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Abstract. Following some of Lie’s ideas, we define between jet spaces canoni-
cal correspondences which allow us to associate with each first order PDE system
another one with a single unknown function which contains as solutions that of
the original system as well as its intermediate integrals. We also show for some
systems of PDE that their integration is equivalent to that of their associated
ones.
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Introduction

In a long paper published in 1895 [11], S. Lie attempted to reduce, as far as
possible, the general theory of partial differential equations of arbitrary order to
that of first order ones, thereby making its treatment amenable from the theory of
groups (page 327). He devotes the second chapter to such a reduction, making a
detailed study of the systems of two second order equations with two independent
variables and only one unknown function. In [5, page 109] Goursat admits the
method proposed by Lie to be ingenious and deep. However, as far as we know,
these ideas by Lie have not been continued.

The most important achievement in [11] is the idea for the reduction, which
one can guess from the statements and proofs, wrapped into the unavoidable
imprecision caused by the state of the art at that time. This idea consists in using
some natural correspondences between jet spaces that apply submanifolds of a
space to submanifolds of another one, and therefore systems of partial differential
equations of one kind to systems of another kind. The aim of this paper is to
develop a theory of correspondences between certain jet spaces and apply it to
systems of partial differential equations, thus clarifying and completing some of
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the partial results announced by Lie in [11].

For a better understanding of Lie’s ideas it is convenient to think of jets
of a manifold M as ideals of its ring of smooth functions. This point of view,
which was introduced by Muñoz, Muriel and Rodŕıguez in [13], is a natural
continuation of Weil’s theory of near points [18] and it allows describing the
process of prolongation, the affine structures, the contact system, etc., in terms
of the ring of smooth functions of the original manifold, making the fibration of
M unnecessary and simplifying essentially the calculus in local coordinates. Some
applications of this theory to different topics can be found in [2, 14, 15, 16].

In the two first sections of this paper we explain the basic topics about jets
and partial differential equations which we use later on; since we need essentially
first order jets only, we focus our attention in them, though most of the results are
generalizable to higher order jets.

In Section 3 we define canonical correspondences between some spaces of jets
of a smooth manifold by means of the relation of inclusion of ideals. Ehresmann’s
point of view is not appropriate for this theory, because our correspondences
involve jets of different dimensions (different numbers of “independent variables”);
when the manifold is fibred over a fixed base manifold all the jets have the same
dimension, and hence the correspondences cannot be established. As shown in
[3], a jet is essentially the same object than the value of the contact system at it;
using this fact we characterize our correspondences in terms of inclusions between
contact systems.

The use of these correspondences, which we call Lie correspondences, allows
us to associate with each first order system R of partial differential equations
another one, R∗ , with only one unknown function; the properties of this kind of
systems are well known. We establish a relationship between the solutions of both
of them: each solution of R is also a solution (in the generalized Lie sense) of R∗ .
We also clarify the meaning of the intermediate integrals of R , which are obtained
when they exist as solutions of R∗ .

Finally, we apply the theory to involutive PDE systems whose symbol equals
zero and to systems of two second–order PDE’s in two independent variables and
one unknown function, obtaining that their integration is equivalent to that of
their associated first order systems.

Some of the results of this paper were announced, without proofs, in [6].

1. Jets of submanifolds

This section contains some basic ideas and results about jet spaces from a point of
view related to Weil bundles. We restrict ourselves to jets of submanifolds; a more
general theory of Weil jets and the proofs of the results can be found in [1, 13].

Let M be an n-dimensional smooth manifold; if X is an m-dimensional
submanifold of M , for each point p ∈ X we define the (m, `)-jet of X at p as
the class of all m-dimensional submanifolds of M which have a contact of order
` with X at p . If X is a closed submanifold defined by an ideal IX of C∞(M),
then we can associate with its (m, `)-jet at p the ideal p`

m = IX +m`+1
p , where mp

is the ideal of the smooth functions on M vanishing at p . This gives a bijection
between the set of (m, `)-jets of M and the set of ideals p`

m of C∞(M) such that
the factor ring C∞(M)

/
p`

m is isomorphic to the Weil algebra R`
m of polynomials
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of degree ≤ ` in m variables. When m = dim M , each (m, `)-jet of M has the
form m`+1

p , where p ∈ M .

We will denote by J `
mM the set of all (m, `)-jets of M . There is a canonical

projection π` : J `
mM −→ M which assigns to each jet p`

m the unique maximal ideal
p0

m = mp of C∞(M) containing p`
m ; the point p ∈ M corresponding to this ideal

is called the source of p`
m .

Remark 1.1. When ` = 1 we can give a geometric description of jets. Each
first order jet p1

m ∈ J1
mM is the ideal of the functions vanishing at a point p ∈ M

that are annihilated by m linearly independent tangent vectors D1p, . . . , Dmp ∈
TpM . Thus, p1

m can be thought of as an m–dimensional linear subspace Lp1
m

of
TpM. Hence, J1

mM is the Grassmann manifold of m-planes of M .

In [13] J `
mM is endowed with a smooth structure as a quotient of the space

of regular (m, `)-velocities of M . Local coordinates may be described as follows:

Let p`
m ∈ J `

mM be the (m, `)-jet at p ∈ M of a closed submanifold X of
M . We can find a neighbourhood of p coordinated by functions x1 , . . . , xm , y1 ,
. . . , yn−m such that the local equations of X can be written in the form

yj = fj(x1, . . . , xm); (1 ≤ j ≤ n−m)

then p`
m is the sum of m`+1

p and the ideal spanned by the n−m functions

yj −
∑
|α|≤`

1

α!

∂|α|fj

∂xα
(p) (x− x(p))α,

where α = (α1, . . . , αm) is a multi-index and

(x− x(p))α = (x1 − x1(p))α1 · . . . · (xm − xm(p))αm .

The functions xi, yj,α (1 ≤ i ≤ m , 1 ≤ j ≤ n−m , |α| ≤ `) defined by

xi(p
`
m) = xi(p), yj,α(p`

m) =
∂|α|fj

∂xα
(p)

are local coordinates in an open subset of J `
mM (note that yj,0 = yj ).

Remark 1.2. In the notations above, J `
mM is locally the space of `–jets of

sections of the projection (xi, yj) 7−→ xi . This is the reason why we use the usual
notations xi, yj , thus establishing a distinction between the “base coordinates”
and the “fibre coordinates”. Nevertheless, such a distinction is only formal. If we
have local coordinates x1, . . . , xn in an open subset of M , we can think of m of
them as base coordinates and the remainder ones as fibre coordinates, but in a
dynamical way, without fixing them. This idea is due to Lie (see [10]).

Let X be an m-dimensional closed submanifold of M ; the prolongation of
X to J `

mM , J `
mX , is the submanifold of J `

mM whose points are the jets of the form
IX + m`+1

p , where p runs through X . It is easy to see that if, in the above local
coordinates, the local equations of X are yj−fj(x1, . . . , xm) = 0 (1 ≤ j ≤ n−m),
then the local equations of its prolongation are

yj = fj(x1, . . . , xm), (1 ≤ j ≤ n−m)

yj,α =
∂|α|fj

∂xα
, (1 ≤ j ≤ n−m; 1 ≤ |α| ≤ `)
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There is a canonical Pffaf system in J `
mM , the contact system (also called

Cartan system), Ω(J `
mM), which measures in some sense when a submanifold of

J `
mM is the prolongation of an m–dimensional submanifold of M . In the above

local coordinates Ω(J `
mM) is locally spanned by the 1–forms

ωj,α = dyj,α −
m∑

i=1

yj,α+1i
dxi, (1 ≤ i ≤ m, |α| ≤ `− 1),

where 1i is the m–index with 1 in the ith component and 0 in the remaining
ones. Its associated distribution of vector fields is spanned by the total derivatives
∂

(`)
i (1 ≤ i ≤ m) and ∂

∂yj,α
(1 ≤ j ≤ n−m, |α| = `).

Remark 1.3. Different coordinate free definitions of the contact system in
jet spaces can be found in the literature. For first order it may be described
easily: Given a jet p1

m ∈ J1
mM with source p ∈ M , from the above expressions

in local coordinates we get that Ω(J1
mM)p1

m
is spanned by the 1–forms (π1)∗ dpϕj

(1 ≤ j ≤ n−m), where ϕj = yj −
m∑

i=1

yj,i(p
1
m) (xi − xi(p)) is a function of the jet

p1
m itself, and (π1)∗ is the pull back by the projection π1 : J1

mM −→ M . Since
p1

m = (ϕ1, . . . , ϕn−m) + m2
p , we obtain

Ω(J1
mM)p1

m
= (π1)∗ dpp

1
m.

In other words, for first order the value of the contact system at a jet and the jet
itself are essentially the same object.

This property remains being valid in a suitable sense for higher order and
for more general jet spaces (see [3]), but along the paper we will use it only for
first order jets.

2. First–order PDE systems with one unknown function

In the following section we shall deal with correspondences between jet spaces
that allow us to associate with a given PDE system a first order one with only one
unknown function. We shall now recall briefly some basic facts about this kind of
systems and the spaces where they live, namely, J1

n−1M and T ∗M , where M is
an n–dimensional smooth manifold. A detailed treatment can be found in [12].

As we have seen, each jet p1
n−1 ∈ J1

n−1M is the ideal of functions of C∞(M)
vanishing at p(= p0

n−1) ∈ M and annihilated by n−1 linearly independent tangent
vectors D1, . . . , Dn−1 ∈ TpM . That is to say, the set of the functions f ∈ mp

such that dpf annihilates D1, . . . , Dn−1 . Thus, p1
n−1

/
m2

p is a line in T ∗
p M and

J1
n−1M = P(T ∗M).

In T ∗M there is a well–known canonical 1–form θ (see [12], for instance):
for each αp ∈ T ∗

p M , the value of θ at αp is the lift to T ∗M of the αp itself
via the projection T ∗M −→ M . The 2–form dθ endows T ∗M with a symplec-
tic structure; the Lagrangian submanifolds of T ∗M are the 1–forms (sections of
T ∗M −→ M ) that are locally exact and also those deduced from them by means of
canonical transformations (transformations which preserve the symplectic struc-
ture).
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Let us take local coordinates x1, . . . , xn−1, y1 in M ; these and the conju-
gated ones p1, . . . , pn−1, q in T ∗M , and x1, . . . , xn−1, y1, y1,1, . . . , y1,n−1 in J1

n−1M .
The local equations for the projection π : T ∗M −→ J1

n−1M are

(xi, y1, pi, q) −→ (xi, y1, y1,i = −pi

q
),

the canonical 1–form is θ = p1dx1+· · ·+pn−1dxn−1+qdy1 , and the contact system
Ω(J1

n−1M) is spanned by a unique 1–form ω = dy1 − y1,1dx1 − · · · − y1,n−1dxn−1 .
Thus,

π∗(ω) = dy1 +
n−1∑
k=1

pk

q
dxk =

1

q
θ

Proposition 2.1. The Pfaff system spanned in T ∗M by the canonical 1–form
θ is projectable, and its projection onto JnM is Ω(J1

n−1M).

A system of partial differential equations of order `, in m independent
variables, over M , is a locally closed submanifold R of JMLV . A classical
solution of R is an m-dimensional submanifold X ⊆ M such that J `

mX ⊆ R . A
generalized solution is an m–dimensional submanifold X ⊆ J `

mM solution of the
contact system such that X ⊆ R .

A first order system with only one unknown function is either a locally closed
submanifold R ⊆ J1

n−1M or, if ‘the unknown function does not appear explicitly’,
a locally closed submanifold F ⊆ T ∗M . Let R ⊆ J1

n−1M ; the solutions of R in
the generalized Lie sense are the Legendre submanifolds of J1

n−1M contained in
R . Among them, there are the classical solutions: hypersurfaces Xn−1 ⊆ M such
that J1

n−1(X) ⊆ R . Passing from J1
n−1M to T ∗M , the submanifolds F ⊆ T ∗M

are the first order systems with only one unknown function which does not appear
explicitly. A classical solution of F is an exact 1–form dV which, as a section of
T ∗M −→ M , values in F , and a generalized solution is a Lagrangian submanifold
Xn ⊆ F .

3. Correspondences between jet spaces

In this section, M will be an n-dimensional fixed manifold and all the jet spaces
are referred to it. Hence, we shall simplify the notation by omitting M when no
confusion can arise. Thus, Ω`

m will denote Ω(J `
mM), for example.

Since each jet in M is an ideal of C∞(M), the relation of inclusion between
ideals gives canonical correspondences between jet spaces. Focusing on the case in
which we are interested, we give the:

Definition 3.1. Given the integers 0 ≤ m ≤ r ≤ n , the Lie correspondence∧
m,r =

∧
m,r(M) is the subset of the fibred product J1

mM ×M J1
r M consisting of

the pairs of jets (p1
m, p1

r) (with the same source p = p0
m = p0

r) such that p1
m ⊇ p1

r

(inclusion as ideals of C∞(M)).

A geometric interpretation of these correspondences results from thinking
of each first order jet as a linear subspace of TpM : the inclusion between ideals
becomes an (reversed) inclusion between linear subspaces (Lp1

m
⊆ Lp1

r
).
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Remark 3.2. At this point it is essential to stop thinking of jets as ‘jets of
cross-sections of a fibred manifold’, because when M is fibred over a manifold X ,
all the jets have the same dimension (= dim X ) and the above correspondences
cannot be established.

Since the value at p1
m of the contact system Ω1

m is (see §1) the set
{dpf, f ∈ p1

m} (p = p0
m), we can understand the Lie correspondences in terms

of inclusions between contact systems:

Proposition 3.3. (Basic Lemma). The neccessary and sufficient condition
for a couple (p1

m, p1
r) ∈ J1

mM ×M J1
r M to be in

∧
m,r is that the following inclusion

(Ω1
m)p1

m
⊇ (Ω1

r)p1
r

(lifted to J1
mM ×M J1

r M )

holds.

For each first order PDE system R ⊆ J1
mM , the restriction of the corre-

spondence
∧

m,r to R will be denoted by Rm,1 , that is:

Rm,1 = {(p1
m, p1

r) ∈ R×M J1
r M : p1

m ⊇ p1
r}

Projecting the correspondence Rm,1 to J1
r M we can associate with R a

first order PDE system in r independent variables. From now on we will restrict
ourselves to the case r = n− 1; the submanifolds F ⊆ J1

n−1M are the first order
systems with only one unknown function and the properties of this kind of systems
are well known (see [12], for instance).

In [11], S. Lie associates with some systems of partial differential equations
a first order system with an unique unknown function which does not appear
explicitly, that is to say, a submanifold of T ∗M ; since J1

n−1M is the projectivized
manifold of T ∗M , for the correspondences

∧
m,n−1 we can replace the second factor

in J1
mM×M J1

n−1M by T ∗M , which we will do in the sequel. Thus, we shall denote
by
∧

m,∗(M) the subset of J1
mM ×M T ∗M defined by∧

m,∗
(M) =

{
(p1

m, αp) ∈ J1
mM ×M T ∗M : αp ∈ p1

m/m2
p

}
.

From the Basic Lemma and Proposition 2.1 it follows:

Proposition 3.4. The intrinsic equation of
∧

m,∗ as a submanifold of J1
mM×M

T ∗M is θ ∈ Ω1
m (lifted to J1

mM ×M T ∗M ), where θ is the canonical 1-form in
T ∗M .

The above proposition provides an effective method for calculating the local
equations of the above correspondence

∧
m,∗ as submanifold of J1

mM ×M T ∗M .

Let us take local coordinates x1 , . . . , xm , y1 , . . . , yn−m in M , these and
y1,1 , . . . , y1,m , . . . , yn−m,1 , . . . , yn−m,m in J1

mM , and x1 , . . . , xm , y1 , . . . , yn−m

and the ‘conjugated’ ones p1 , . . . , pm , q1 , . . . , qn−m in T ∗M . The contact system
Ω1

m is spanned by the 1-forms

ωj = dyj −
m∑

i=1

yj,i dxi (1 ≤ j ≤ n−m)
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and the canonical 1-form θ of T ∗M lifted to J1
mM ×M T ∗M is

θ =
m∑

i=1

pi dxi +
n−m∑
j=1

qj dyj =
m∑

i=1

(
pi +

n−m∑
j=1

qjyj,i

)
dxi +

n−m∑
j=1

qj ωj

Hence, the condition for θ to be in the contact system is that the following
equations hold:

pi +
n−m∑
j=1

qjyj,i = 0 (1 ≤ i ≤ m) (1)

These are the local equations of
∧

m,∗ as a submanifold of J1
mM ×M T ∗M .

For each system R ⊆ J1
mM , Rm,∗ will denote the restriction of

∧
m,∗ to R .

The fibre of Rm,∗ over p1
m is the set of the differentials at p of all the functions of

p1
m , or, what it is the same, (Ω1

m)p1
m

. The projectivized space of this fibre is the
fibre of Rm,n−1 , which is the collection of hyperplanes of TpM passing through
Lp1

m
.

Definition 3.5. The projection of Rm,∗ in T ∗M will be called the first order
system of partial differential equations associated with R and it will be denoted
by R∗.

The forms ωj, dxi (1 ≤ i ≤ m, 1 ≤ j ≤ n − m) are linearly independent
when specialized to any submanifold fibred over M . Hence, equations (1) give also
the condition for the specialization of θ to such a submanifold of J1

mM ×M T ∗M
to be in the specialization of the contact system Ω1

m ; therefore, if R ⊆ J1
mM is a

first order PDE system given by

Fk(xi, yj, yj,i) = 0, (1 ≤ k ≤ s) (2)

the local equations of Rm,∗ as a submanifold of J1
mM ×M T ∗M are pi +

n−m∑
j=1

qj yj,i = 0 (1 ≤ i ≤ m)

Fk(xi, yj, yj,i) = 0 (1 ≤ k ≤ s)

(3)

and that of its first order associated system R∗ ⊆ T ∗M are obtained by eliminating
the derivatives yj,i from the equations of Rm,∗ .

Remark 3.6. (1) A priori, R∗ might not be a submanifold of T ∗M . The above
definitions and results can be extended to the complex framework; when one is
working with complex algebraic manifolds and R is an algebraic submanifold of
J1

mM , then R∗ contains a dense open subset that is a manifold.

(2) Observe that if the number of equations of R is not enough to eliminate
the yj,i , R∗ may be the whole T ∗M .

Example 3.7. Let X ⊆ M be an m-dimensional submanifold; R = J1
mX ⊆

J1
mM is a system of partial differential equations whose unique solution is X (and

its open subsets). Each jet p1
m ∈ J1

mX can be identified with TpX (where p = p0
m
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is the source of p1
m ). We can think of each p1

n−1 ⊆ p1
m as a hyperplane Hp ⊆ TpM

containing Lp1
m

= TpX . Thus, Rm,n−1 is the collection of all the hyperplanes Hp

tangent to X : it is the manifold of contact elements of X in the Lie terminology.
(JmX)∗ is a Lagrangian submanifold of T ∗M ; in fact, it is homogeneous, that is,
a solution of θ = 0.

In the above notation assume that X is locally given by

yj − fj(x1, . . . , xm) = 0, (1 ≤ j ≤ n−m). (4)

From (3) it follows that the local equations of (J1
mX)∗ as a submanifold of T ∗M

are 
pi +

n−m∑
j=1

qj
∂fj

∂xi

= 0, (1 ≤ i ≤ m)

yj − fj(x1, . . . , xm) = 0, (1 ≤ j ≤ n−m)

(5)

Set V = −
n−m∑
j=1

fj qj ; the equations (5) are written as


pi =

∂V

∂xi

, (1 ≤ i ≤ m)

yj = −∂V

∂qj

, (1 ≤ j ≤ n−m)
(6)

A trivial verification proves that the functions pi − ∂V
∂xi

, yj + ∂V
∂qj

(1 ≤ i ≤
m, 1 ≤ j ≤ n −m) are in involution with respect to the usual Poisson structure
in T ∗M .

Each inclusion S ⊆ R between submanifolds of J1
mM gives rise to another

one S∗ ⊆ R∗ . In particular, when X ⊆ M is a solution of S , from J1
mX ⊆ R it

follows that (J1
mX)∗ ⊆ R∗ ; we can state the result of [11, page 351] as follows:

Theorem 3.8. Lie If X is a solution of the PDE system R ⊆ J1
mM , X is

also a solution, in the generalized Lie sense, of the first order system R∗ ; that is,
(J1

mX)∗ is a Lagrangian submanifold of R∗ .

Examples 3.9. (1) Let us consider R4 with coordinates x1, x2, y1, y2 and J1
2 R4

with coordinates x1, x2, y1, y2 and the derivatives y1,1, y1,2, y2,1, y2,2 ; T ∗R4 is coor-
dinated by x1, x2, y1, y2 and their conjugated ones p1, p2, q1, q2 .

The equations of the correspondence
∧

2,∗(R4) ⊆ J1
2 R4 ×R4 T ∗R4 are (see

above)
p1 + q1 y1,1 + q2 y2,1 = 0
p2 + q1 y1,2 + q2 y2,2 = 0

(7)

Let R ⊆ J1
2 R4 be the PDE system given by

yj,i = fj,i(x1, x2, y1, y2) (1 ≤ i, j ≤ 2). (8)

The equations of its associated first order system R∗ ⊆ T ∗R4 are obtained by
eliminating the derivatives yj,i (1 ≤ i, j ≤ 2) from (7) and (8). That is, the
equations of R∗ are

p1 + q1 f1,1 + q2 f2,1 = 0
p2 + q1 f1,2 + q2 f2,2 = 0

(9)
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Now, we look for the solutions of R∗ of the form (J1
2X)∗ , where X ⊆ R4 is

given by y1 = ϕ1(x1, x2), y2 = ϕ2(x1, x2). Hence Equations (9) must be satisfied
by (J1

2X)∗ , whose equations are

y1 = ϕ1(x1, x2)

y2 = ϕ2(x1, x2)

p1 + q1
∂ϕ1

∂x1

+ q2
∂ϕ2

∂x1

= 0

p2 + q1
∂ϕ1

∂x2

+ q2
∂ϕ2

∂x2

= 0

So we have
∂ϕj

∂xi
= fj,i , what proves that X is also a solution of R . Here the

converse of the above theorem also occurs, but this is not always true.

(2) In the same notation of the previous example let us consider the system
R ⊆ J1

2 R4 given by

y1,1 = y2,2, y1,2 = y2,2, y2,1 = y2,2 (10)

The equations of its associated first order system R∗ ⊆ T ∗R4 are

p1 − p2 = 0 (11)

As before, we look for solutions of R∗ of the form (J1
2X)∗ ; among them there

will be the solutions of R . We find easily that X is given by y1 = ϕ1(x1 + x2),
y2 = ϕ2(x1 + x2), where ϕ1 , ϕ2 are arbitrary functions of one variable. In order
to obtain a solution of R we must impose the additional condition ϕ′

1 = ϕ′
2 ; so,

the solutions of R are
y1 = ϕ(x1 + x2)
y2 = ϕ(x1 + x2) + c

where ϕ is an arbitrary smooth function of one variable and c a constant.

The latter example proves that the converse of the above theorem is not true
in general: there may exist solutions of R∗ which project to M with dimension
equal to m and they are not solutions of R .

The PDE systems considered by Lie in [11] are those for which it is possible
to ‘solve the parametric derivatives’ in R from the equations of the correspondence.
This condition becomes that its associated first order system R∗ parametrizes the
correspondence Rm,∗ . So, we give the following

Definition 3.10. A system R is a Lie system when the projection of Rm,∗
over R∗ is an isomorphism.

Examples 3.11. (1) For each m–dimensional submanifold X ⊆ M , J1
mX is a

Lie system because J1
mX ' X .

(2) The system in the example (1) above is a Lie system. The same remains
being valid for every system R ⊆ J1

mM whose symbol is equal to zero, since locally
R ' M.

(3) The system in the example (2) above is a Lie system wherever q1+q2 6= 0.
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Remark 3.12. For a Lie system, each p1
n−1 contained (as an ideal) in a p1

m ∈
R , is in only one of them. In other words: each contact element Hp ∈ J1

n−1M that
contains an m-dimensional Pp ⊆ TpM determining a jet in R , contains only one
of them.

When R is a Lie system, the composition of R∗ ≈ Rm,∗ with the projection
Rm,∗ −→ R gives a parametrization, λ , of R by its first order associated system
R∗ :

Rm,∗
≈

||zz
zz

zz
zz

!!CC
CC

CC
CC

R∗ λ //R

The situation is as follows: we have a first order system R∗ and a smooth
map λ : R∗ −→ R such that for each αp ∈ R∗ , αp ∈ λ(αp)/m

2
p ; by Proposition

3.4 this is equivalent to the condition θ ∈ λ∗(Ω1
m), θ being the specialization to

R∗ of the canonical 1-form in T ∗M .

When R is a Lie system, the isomorphism R∗ ' Rm,∗ yields a relationship
between the dimension g of the symbol of R(=tangent space to the fibers of the
projection R −→ M ), its number m of independent variables and the number of
independent equations of R∗ .

In the above notation, we assume that the rank of the projection R −→
M is the highest one possible (= n) at all the points in R . Hence, we can
solve (locally) from the equations of the system s of the (n − m)m coordinates
y1,1, . . . , yn−m,m as functions of the remaining ones and x1, . . . , xm, y1, . . . , yn−m .
If g denotes the dimension of the symbol of R , then s = (n−m)m−g and hence,
since dim(J1

mM ×M T ∗) = 2n + (n−m)m , we have

dimRm,∗ = 2n + (n−m)m−m− (n−m)m + g = 2n−m + g.

Let r be the number of independent equations of R∗ in T ∗M . Since
dimR∗ = dimRm,∗ , we obtain m − g = r , and since r ≥ 0, then m ≥ g .
Note that when m = g +1, the first order associated system R∗ is a single partial
differential equation.

Proposition 3.13. Let R ⊆ J1
mM be a first order PDE system with m inde-

pendent variables and n − m unknown functions and let g be the dimension of
its symbol. If R is a Lie system, its associated system R∗ has m − g equations.
Hence, m ≥ g .

On the other hand, the characteristic vector fields are known to play an
important role in the integration of first order systems with only one unknown
function. In the remainder of this section we relate the characteristic systems of
R and R∗ .

In the above notation, let R ⊆ J1
mM be a Lie system, which we may assume

written locally in the form:

yj,k − Fj,k(xi, yj, yh,`) = 0;

the couples (j, k) corresponding to the derivatives which we can solve run through a
set I of indexes of lenght s . Let us denote by J the set of pairs (h, `) corresponding
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to the remaining (parametric) derivatives. The functions x1, . . . , xm, y1, . . . , yn−m

together with the g parametric derivatives are local coordinates in R .

The local equations of Rm,∗ are (see above):

pi +
n−m∑
j=1

qjyj,i = 0 (1 ≤ i ≤ m)

yj,k − Fj,k = 0 ((j, k) ∈ I)

(12)

To simplify the calculations below it will be convenient to take as local coordinates
in R∗(' Rm,∗) the functions xi, yj, yh,`, qj (1 ≤ i ≤ m, 1 ≤ j ≤ n−m, (h, `) ∈ J),
solving pi (1 ≤ i ≤ m) from (12). In these local coordinates the equations of λ
are

λ : R∗ −→ R
(xi, yj, yh,`, qj) −→ (xi, yj, yh,`)

(13)

Let θ be the canonical 1-form in T ∗M specialized to R∗ and let Ω be the contact
system in R . Ω is spanned by the 1-forms

ωj = dyj −
m∑

i=1

yj,i dxi (1 ≤ j ≤ n−m),

where yj,i is replaced by Fj,i for (j, i) ∈ I .

We have:

θ =
m∑

i=1

pi dxi +
n−m∑
j=1

qj dyj

=
∑

1≤j≤n−m
1≤i≤m

(j,i)∈J

(−qj yj,i) dxi +
∑

1≤j≤n−m
1≤i≤m

(j,i)∈I

(−qj Fj,i) dxi +
n−m∑
j=1

qj dyj =
n−m∑
j=1

qj ωj,

where the right hand side in the first line is understood restricted to R∗ .
And its differential:

dθ =
n−m∑
j=1

dqj ∧ ωj +
n−m∑
j=1

qj dωj

Now, let us take a vector field D in the characteristic system of Ω and let D be
a vector field in the characteristic system of λ∗Ω which projects onto it. Then,

iDdθ =
n−m∑
j=1

D(qj) ωj −
n−m∑
j=1

ωj(D) dqj +
n−m∑
j=1

qj iDdωj

Since ωj(D) = 0 and iDdωj ∈ λ∗Ω (1 ≤ j ≤ n−m), iDdθ ∈ λ∗Ω. On the
other hand, for each vector field Dv tangent to R∗ and vertical for the projection
λ we have

iDvdθ =
n−m∑
j=1

Dv(qj) ωj

Thus, by adding up to D a suitable vertical vector field we obtain a vector field
D∗ ∈ rad dθ which projects by λ∗ onto D .

We summarize the discussion above in
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Proposition 3.14. Let R ⊆ J1
mM be a Lie system. Let Ω be the contact

system in J1
mM specialized to R and let θ be the canonical 1–form in T ∗M

specialized to R∗ . Then, for each vector field D in the characteristic system of Ω
there exists another one, D∗ , in rad dθ that projects onto it.

If R is a Lie system, the number r of independent equations for R∗ is
m− g (see Proposition 3.13) and consequently the dimension of rad dθ is at most
m− g . It follows immediately

Corollary 3.15. Let R ⊆ J1
mM be a Lie system and let g be the dimension

of its symbol. The dimension of the characteristic system of the contact one in
R is at most m − g ; if the equality holds, R∗ is an involutive system and its
characteristic system projects onto that of R.

Remark 3.16. The above corollary gives a condition for the dimension g of the
symbol of a Lie system R in order to expect the existence of Cauchy characteristic
vector fields: g < m(=number of independent variables). As far as we know this
result does not seem to be in the literature. Note that the condition for a system
to be a Lie one occurs often in the practice which makes this result valid for a
wide class of PDE systems.

Example 3.17. Let us consider again the example (2) in 3.9. Recall that the
associated first order system R∗ is in this case the single linear equation p1−p2 = 0.
Its characteristic system is spanned by the hamiltonian vector field

D∗ = Dp1−p2 = − ∂

∂x1

+
∂

∂x2

As a consequence of the linearity of p1 − p2 = 0, D∗ is the lift to T ∗R4 of the
vector field D in R4 whose expression in local coordinates is D = − ∂

∂x1
+ ∂

∂x2
.

The classical solutions of R∗ are computed easily: they are first integrals of D ,
i.e., they are V (x1 + x2, y1, y2), where V is an arbitrary smooth function.

From Proposition 3.14 we have that the dimension of the characteristic
system of R is at the most 1. The candidate to span it is the vector field
D = − ∂

∂x1
+ ∂

∂x2
tangent to R , projection of D∗ to R . It is easily checked

that D is in fact a characteristic vector field.

In this particular case R∗ agrees with the system whose solutions are the
first integrals of the projection to R4 of the characteristic system of R . Observe
that the solutions V ∈ C∞(R4) of R∗ satisfy the following property: they are
functions such that for every constant c , V = c can be foliated by solutions of
R . In the terminology of the next section V is an intermediate integral of order 0
of R .

4. Higher order PDE systems. Intermediate integrals.

The theory of the Lie correspondences in the way we have dealt with it is applied to
PDE systems with any number of independent variables and unknown functions,
but only to first order systems. However, each PDE system can be written in this
form due to the natural inclusions J `

mM ⊆ J1
m(J `−1

m M); each system R ⊆ J `
mM
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must be considered as a submanifold of J1
m(J `−1

m M), and the base–manifold for
the Lie correspondence is J `−1

m M . Accordingly, R∗ is a subset of T ∗J `−1
m M .

Let R ⊆ J `
mM be a Lie system such that R −→ J `−1

m M is onto. We have
the following commutative diagram:

Rm,∗
≈

yyssssssssss

""FF
FF

FF
FF

F

T ∗J `−1
m M ⊇ R∗ λ //R

||yy
yy

yy
yy

y

J `−1
m M
%%

KKKKKKKKKK

We shall denote by θ the canonical 1–form in T ∗J `−1
m M specialized to R∗

and by Ω the contact system in J1
m(J `

mM) specialized to R . From Proposition 3.4
it follows that

θ ∈ λ∗(Ω). (14)

A classical solution of R∗ is an exact 1–form in J `−1
m M which values in R∗

as a section of T ∗J `−1
m M −→ J `−1

m M . Given a solution dV of R∗ , λ transports
the section dV to a section σ = λ ◦ dV : J `−1

m M −→ R :

R∗ λ //

##GG
GG

GG
GG

G R

||xx
xx

xx
xx

x

J `−1
m M

σ

II

dV

UU

Since (dV )∗θ = dV , (14) implies that

dV = (dV )∗θ ∈ (dV )∗λ∗Ω = σ∗(Ω),

which gives that V is a first integral of the distribution of tangent vector fields
associated with σ∗(Ω). We have thus proved:

Proposition 4.1. Let R ⊆ J `
mM be a Lie system such that R −→ J `−1

m M is
onto. Then, for each solution dV of R∗ , V is a first integral of (σ∗Ω)⊥ , where
σ = λ ◦ dV and λ is the projection R∗ −→ R.

Next we study the relationship between the intermediate integrals of a given
system and the solutions of its associated first order one.

Definition 4.2. Let R ⊆ J `
mM be a system of partial differential equations of

order ` . An intermediate integral of order `−1 of R is a hypersurface F ⊆ J `−1
m M

(a single PDE of order `− 1) that admits a complete integral formed by common
solutions with R .

Lemma 4.3. Let F ⊆ J `−1
m M be an intermediate integral of order ` − 1 of

R ⊆ J `
mM whose local equation is F = 0. Then, for each p`−1

m ∈ F , dp`−1
m

F ∈ R∗ .
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Proof. The necessary and sufficient condition for dp`−1
m

F ∈ R∗ is that there

exists p`
m ∈ R in the fibre of p`−1

m such that (p`
m, dp`−1

m
F ) ∈

∧
m,∗(J

`−1
m M); that is,

dp`−1
m

F ∈ p`
m

/
m2

p`−1
m

(p`
m ∈ J1

m(J `−1
m M)).

Since F is an intermediate integral of R , it has a complete integral formed
by common solutions with R . Hence, for each p`−1

m ∈ F there exists X ⊆ M , a
solution of R , such that p`−1

m ∈ J `−1
m X ⊆ F . Therefore, F ∈ I(J `−1

m X), where
I(J `−1

m X) is the ideal of J `−1
m X in C∞(J `−1

m M).

On the other hand, each p`
m ∈ J `−1

m X ⊆ R in the fibre of p`−1
m is of the

form (as an ideal of C∞(J `−1
m M)) p`

m = I(J `−1
m X) + m2

p`−1
m

. Thus, F ∈ p`
m , which

is our assertion.

The above lemma gives us more. Namely, if Fc is a local fibration of J `−1
m M by

intermediate integrals of R , we obtain a local section of T ∗J `−1
m M −→ J `−1

m M
valued in R∗ in the following way: if F = c , c being a parameter and F ∈
C∞(J `−1

m M), is the local equation of Fc , dF is such a section. Since these sections
agree with the solutions of R∗ , we have thus proved:

Theorem 4.4. Let R ⊆ J `−1
m M be a PDE system. Each local fibration {Fc}

of J `−1
m M by intermediate integrals of order ` − 1 of R gives a (local) solution

of its associated first order system. Consequently, the (fibrations of J `−1
m M by)

intermediate integrals of R of order `−1, when they exist, are among the solutions
of R∗ .

Remark 4.5. In the next section we shall prove in some particular cases that
the (classical) solutions of R∗ agree exactly with the (fibrations of JMLLV by)
intermediate integrals of R of order `− 1.

5. Examples

A. PDE systems with symbol equal to zero.

PDE systems whose symbol equals zero were studied by Lie [10, pag.
171-183], who characterized those PDE systems whose solutions depend only on
arbitrary constants. Is is known that the contact system specialized to such an
involutive system is a completely integrable Pfaff system (see [10] for instance).
Consequently, Frobenius’s theorem allows us to integrate it by means of ordinary
differential equations.

We shall now apply the theory of the Lie correspondences developed in §3
and §4. For each PDE system R as above we prove that the first integrals of the
contact system specialized to R agree with the solutions of R∗ and also with the
intermediate integrals of R .

Let R ⊆ J `
mM be a PDE system whose symbol equals zero. As usual, the

projection R −→ J `
mM is assumed to be onto, and hence R −→ J `

mM is a local
isomorphism.

R can be considered as a first order system via the canonical immersion
J `

mM ⊆ J1
m(J `−1

m M). Therefore, the base–manifold for the Lie correspondence
is J `−1

m M . As a consequence of the local isomorphism R ' J `−1
m , one has that

Rm,∗ ⊆ R×J`−1
m M T ∗J `−1

m M is locally isomorphic to R∗ ; that is, R is a Lie system.
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Hence, we have the following commutative diagram:

Rm,∗
≈

xxqqqqqqqqqq

""FF
FF

FF
FF

F

T ∗(J `−1
m M) ⊇ R∗ λ //R

≈||yy
yy

yy
yy

y

J `−1
m M
&&

MMMMMMMMMM

We shall denote by θ the canonical 1-form in T ∗J `−1
m M specialized to R∗ , and

by Ω the contact system in J `
mM specialized to R . Since Ω is a Pfaff system

completely integrable, from Proposition 3.14 and its corollary it follows that R∗

is an involutive system and that rad dθ projects onto Ω⊥ by λ∗ .

On the other hand, Proposition 4.1 shows that for each solution dV of R∗ ,
V is a first integral of Ω (taken to J `−1

m M by the isomorphism R −→ J `−1
m M ).

Consequently, the family {V = c} , where c is a constant, is a (local) fibration of
J `−1

m M by intermediate integrals of R . Conversely, if V = c is the local equation
of such a fibration, from Theorem 4.4 it follows that dV is a solution of R∗ . We
have thus proved:

Theorem 5.1. Let R ⊆ J `
mM be a formally compatible PDE system whose

symbol equals zero at all the points in R and let Ω be the contact system in J `
mM

specialized to R. Then the following assertions hold:

1. R is a Lie system.

2. R∗ is an involutive system.

3. The characteristic system of R∗ projects onto that of Ω.

4. If V ∈ C∞(J `−1
m M) is a first integral of Ω (taken to J `−1

m M by the isomor-
phism R ' J `−1

m M ), dV is a solution of R∗ , and conversely. Furthermore,
{V = c}, where c is a constant, is a (local) fibration by intermediate integrals
(of order `− 1) of R.

The theorem shows that the integration of the system R is equivalent to
that of its associated first order system R∗ . As a matter of fact R∗ is the PDE
system whose solutions are the first integrals of Ω and the reduction of R to
ODE’s is made via R∗ .

Computation in local coordinates. Let us take local coordinates xi, yj

(1 ≤ i ≤ m, 1 ≤ j ≤ n−m); these and the derivatives yj,α (1 ≤ j ≤ n−m, 1 ≤
α ≤ `) in J `

mM . We can assume that the local equations of R are:

yj,α = Fj,α(xi, yr,β), (1 ≤ j ≤ n−m, |α| = `), (15)

where Fj,α(xi, yr,β) ∈ C∞(J `−1
m M).

The contact system restricted to R is spanned by

ωj,α = dyj,α −
m∑

k=1

yj,α+1k
dxk, (1 ≤ j ≤ n−m, |α| ≤ `− 2)

ωj,α = dyj,α −
m∑

k=1

Fj,α+1k
dxk, (1 ≤ j ≤ n−m, |α| = `− 1)
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and the distribution of vector fields tangent to R annihilating Ω is spanned by

Di =
∂

∂xi

+
∑

|α|≤`−2
1≤j≤n−m

yj,α+1i

∂

∂yj,α

+
∑

|α|=`−1
1≤j≤n−m

Fj,α+1i

∂

∂yj,α

, (1 ≤ i ≤ m) (16)

Their Lie brackets are

[Di, Ds] =
∑

|α|=`−1
1≤j≤n−m

(Di(Fj,α+1s)−Ds(Fj,α+1i
))

∂

∂yj,α

, (1 ≤ i, s ≤ m).

Hence, the conditions for the vector fields Di (1 ≤ i ≤ m) to span an involutive
distribution are the compatibility conditions for the prolongation of R to J `+1

m M .

Maintaining the notation for the local coordinates in J `−1
m M and taking

xi, yj,α , (1 ≤ i ≤ m, 1 ≤ j ≤ n−m, |α| ≤ `− 1) and the ‘conjugated’ ones pi, qj,α

, (1 ≤ i ≤ m, 1 ≤ j ≤ n − m, |α| ≤ ` − 1) as coordinates in T ∗JMLLV , the
local equations of the Lie correspondence

∧
m,∗(J

`−1
m M) (restricted to J `

mM ) as

submanifold of J `
m ×J`−1

m M T ∗(J `−1
m M) are (see §3):

pi +
∑

|α|≤`−1

n−m∑
k=1

qk,α yk,α+1i
= 0, (i = 1, . . . ,m) (17)

The local equations of the first order associated system R∗ ⊆ T ∗J `−1
m M are

obtained by eliminating yj,α , (1 ≤ j ≤ n − m, |α| = `) from (17) and (15).
Thus, R∗ is given by:

pi +
∑

|α|≤`−2
1≤k≤n−m

qk,α yk,α+1i
+

∑
|α|=`−1

1≤k≤n−m

qk,α Fk,α+1i
= 0, (i = 1, . . . ,m) (18)

The involutive distribution L of vector fields spanned by the vector fields
Di (1 ≤ i ≤ m) gives, by isomorphism, another one L in J `−1

m M . Its generators,
Di (1 ≤ i ≤ m), have in the coordinates xi, yj,α , (1 ≤ i ≤ m, 1 ≤ j ≤ n−m, |α| ≤
`− 1) the same expressions (Equations (16)) that the vector fields Di . Note that
the characteristic system of R∗ is spanned by the lift to T ∗JMLLV of the vector
fields Di (1 ≤ i ≤ m).

The simple inspection of (16) and (18) gives that R∗ is the PDE system
whose solutions V ∈ C∞(J `−1

m M) are the first integrals of L : the integration of
R and that of R∗ are equivalent problems.

B. Systems of two second order partial differential equations with two
independent variables and one unknown function.

These are ones of the best–studied systems in the classical literature. They
have been studied by many mathematicians, among them Goursat [5], Darboux,
Cartan [4], Lie [11] and more recently by Kakié [7, 8]. It is known that such an
involutive system is integrable by a method that is a generalization of that of
the Cauchy characteristics for a single partial differential equation of first order,
due to the existence of characteristic vector fields (see [5] for instance). We shall
resume some known results about this kind of systems (see [6, 17]), such as the
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existence of enough involutive distributions of vector fields tangent to them and
annihilating the contact system to obtain all their solutions. Next, by applying
the theory of the Lie correspondences we show that the intermediate integrals of
such a system agree with the solutions of its associated first order system, which
leads to the fundamental result: the integration of both systems is equivalent. The
computations will be made in local coordinates and the statements and results are
local.

A system of two second order partial differential equations in two indepen-
dent variables and one unknown function is a 6–dimensional locally closed sub-
manifold R of J2

2M , where dim M = 3. Moreover, the projection R −→ J1
21M

is assumed to have the highest rank at all the points of R .

Let us take local coordinates x , y , z in M ; x , y , z , p , q in JJ21M ; and
x , y , z , p , q , r , s , t in JJ22M . Thus, the local equations of the prolongation of
the submanifold z = Z(x, y) of M to JJ22M are z = Z(x, y), p = ∂Z

∂x
, q = ∂Z

∂y
,

r = ∂2Z
∂x2 , s = ∂2Z

∂x∂y
, and t = ∂2Z

∂y2 .

Without any loss of generality (see [4, 5, 11]) we can assume the local
equations of R to be:

r + R(x, y, z, p, q, s) = 0
t + T (x, y, z, p, q, s) = 0

(19)

where R, T ∈ C∞(R). The functions x , y , z , p , q , s are local coordinates in R .

The contact system, Ω(R), the specialization to (19) of Ω(JJ22M), is
spanned by the 1–forms:

ωz = dz − p dx− q dy
ωp = dp + R dx− s dy
ωq = dq − s dx + T dy

(20)

A basis of the vector fields tangent to R annihilating the contact system is:

Dx =
∂

∂x
+ p

∂

∂z
−R

∂

∂p
+ s

∂

∂q

Dy =
∂

∂y
+ q

∂

∂z
+ s

∂

∂p
− T

∂

∂q
∂

∂s
(which spans the symbol of R)

(21)

Computations in local coordinates give that the necessary and sufficient
condition for the contact system Ω(R) to have the characteristic system different
from zero is that the equations

Rs Ts − 1 = 0 (22)

DyR−Rs DxT = 0 (23)

hold, where the subscript s denotes the partial derivative with respect to s . In
this case, the characteristic system of Ω(R2

2) is spanned by

D = Dx + RsDy −Dy(R)
∂

∂s
(24)

(see [17, page 104-105] for a detailed discussion).
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The first prolongation R(1) of R is defined by Equations (19) together with
a system of four equations linear in the third order derivatives; the necessary and
sufficient condition for this linear system to be undetermined is (22), and in this
case (23) is its compatibility condition. Therefore the characteristic system of
Ω(R) is different from zero if and only if the projection R(1) −→ R is an affine
fibred bundle whose fibre has dimension 1.

Remark 5.2. When the prolongation to fourth order is made, the linear system
that gives the fibre of R(2) −→ R(1) has matrix of coefficients of rank 4. From this,
it follows that the symbol of R(2) (tangent space to fibres of the projection in R(1) )
has dimension ≤ 1 in all its points. The same occurs for all the prolongations R(r)

(r ≥ 0). Therefore, the above results can be formulated in terms of the terminology
of the theory of formal integrability: If the system R written in the canonical form
(19) satisfies (22), (23), then it is involutive in the sense of Spencer-Goldschmidt-
Kuranishi.

Following some indications by Lie in [11], we wondered if there are enough
involutive distributions of vector fields tangent to R annihilating the contact sys-
tem to obtain all its solutions (see also [17]). When R is involutive, computations
in local coordinates show that there are infinite involutive distributions of vec-
tor fields, that are determined by solving a first order single partial differential
equation with 6 independent variables; the characteristic system of Ω(R) is the
intersection of all these distributions. Otherwise, R(1) ' R , that is to say, the
symbol of R(1) equals zero, like the systems studied in the former example.

From now on we assume that R is involutive. Let us take a section σ of
R −→ J1

2M tangent to an involutive distribution L of vector fields as above; σ
takes L to an involutive distribution L of vector fields in J1

21M annihilating the
contact system in J1

2M , whose solutions are (prolongations of) solutions of R .
Hence, any hypersurface F ⊆ J1

2M tangent to L has a biparametric family of
common solutions with R : F is an intermediate integral of R . Furthermore,
each section σ determines infinite intermediate integrals of R in the following
way: if V ∈ C∞(J1

2M) is a first integral of L , for each constant c , V = c is an
intermediate integral (of first order) of R . Moreover, V = c is a (local) fibration
of J1

2M by intermediate integrals.

Since each solution X of R is a solution of an involutive distribution L ,
its prolongation to J2

2M is contained (locally) in the image of a section σ tangent
to L . Thus, from the above X can be deduced to be a solution of an intermediate
integral of R .

On the other hand, an easy computation in local coordinates allows one to
characterize a section σ as above by the condition of tangency to the characteristic
system of Ω(R). For later references, we summarize the above discussion in

Proposition 5.3. Let R ⊆ J2
2M be an involutive system. The following as-

sertions hold:

1. A section σ of R −→ J1
21M is tangent to an involutive distribution of rank

two of vector fields tangent to R annihilating the contact system precisely if
Im σ is tangent to the characteristic system of the contact one in R.
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2. Each section σ as above gives infinite fibrations of J1
2M by intermediate in-

tegrals of R in the following way: if σ is tangent to an involutive distribution
L, for each first integral V of L (transported to J1

2M by σ), {V = c}, c
runs through R, is such a fibration.

3. Each solution X of R is a solution of an intermediate integral of R.

In the remainder of this section we shall apply the theory of the Lie corre-
spondences to R , which is assumed to be a Lie system. Let us consider R as a
submanifold of J1

2 (J1
2M) and let us take J1

2M as the base–manifold for the Lie
correspondence. We thus have,

R2,∗
≈

{{vvv
vv

vv
vv

!!CC
CC

CC
CC

T ∗J1
2M ⊇ R∗ λ //R

}}{{
{{

{{
{{

J1
2M

##

HHHHHHHHH

We shall denote by θ the canonical 1-form in T ∗J1
2M specialized to R∗ . Note

that R∗ is a single PDE equation (see Proposition 3.13).

Theorem 5.4. Let R ⊆ J22M be an involutive Lie system. If {Fc} is a local
fibration of J1

2M by intermediate integrals of R, whose local equation is F = c,
with c constant and F ∈ C∞(J1

2M), then dF is a solution of R∗ , and, conversely,
given dF a (local) solution of R∗ , F = c, with c constant, is such a fibration.

Accordingly, solutions of R∗ agree with (fibrations of J1
2M by) intermediate

integrals of R.

Proof. The first assertion follows immediately from Theorem 4.4. Let us prove
the converse. In the notation above, let dV be a solution of R∗ . By Propositions
4.1 and 5.3 it is sufficient to prove that σ = λ ◦ dV is a section of R −→ J1

2M
tangent to an involutive distribution of vector fields of rank 2 annihilating the
contact system in R . Since R∗ is a single partial differential equation and since
the dimension of the characteristic system of Ω(R) equals 1, from Corollary 3.15 it
follows that R∗ is involutive and that rad dθ (whose dimension equals 1) projects
onto the characteristic system of Ω(R). Hence, dV being tangent to rad dθ , Im σ
is tangent to the characteristic system of Ω(R), which concludes the proof (see
the proposition above).

Taking into account that each solution of R is a solution of an intermediate
integral, we can formulate our main result for this kind of systems.

Theorem 5.5. Let R ⊆ J2
2M be an involutive Lie system. Each solution X

of R is a solution of a solution of R∗ ; conversely, each solution of R∗ admits a
complete integral formed by solutions common with R. Moreover, each solution
X of R is obtained as an intersection of solutions of R∗ .
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Remark 5.6. The results obtained for involutive systems R can be generalized
to PDE involutive systems of arbitrary order in two independent variables and any
number of unknown functions whose symbol has dimension equal to 1, which, in
some way, shows that the above calculations and results essentially depend only on
the number of the independent variables of the original system and the dimension
of its symbol.

Calculus of the associated system in local coordinates.

The system (19) can be considered as a first order system R ⊆ J1
2 (J1

2M);
let us take local coordinates x, y, z, p, q in J1

2M (they will be denoted by x1 , x2 ,
y1 , y2 , y3 from now on), and the corresponding ones x1, x2, y1, y2, y3, y1,1, . . . , y3,2

in J1
2 (J1

2M). The equations of R are

y2,1 + R(x1, x2, y1, y2, y3, y2,2) = 0
y3,2 + T (x1, x2, y1, y2, y3, y2,2) = 0

y1,1 = y2

y1,2 = y3

y3,1 = y2,2

(25)

We take now local coordinates x1, x2, y1, y2, y3, p1, p2, q1, q2, q3 in T ∗M ; the
equations of the Lie correspondence in J1

2 (J1
2M)×J1

2M T ∗J1
2M are:

p1 + q1y1,1 + q2y2,1 + q3y3,1 = 0
p2 + q1y1,2 + q2y2,2 + q3y3,2 = 0

(26)

whose restriction to R ×J1
2M T ∗J1

2M is defined by the equations (25) and (26);
using (25), the last can be replaced by

p1 + q1y2 − q2R + q3y2,2 = 0
p2 + q1y3 + q2y2,2 − q3T = 0

(27)

Eliminating y2,2 of these two equations we obtain the system R∗ associated to R
by means of the Lie correspondence; this system is defined by one (when the system
is a Lie one) or two first order equations with x1, x2, y1, y2, y3 as independent
variables and only one unknown function that does not appear explicitly.

Example 5.7. Let us consider the PDE system R ⊆ J2
2 R3 given by

r + s = 0, t + s = 0;

its associated first order system R∗ ⊆ T ∗J1
2 R3 is the single PDE equation

p1 + p2 + (p + q)q1 = 0, (28)

whose characteristic system is spanned by the hamiltonian vector field

D∗ = − ∂

∂x
− ∂

∂y
− (p + q)

∂

∂z
+ q1

∂

∂q2

+ q1
∂

∂q3

.

Because of the linearity of R∗ , D∗ is the lift to T ∗J1
2 R3 of the vector field

D = − ∂
∂x
− ∂

∂y
− (p + q) ∂

∂z
in J1

2 R4 .
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From above we know that the set of intermediate integrals of R agrees
with that of the (classical) solutions of R∗ . These are first integrals of D ; since
the functions u1 = x − y , u2 = p , u3 = q , u4 = z − (p + q)x are independent
first integrals of this vector field, the intermediate integrals of R are of the form
V (x− y, p, q, z − (p + q)x), V being an arbitrary function.

On the other hand, the local equation of the projection λ : R∗ −→ R is

λ : (x, y, z, p, q, p1, p2, q1, q2, q3) 7−→ (x, y, z, p, q, r = −s, s =
p1 + q1z

q2 − q3

, t = −s),

defined whenever q2 − q3 6= 0. By means of λ we can compute the characteristic
vector fields for R : the candidate is the projection by λ of the vector field D∗ . It
easy to check that D = λ∗(D

∗) = − ∂
∂x
− ∂

∂y
− (p + q) ∂

∂z
spans the characteristic

system of R .

Next we search for the solutions of R . The (classical) solutions of R are
among the solutions of R∗ whose projection over J1

2 R3 has dimension 2. Since
dim J1

2 R3 = 5 these latter are obtained by establishing 3 relations among u1 , u2 ,
u3 , u4 :

z = (p + q)x + f1(x− y), p = f2(x− y), q = f3(x− y),

where f1, f2, f3 are arbitrary smooth functions of one variable. In order to obtain
also a solution of R we must impose the additional condition f ′2 + f ′3 = 0. Hence,
the solutions of R are z = cx + f1(x− y) with c an arbitrary constant and f1 an
arbitrary function of one variable.
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loque de Géometrie Différentielle, C.N.R.S. (1953), 111–117.

Sonia Jiménez
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