi(i)}, b_i^{-\sigma} \in W^{-\sigma}_{\mu(i)}$, and $a''_i \in W^{\sigma}_{\rho(i)}, 0 \leq \pi(i), \mu(i), \rho(i) \leq l-1$.

Choose integers $k \leq q_1(i), q_2(i) \leq k+l-1$ such that $q_1(i) \equiv \pi(i) \mod l$, $q_2(i) = \rho(i) \mod l$ and $q_3(i) = q - q_1(i) - q_2(i)$.

From q > 3q + 2l, it follows that $q_3(i) > k$. Now,

$$a \otimes t^q = \sum_i \{a_i^{\prime \sigma} \otimes t^{q_1(i)}, b_i^{-\sigma} \otimes t^{q_3(i)}, a_i^{\prime \prime \sigma} \otimes t^{q_2(i)}\},$$

that is,

$$\mathcal{L}(W)_q \subseteq \sum \{ \mathcal{L}(W)_{q_1}, \mathcal{L}(W)_{q_3}, \mathcal{L}(W)_{q_2} \},\$$

where $k \le q_1, q_2, q_3 \le q$.

2) Note that if Ω is a homogeneous operator in the multiplication algebra of $\mathcal{L}(W)$ and $(\sum_{i=k}^{k+l-1} \mathcal{L}(W)_i)\Omega = (0)$, then $\Omega = 0$

Let P be a subpair of $\mathcal{L}(W)$ with $P \supseteq \sum_{i=k}^{\infty} \mathcal{L}(W)_i$. If $a^{\sigma} \in P^{\sigma}$ is an absolute zero divisor of the pair P, then $(\sum_{i=k}^{k+l-1} \mathcal{L}(W)_i)U(a) = (0)$. This implies that $\mathcal{L}(W)U(a) = (0)$. Since $\mathcal{L}(W)$ is nondegenerate, it follows that a = 0. We have proved that P is nondegenerate.

Let I, J be non zero graded ideals of P with $I \cap J = (0)$.

Take $0 \neq a^{\sigma} \otimes t^{p} \in I$, $0 \neq b^{\sigma} \otimes t^{q} \in J$ and $c(x_{1}, \ldots, x_{n}, \ldots)$ an arbitrary multilineal expression in the free Jordan pair. Then

$$c(a^{\sigma} \otimes t^{p}, b^{\sigma} \otimes t^{q}, \sum_{i \ge k} \mathcal{L}(W)_{i}, \sum_{i \ge k} \mathcal{L}(W)_{i}, \ldots) = (0).$$

This implies that $c(a^{\sigma}, b^{\sigma}, W, W, ...) = (0)$, what contradicts primeness of W. This proves the lemma.

5. The Lie Case

Lemma 5.1. Let A be a simple Z/lZ-graded finite dimensional algebra and let a be a homogeneous element of degree d(a). Consider the loop algebra $\sum_{i=j \mod l} A_i \otimes t^j$ and its subalgebra $\sum_{j\geq m} A_i \otimes t^j$. Choose an integer $n \geq m$ such that $n = d(a) \mod l$ and let I be the ideal generated by $a \otimes t^n$ in $\sum_{j\geq m} A_i \otimes t^j$. Then $I \supseteq \sum_{j\geq p} A_i \otimes t^j$ for some $p \geq m$.

Proof.

Let a_1, \ldots, a_s be homogeneous elements of A and $b = aP(a_1)\cdots P(a_s)$, where P = R or L. We choose integers $j_1, \ldots, j_s \ge m$ such that $j_k = d(a_k) \mod l$, $k = 1, \ldots s$. Then $(a \otimes t^n)P(a_1 \otimes t^{j_1})\cdots P(a_s \otimes t^{j_s}) = b \otimes t^q \in I$ and for an arbitrary $k \in \mathbb{Z}_{>0}$ we have that

$$b \otimes t^{q+kl} = (a \otimes t^n) P(a_1 \otimes t^{j_1+kl}) \cdots P(a_s \otimes t^{j_s}) \in I.$$

Let's take a basis e_1, \ldots, e_r of A that consists of elements of the type $e_i = aR(a_{i_1}) \cdots R(a_{i_{r_i}})$, where the elements a_{i_j} are homogeneous. According to what we have mentioned above, there exist integers $q_1, \ldots, q_r \ge m$ such that $e_i \otimes t^{q_i + lZ_{\ge 0}} \in I$. It suffices to take $p = \max_{1 \le i \le r} q_i$.

Remark. The assertion of the Lemma 5.1 is true also for Z/lZ-graded simple finite dimensional Jordan pairs.

We can already prove the main result giving the structure of prime Z-graded Lie algebras.

Proof of Theorem 1

Let $L = \sum_{i \in \mathbb{Z}} L_i = \sum_{k=-n}^n L_{(k)}$ be a Lie algebra that satisfies the assumptions of Theorem 1. By Lemma 3.1 and Theorem 2, we know that $V = (L_{(-n)}, L_{(n)})$ can be embedded into a loop pair $\mathcal{L}(W), V \hookrightarrow \mathcal{L}(W)$, where W is a simple finitedimensional Jordan pair and either $\sum_{i\geq k} \mathcal{L}(W)_i \subseteq V$ or $\sum_{i\geq k} \mathcal{L}(W)_{-i} \subseteq V$, for some $k \geq 1$. Let's assume that $\sum_{i\geq k} \mathcal{L}(W)_i \subseteq V$.

For an arbitrary scalar $\alpha \in F$ we define a homomorphism

$$\varphi_{\alpha}: W \otimes_F F[t^{-1}, t] \longrightarrow W$$

via $t \to \alpha$. Since $\varphi_{\alpha}(\sum_{i \geq k} \mathcal{L}(W)_i) = \varphi_{\alpha}(\sum_{i \geq k} \mathcal{L}(W)_{-i}) = W$, it follows that $\varphi_{\alpha}(V) = W$.

Let's denote $I_{\alpha} = Ker\varphi_{\alpha} \cap V$ and \tilde{I}_{α} the ideal in the Lie algebra generated by I_{α} . Using Lemma 14 in [Z1] we have that $\tilde{I}_{\alpha} \cap V = I_{\alpha}$.

Let \mathcal{G} be the Tits-Kantor-Koecher construction associated to the Jordan pair W. A Z/lZ-graduation of W induces a Z/lZ-graduation of \mathcal{G} and so \mathcal{G} is $Z \times Z/lZ$ -graded. The 0 component of this $Z \times Z/lZ$ -graduation contains a Cartan subalgebra H.

Every $Z \times Z/lZ$ -homogeneous component of \mathcal{G} decomposes as a sum of eigenspaces with respect to the action of H. All the eigenspaces have dimension 1 and there exists a nonzero eigenvector x such that $[[\mathcal{G}, x], x] = Fx$. Hence, every homogeneous component $W_p^{\sigma} \neq (0)$, with $\sigma = \pm$, contains a non zero element a' such that $\{a', W^{-\sigma}, a'\} = Fa'$.

Choose an integer $q \ge k$, $q = p \mod l$ and let $a' \otimes t^q = a \in \sum_{i \ge k} \mathcal{L}(W)_i \subseteq V$.

By Lemma 5.1 the ideal $id_V(a)$ of the Jordan pair (generated by the element a) contains a $\sum_{i\geq m} \mathcal{L}(W)_i$ for some $m\geq k$.

By Lemma 4.4(1), the subpair $\sum_{i\geq m} \mathcal{L}(W)_i$ is finitely generated. Choose, inside of the ideal $id_L(a)$ generated by a in the algebra L, a finite set of elements $a_i = aad(x_{i_1}) \cdots ad(x_{i_{r(i)}}), \ 1 \leq i \leq s, \ x_{ij} \in L$ that are $0Z \times 0Z/lZ$ -homogeneous and include generators of $\sum_{i\geq m} \mathcal{L}(W)_i$.

Consider $L' = \langle a_1, \ldots, a_s \rangle$ the subalgebra generated by the elements $a_1, \ldots, a_s, m = 2^{r_1} + \cdots + 2^{r_s}$ (as in Lemma 2.1) and T the T-ideal generated by all identities satisfied by all Lie algebras of dimension $\leq R(m)$.

For an arbitrary scalar, $0 \neq \alpha \in F$, we have $\varphi_{\alpha}(a) = \alpha^{q} a'$

Hence $[[\varphi_{\alpha}(L), \varphi_{\alpha}(a)], \varphi_{\alpha}(a)] \subseteq \{a', W^{-\sigma}, a'\} = Fa' = F\varphi_{\alpha}(a).$

By Lemma 2.1, the Lie algebra $\varphi_{\alpha}(L')$ satisfies all the identities of T. Since $\bigcap_{0 \neq \alpha \in F} \tilde{I}_{\alpha} = (0)$ (notice that $(\bigcap_{0 \neq \alpha \in F} \tilde{I}_{\alpha}) \cap V = \bigcap_{0 \neq \alpha \in F} I_{\alpha} = (0)$), it follows that T(L') = (0)

Let J(L') a $Z \times Z/lZ$ -graded maximal ideal of L' such that $J(L') \cap L'_{(n)} = J(L') \cap L'_{(-n)} = (0)$ (it exists by Zorn Lemma). The Jordan pair $(L'_{(-n)}, L'_{(n)})$ is prime and nondegenerate by Lemma 4.4(1).

An arbitrary non-zero graded ideal of L'/J(L') has nonzero intersection with the pair $(L'_{(-n)}, L'_{(n)})$. By Lemma 3.2, the algebra L'/J(L') is prime and nondegenerate. Furthermore, T(L'/J(L')) = (0), so L'/J(L') is strongly PI. Using Lemma 2.6(2) and Mathieu's theorem (see [Ma2]), $(\Gamma_h(L'/J(L')) \setminus \{0\})^{-1}(L'/J(L'))$ is isomorphic to a loop algebra $\mathcal{L}(\mathcal{G})$. By Lemma 4.1, $\dim_F(\mathcal{G}) \leq m = \max(d(2d+1), 248)$. Let T_m be the ideal of the free Lie that consists of all the identities that are satisfied identically in all Lie algebras of dimension $\leq m$. Then $T_m(L') \subseteq J(L')$ and so $T_m(L') \cap L_{(n)} = (0)$.

Since L' is an arbitrary finitely generated subalgebra of $id_L(a)$ containing a given (finite) subset and such subalgebras cover the ideal $id_L(a)$, we conclude that $T_m(id_L(a)) \cap L_{(n)} = (0)$.

But the ideal $T_m(id_L(a))$ of $id_L(a)$ is invariant with respect to all the derivations of $id_L(a)$. Hence $T_m(id_L(a))$ is an ideal of L. By Lemma 3.1(1), $T_m(id_L(a)) \cap L_{(n)} = (0)$ implies $T_m(id_L(a)) = (0)$. So the algebra $id_L(a)$ is strongly PI. Finally it suffices to apply Lemma 2.9 to finish the proof of Theorem 1.

6. References

- [H] Humphreys, J. E., "Introduction to Lie algebras and Representation Theory," Springer-Verlag, 1970.
- [J] Jacobson, N., "Lie algebras," Dover Publ. Inc., 1962.
- [K1] Kac, V. G., Simple graded Lie algebras of finite growth, Math. USSR Izv. 2 (1968), 1271–1311.
- [KMZ] Kac, V. G., C. Martínez and E. Zelmanov, Graded simple Jordan superalgebras of growth one, Memoirs Amer. Math. Soc. 150 (2001).
- [KvL] Kac, V. G., and J. van de Leur, On classification of superconformal algebras, Strings 88, World Sci. 2 (1989), 77–106.
- [Ko] Kostrikin, A. I., On the Burnside problem, Izv. Akad. Nauk SSSR 23 (1959), 3-34.

- [L] Loos, O., "Jordan pairs," Lecture Notes in Mathematics 460, Springer-Verlag, Berlin-New York, 1975.
- [M] Martínez, C., Gelfand-Kirillov dimension in Jordan algebras, Trans. Amer. Math. Soc. **348** (1996), 119–126.
- [MZ1] Martínez, C., and E. Zelmanov, Jordan algebras of Gelfand-Kirillov dimension one, J. of Algebra 180 (1996), 211–238.
- [MZ2] —, Simple and prime graded Jordan Algebras, J. of Algebra **194** (1997), 594–613.
- [Ma1] Mathieu, O., Classification des algèbres de Lie graduées simples de croissance ≤ 1 , Inventiones Math. 86 (1986), 371–426.
- [Ma2] —, Classification of simple graded Lie algebras of finite growth, Inventiones Math. **108** (1992), 455–519.
- [Ro] Rowen, L., "Polynomial Identities in Ring Theory," Academic Press, New York, 1962.
- [SK1] Skosirskii, V. G., Radicals in Jordan algebras, Sibirsk Math. Zh. 29 (1988), 154–166.
- [SK2] —, On nilpotency in Jordan and right alternative algebras, Algebra i Logika 18 (1979), 73–85.
- [SSW] Small, L. W., J. T. Stafford, and R. B. Warfield, Jr., Affine algebras of Gelfand Kirillov dimension 1 are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), 407–414.
- [Z1] Zelmanov, E., Lie algebras with algebraic associated representation, Math. Sb. 121(163) (1983), 545–561.
- [Z2] —, Lie algebras with a finite grading, Math. USSS Sbornik 124(166) (1984), 353–392.
- [Z3] —, Characterization of McCrimmon radical, Sibirsk Math. Zh. 25 (1984), 190–192.
- [Z4] —, Absolute zero divisors in Jordan pairs and Lie algebras, Mat. Sb. 112 (154) (1980), 611–629.

Consuelo Martínez Departamento de Matemáticas Universidad de Oviedo C/ Calvo Sotelo, s/n 33007 Oviedo SPAIN chelo@pinon.ccu.uniovi.es

Received November 10, 2004 and in final form March 8, 2005