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A Dynamical Approach
to Compactify the Three Dimensional Lorentz Group

Marcos Salvai∗
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Abstract. The Lorentz group acts on the projectivized light cone in the
three dimensional Lorentz space as the group G of Möbius transformations of
the circle. We find the closure of G in the space of all measurable functions of
the circle into itself, obtaining a compactification of it as an open dense subset
of the three-sphere, with a dynamical meaning related to generalized flows.
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The canonical action of the Lorentz group Oo (1, 2) on the projectivized light
cone in the three dimensional Lorentz space is equivalent to the action of the
group G on the circle S1 = {z ∈ C | |z| = 1} , where G consists of the Möbius
transformations of the extended plane preserving the circle. The group G is
isomorphic to PSU (1, 1) and PSl (2,R). In this note we compactify G as an
open dense subset of the three-sphere, with a dynamical motivation.

The group G consists of maps of the form uTα, where u ∈ S1 and

Tα (z) =
z + α

1 + ᾱz

for α ∈ C , |α| < 1 and all z ∈ S1. The map S1 × ∆ → G , (u, α) 7→ uTα is a
diffeomorphism. Although we are interested in the action of G on the circle, we
recall that if the unit disc ∆ = {z ∈ C | |z| < 1} carries the canonical Poincaré
metric of constant negative curvature −1 and α 6= 0, then Tα is the transvection
translating the geodesic with end points ±α/ |α| , sending 0 to α.

Dynamical motivation. If t ∈ R, |t| < 1, then Tt fixes 1,−1 ∈ S1 and if
z ∈ S1, z 6= −1, then

lim
t→1−

Tt (z) = 1.

One can imagine that all particles of the circle (except −1) moving according to
Tt concentrate in the point 1 at t = 1. It is natural to think that a particle coming
to the point 1 at t = 1 from the upper half of the circle, will continue its way
into the lower part of the circle for t > 1 (notice that Tt does not make sense for
|t| ≥ 1) and similarly for a particle coming to the point 1 from the lower part of
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the circle. This can be rendered precise with the compactification of G described
in Theorem 1.1 below (see Proposition 1.3).

Let F = {f : S1 → S1 | f is measurable} / ∼ , where f ∼ g if and only if
f and g coincide except on a set of measure zero, equipped with the distance

D (f, g) =

∫
S1

d (f (z) , g (z)) ds (z) ,

being s is an arc length parameter and d the associated distance on S1 (we
think of each function as representing its equivalence class). Let S3 be the three
dimensional sphere realized as the Lie group of unit vectors in the quaternions
H = C + Cj . We recall that if q is an imaginary cuaternion with |q| = 1, then
exp (tq) = cos t+ (sin t) q. For v ∈ S1 , let cv denote the constant map in F with
value v.

1. The Main Theorem

Theorem 1.1. The frontier of G in F consists of the constant functions.
Moreover, if one considers on the closure G of G the relative topology from F ,
then the map F : G→ S3 defined by

F (uTα) = u exp
(
π
2
αj
)
, F (cv) = vj,

is a homeomorphism and F |G : G→ S3 determines a submanifold.

Proof. Clearly G is a subset of F . If u ∈ S1, let mu denote multiplication by
u. By abuse of notation we write Tαmu = Tαu. Notice that uTα = Tuαu for any
u ∈ S1, α ∈ ∆. Let αn and un be sequences in ∆ and S1, respectively. Suppose
first that αn → α ∈ S1 as n→∞. We show that

Tαnun → cα in F as n→∞. (1)

Indeed, since ds is invariant by rotations, then D (Tαnun, cα) = D (Tαn , cα). This
sequence converges to zero as n → ∞ by the Bounded Convergence Theorem,
since limn→∞ Tαn (z) = α for any z 6= −α (d and the euclidean distance are
equivalent). In particular constant functions are in the frontier of G . On the
other hand, if un → u and αn → α ∈ ∆, then Tαnun → Tαu pointwise, and hence
in F , again by the Bounded Convergence Theorem. Moreover, by the preceding,
if Tαnun converges to f in F , then f ∈ G or is constant, since by the compactness
of ∆×S1 there exists a subsequence of (αn, un) converging in it. Then the frontier
consist only of constant functions. Now, F is a bijection since a straightforward
computation shows that F−1 : S3 → G is given by

F−1 (v + wj) =


cw if v = 0,
mv if w = 0
Tαu if v 6= 0 6= w,

(2)

for v, w ∈ C, |v|2 + |w|2 = 1, where u = v/ |v| and α = 2
π

arccos (|v|) w
|w| .
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Hence F−1 is smooth at v+wj ∈ S3 with v 6= 0 6= w. Since F |G is smooth
and injective, to show that F |G is an embedding it suffices to see that F−1 is
smooth at v ∈ S1 ⊂ S3. This will follow from the Inverse Function Theorem if we
check that

dFmv : TmvG→ TvS
3

is an isomorphism. We can identify TmvG = T(v,0) (S1 ×∆) = TvS
1 ⊕ T0∆ =

Riv ⊕ C and also TvS
3 = Riv ⊕ Cj, the orthogonal complement of v in H . We

compute

dFv (xiv, z) =
d

dt

∣∣∣∣
0

F
(
vetxiTtz

)
=

d

dt

∣∣∣∣
0

vetxi exp
(
t
π

2
zj
)

= v
(
xi+

π

2
zj
)
.

Hence, dFv is an isomorphism.

In order to verify that F−1 is continuous at wj we consider the map
F : G → S3 , F = Rj ◦ F (Rj denotes right multiplication by j ), which, by
the preceding, is a diffeomorphism onto its image S3 − S1. We have to show
that F−1 ◦ F is continuous at u ∈ S1. Clearly, F (mu) = uj. If α 6= 0, we
compute F (uTα) = v + wj, where v = −uα

|α| sin
(
π
2
|α|
)

and w = u cos
(
π
2
|α|
)
.

Since cos θ = sin
(
π
2
− θ
)

for all θ, we have by (2) that

F−1
(
F (uTα)

)
= Tu(1−|α|) (−uα/ |α|) , (3)

which by (1) converges to cu =
(
F−1 ◦ F

)
(mu) as α → 0. Finally, since S3 is

compact and Hausdorff, F−1 is a homeomorphism.

Remark. If un = e2πxni with xn = 1/2, 1/4, 2/4, 3/4, 1/8, 2/8, 3/8, . . . , then
T1−1/nmun converges to c1 in F but it does not converge pointwise on a dense
subset of S1. This distinguishes our approach from that of Topological Dynamics.

Proposition 1.2. The canonical action of G × G on G, (g, h) .f = gfh−1 ,
extends to a continuous action of G × G on S3 via F |G : G → S3. If we call
K = S1 ⊂ G, the restricted action of K×K on S3 is given by A (u, v, z1 + z2j) =
u (v̄z1 + z2j) .

Proof. We define an action Ā of G×G on G by

Ā (g, h, f) = gfh−1, Ā (g, h, cv) = cgv,

for g, h, f ∈ G , v ∈ S1. Since F : G→ S3 is a homeomorphism, we have to show
that Ā is continuous. Suppose that fn ∈ G, vn ∈ S1 are sequences converging to
cv ∈ G , and gn, hn are sequences in G converging to g, h ∈ G , respectively. By
arguments similar to those used in the proof of Theorem 1.1, gnfnh

−1
n and cgnvn

both converge to cgv in F .

Next we verify the second assertion. We have to show that the following
diagram is commutative.

K ×K ×G Ā−→ G
↓ (idK×K , F ) ↓ F

K ×K × S3 A−→ S3
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For u, v, w ∈ S1, α ∈ ∆, we compute(
F ◦ Ā

)
(u, v, cw) = F (cuw) = uwj = A (u, v, wj) = A (u, v, F (cw)) .

Besides,
(
F ◦ Ā

)
(u, v, wTα) = F (uwTαv̄) = F (uwv̄Tvα) = A (u, v, F (wTα)) ,

since exp
(
π
2
βj
)

= cos
(
π
2
|β|
)

+ sin
(
π
2
|β|
)
β
|β|j for any β ∈ ∆.

Next we make precise the comment at the beginning of the article concerning
moving particles in the circle.

Proposition 1.3. If G is endowed with the differentiable structure and the
Riemannian metric induced from S3 via the homeomorphism F, then the curve
γ : R→ G defined by

γ (s) =

{
(−1)k Ts−2k if |s− 2k| < 1, k ∈ Z
c(−1)` if s = 2`+ 1, ` ∈ Z

is a complete geodesic in G. Moreover, if z 6= ±1, then the curve γz (s) := γ (s) (z)
in S1, describing the motion of the particle z under γ (s) , is continuous with
period 4 and runs n times around the circle in any interval of time of length 4n
(clockwise if Re z > 0 and counterclockwise if Re z < 0).

Proof. A straightforward computation shows that F (γ(s)) = exp(π
2
sj). Hence

γ is a geodesic. The remaining facts are easily verified.

Remarks. a) We recall that a Fermi coordinate system φ along a geodesic γ in
a Riemannian manifold of dimension n+ 1 is given by

φ (t, t1, . . . , tn) = Exp γ(t)

(∑n

i=1
tivi (t)

)
,

where Exp denotes the geodesic exponential map and {vi} is a parallel orthonormal
frame along γ orthogonal to γ′ (t) at any t. Notice that since G is diffeomorphic
to S1 ×∆ via uTα 7→ (u, α) , if one looks just for a compactification of G as an
open dense subset of the three-sphere, without extra properties, the simplest way
is by using a slight modification of Fermi coordinates along the geodesic s 7→ esi

in S3 : F (uTα) = Exp u

(
π
2
αj
)
, where u ∈ S1 ⊂ S3. The maps F and F do

not coincide on G, since the mapping s 7→ meis is not a one-parameter subgroup
of transvections translating that geodesic (their differentials do not realize the
parallel transport along it).

b) The situations of particles concentrating in a point or a point spreading
instantaneously onto the whole space, is present in the literature in a different
context, the study of volume preserving flows by geometric means, with the notions
of polymorphisms [8] and generalized flows [3]. An overview of the subject can be
found in [1].

For the sake of connectedness of mathematics we cite [4, 9]. Finally, we
comment on the compactifications known to us of classical groups whose identity
component is isomorphic to G or its double covering. The classical one is obtained
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as follows: Let Sl (2,C) = SU (2)AN be an Iwasawa decomposition. Since
SU (1, 1) intersects AN only at the identity, its projection P to SU (2) ∼= S3

is an embedding, which is given explicitly by

P

(
u v̄
v ū

)
=

u+ vj

|u+ vj|
, (u, v ∈ C, |u|2 − |v|2 = 1).

The image of P is the interior of the solid torus {u+ vj ∈ S3 | |v| ≤ |u|} . If one
wants SU (1, 1) to be dense in its compactification, one can consider for instance
p ◦ P instead of P, where p : S3 → S3/ {1, j} is the canonical projection. In this
case, the frontier of the image of SU (1, 1) is a torus.

On the other hand, recently, H. He, based on suggestions of D. Vogan,
obtained a general method to compactify the classical simple Lie groups [5, 6] (see
also [2, 7]). The groups O (1, 2) and Sl (2,R) ∼= Sp (2,R) are embedded as open
dense subsets of O (3) and of a manifold double covered by S2 × S1, respectively.
In both cases the frontier is a surface.
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